Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Differentiation ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37783652

RESUMO

Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global Fgf9-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional Fgf9-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.

2.
Neuropathol Appl Neurobiol ; 49(5): e12935, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37705188

RESUMO

AIMS: Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS: Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS: Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS: These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.


Assuntos
Transtorno Depressivo Maior , Esclerose Múltipla , Animais , Ratos , Fator 1 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos , Fator 9 de Crescimento de Fibroblastos
3.
Amino Acids ; 54(7): 1069-1081, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35304640

RESUMO

Sepsis-induced fulminant hepatitis (FH) is a fatal syndrome that has a worse prognosis in clinical practice. Hence, seeking effective agents for sepsis-induced FH treatment is urgently needed. Fibroblast growth factors (FGFs) are vital for tissue homeostasis and damage repair in various organs including the liver. Our study aims to investigate the protective effects and potential mechanisms of FGF9 on lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced FH in mice. We found that pre-treatment with FGF9 exhibited remarkable hepaprotective effects on liver damage caused by LPS/D-Gal, as manifested by the concomitant decrease in mortality and serum aminotransferase activities, and the attenuation of hepatocellular apoptosis and hepatic histopathological abnormalities in LPS/D-Gal-intoxicated mice. We further found that FGF9 alleviated the infiltration of neutrophils into the liver, and decreased the serum levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in LPS/D-Gal-challenged mice. These effects can be explained at least in part by the inhibition of NF-κB signaling pathway. Meanwhile, FGF9 enhanced the antioxidative defense system in mice livers by upregulating the expression of NRF-2-related antioxidative enzymes, including glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H: quinone oxidoreductase 1 (NQO-1), and heme oxygenase-1 (HO-1). These data indicate that FGF9 represents a promising therapeutic drug for ameliorating sepsis-induced FH via its anti-apoptotic and anti-inflammatory capacities.


Assuntos
Necrose Hepática Massiva , Sepse , Animais , Fator 9 de Crescimento de Fibroblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/farmacologia , Galactosamina/metabolismo , Galactosamina/farmacologia , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Necrose Hepática Massiva/metabolismo , Necrose Hepática Massiva/patologia , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Sepse/tratamento farmacológico , Sepse/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232829

RESUMO

Hepatic metastasis is the critical factor determining tumor-associated mortality in different types of cancer. This is particularly true for uveal melanoma (UM), which almost exclusively metastasizes to the liver. Hepatic stellate cells (HSCs) are the precursors of tumor-associated fibroblasts and support the growth of metastases. However, the underlying mechanisms are widely unknown. Fibroblast growth factor (FGF) signaling is dysregulated in many types of cancer. The aim of this study was to analyze the pro-tumorigenic effects of HSCs on UM cells and the role of FGFs in this crosstalk. Conditioned medium (CM) from activated human HSCs significantly induced proliferation together with enhanced ERK and JNK activation in UM cells. An in silico database analysis revealed that there are almost no mutations of FGF receptors (FGFR) in UM. However, a high FGFR expression was found to be associated with poor survival for UM patients. In vitro, the pro-tumorigenic effects of HSC-CM on UM cells were abrogated by a pharmacological inhibitor (BGJ398) of FGFR1/2/3. The expression analysis revealed that the majority of paracrine FGFs are expressed by HSCs, but not by UM cells, including FGF9. Furthermore, the immunofluorescence analysis indicated HSCs as a cellular source of FGF9 in hepatic metastases of UM patients. Treatment with recombinant FGF9 significantly enhanced the proliferation of UM cells, and this effect was efficiently blocked by the FGFR1/2/3 inhibitor BGJ398. Our study indicates that FGF9 released by HSCs promotes the tumorigenicity of UM cells, and thus suggests FGF9 as a promising therapeutic target in hepatic metastasis.


Assuntos
Neoplasias Hepáticas , Neoplasias Uveais , Proliferação de Células , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Melanoma , Compostos de Fenilureia , Pirimidinas , Neoplasias Uveais/metabolismo
5.
Liver Int ; 40(9): 2279-2290, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32378800

RESUMO

BACKGROUND & AIMS: Recently, overexpression of the fibroblast growth factor receptor 3 (FGFR3) splice variants FGFR3-IIIb and FGFR3-IIIc was found in ~50% of hepatocellular carcinoma (HCC). Here, we aim to identify FGFR3-IIIb/IIIc ligands, which drive the progression of HCC. METHODS: FACS, MTT assay and/or growth curves served to identify the FGFR3-IIIb/IIIc ligand being most effective to induce growth of hepatoma/hepatocarcinoma cell lines, established from human HCC. The most potent FGF was characterized regarding the expression levels in epithelial and stromal cells of liver and HCC and impact on neoangiogenesis, clonogenicity and invasive growth of hepatoma/hepatocarcinoma cells. RESULTS: Among all FGFR3-IIIb/IIIc ligands tested, FGF9 was the most potent growth factor for hepatoma/hepatocarcinoma cells. Replication and/or sprouting of blood/lymphendothelial cells was stimulated as well. FGF9 occurred mainly in stromal cells of unaltered liver but in epithelial cells of HCC. Every fifth HCC exhibited overexpressed FGF9 and frequent co-upregulation of FGFR3-IIIb/IIIc. In hepatoma/hepatocarcinoma cells FGF9 enhanced the capability for clonogenicity and disintegration of the blood and lymphatic endothelium, being most pronounced in cells overexpressing FGFR3-IIIb or FGFR3-IIIc, respectively. Any of the FGF9 effects in hepatoma/hepatocarcinoma cells was blocked completely by applying the FGFR1-3-specific tyrosine kinase inhibitor BGJ398 or siFGFR3, while siFGFR1/2/4 were mostly ineffective. CONCLUSIONS: FGF9 acts via FGFR3-IIIb/IIIc to enhance growth and aggressiveness of HCC cells. Accordingly, blockade of the FGF9-FGFR3-IIIb/IIIc axis may be an efficient therapeutic option for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Epiteliais , Fator 9 de Crescimento de Fibroblastos , Humanos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Regulação para Cima
6.
Pharmacol Res ; 152: 104575, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31805343

RESUMO

Aberrant over-expressions of FGF9 in gastric cancer (GC) and its high-affinity receptor FGFR3c in bladder cancer (BC) provide possibilities for the treatment of GC and BC via targeting FGF9. In this study, we isolated a novel FGF9-binding peptide (P4) by screening a phage display random heptapeptide library. Sequence comparison showed that P4 shared high homology with the conserved motif in the immunoglobulin-like (Ig-like) domain II∼III (D2-D3) linker of the FGF9 high-affinity receptor (FGFR3c). The interaction between P4 and FGF9 was confirmed by the surface plasmon resonance (SPR) assay. Functional analysis indicated that P4 counteracted FGF9-induced aggressive phenotype, including cell proliferation, migration, and invasion in vitro, as well as suppressed tumor growth in vivovia down-regulation of the MAPKs and Akt cascades. More importantly, we found that FGF9 served as an underlying mechanism of the chemoresistance in GC and BC cells, and P4 could increase the sensitivity to the chemical agent via antagonizing the suppression effects of FGF9 on cell apoptosis. Taken together, our study identified a novel binding peptide for FGF9, which may serve as a potential therapeutic agent for malignant tumors featured by abnormally up-regulation of FGF9.


Assuntos
Fator 9 de Crescimento de Fibroblastos/antagonistas & inibidores , Peptídeos/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Biblioteca de Peptídeos , Peptídeos/farmacologia , Neoplasias Gástricas/patologia , Carga Tumoral/efeitos dos fármacos , Neoplasias da Bexiga Urinária/patologia
7.
J Pathol ; 249(2): 193-205, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31090071

RESUMO

Cancer-associated fibroblasts (CAFs) are known to promote tumourigenesis through various mechanisms. Fibroblast growth factor (FGF)/FGF receptor (FGFR)-dependent lung cancers have been described. We have developed a mouse model of lung adenocarcinoma that was constructed through the induction of Fgf9 overexpression in type 2 alveolar cells. The expression of Fgf9 in adult lungs resulted in the rapid development of multiple adenocarcinoma-like tumour nodules. Here, we have characterised the contribution of CAFs and the Fgf/Fgfr signalling pathway in maintaining the lung tumours initiated by Fgf9 overexpression. We found that CAF-secreted Fgf2 contributes to tumour cell growth. CAFs overexpressed Tgfb, Mmp7, Fgf9, and Fgf2; synthesised more collagen, and secreted inflammatory cell-recruiting cytokines. CAFs also enhanced the conversion of tumour-associated macrophages (TAMs) to the tumour-supportive M2 phenotype but did not influence angiogenesis. In vivo inhibition of Fgfrs during early lung tumour development resulted in significantly smaller and fewer tumour nodules, whereas inhibition in established lung tumours caused a significant reduction in tumour size and number. Fgfr inhibition also influenced tumour stromal cells, as it significantly abolished TAM recruitment and reduced tumour vascularity. However, the withdrawal of the inhibitor caused a significant recurrence/regrowth of Fgf/Fgfr-independent lung tumours. These recurrent tumours did not possess a higher proliferative or propagative potential. Our results provide evidence that fibroblasts associated with the Fgf9-induced lung adenocarcinoma provide multiple means of support to the tumour. Although the Fgfr blocker significantly suppressed the tumour and its stromal cells, it was not sufficient to completely eliminate the tumour, probably due to the emergence of alternative (resistance/maintenance) mechanism(s). This model represents an excellent tool to further study the complex interactions between CAFs, their related chemokines, and the progression of lung adenocarcinoma; it also provides further evidence to support the need for a combinatorial strategy to treat lung cancer. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Adenocarcinoma de Pulmão/enzimologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Fibroblastos Associados a Câncer/enzimologia , Fibroblastos Associados a Câncer/patologia , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/enzimologia , Matriz Extracelular/patologia , Fator 2 de Crescimento de Fibroblastos/deficiência , Fator 2 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Comunicação Parácrina , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Cell Biochem ; 119(10): 8643-8658, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29953642

RESUMO

Myelin sheath is critical for the proper functioning of the peripheral nervous system (PNS), which allows the effective conduction of nerve impulses. Fibroblast growth factor 9 (FGF9) is an autocrine and paracrine protein in the fibroblast growth factor family that regulates cell differentiation and proliferation. Fgf9 Schwann cell (SC) conditional knockout mice were developed to detect the role of FGF9 in the PNS. In our study, the absence of Fgf9 led to delayed myelination in early development. The expression of mature SC-related genes decreased, and the expression of genes associated with immature SCs increased in the Fgf9 knockout mice. These data were consistent with the morphology and praxeology we observed during the development of the peripheral nerves. Extracellular-regulated kinases 1/2 (ERK1/2) are key signals for myelination, and our results showed that Fgf9 ablation led to the inactivation of ERK1/2. Further research was performed to detect the role of FGF9 in peripheral nerve injury. In superoxide dismutase 1-G93A mice with Fgf9 SC knockout, we found that Fgf9 ablation inhibited the expressions of Cd68, Il-1ß, and Cd86, which contributed to the degeneration of the axon and myelin sheath.


Assuntos
Fator 9 de Crescimento de Fibroblastos/metabolismo , Inflamação/metabolismo , Neurogênese/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Apoptose/fisiologia , Axônios/metabolismo , Antígeno B7-2/metabolismo , Comportamento Animal/fisiologia , Fator 9 de Crescimento de Fibroblastos/genética , Técnicas de Inativação de Genes , Interleucina-1beta/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Bainha de Mielina/metabolismo , Sistema Nervoso Periférico/metabolismo , Nervo Isquiático/crescimento & desenvolvimento , Estatísticas não Paramétricas , Superóxido Dismutase/metabolismo
9.
Cell Physiol Biochem ; 48(2): 605-617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30021209

RESUMO

BACKGROUND/AIMS: Huntington's disease (HD) is a heritable neurodegenerative disorder, and there is no cure for HD to date. A type of fibroblast growth factor (FGF), FGF9, has been reported to play prosurvival roles in other neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. However, the effects of FGF9 on HD is still unknown. With many similarities in the cellular and pathological mechanisms that eventually cause cell death in neurodegenerative diseases, we hypothesize that FGF9 might provide neuroprotective functions in HD. METHODS: In this study, STHdhQ7/Q7 (WT) and STHdhQ111/Q111 (HD) striatal knock-in cell lines were used to evaluate the neuroprotective effects of FGF9. Cell proliferation, cell death and neuroprotective markers were determined via the MTT assay, propidium iodide staining and Western blotting, respectively. The signaling pathways regulated by FGF9 were demonstrated using Western blotting. Additionally, HD transgenic mouse models were used to further confirm the neuroprotective effects of FGF9 via ELISA, Western blotting and immunostaining. RESULTS: Results show that FGF9 not only enhances cell proliferation, but also alleviates cell death as cells under starvation stress. In addition, FGF9 significantly upregulates glial cell line-derived neurotrophic factor (GDNF) and an anti-apoptotic marker, Bcl-xL, and decreases the expression level of an apoptotic marker, cleaved caspase 3. Furthermore, FGF9 functions through ERK, AKT and JNK pathways. Especially, ERK pathway plays a critical role to influence the effects of FGF9 toward cell survival and GDNF production. CONCLUSIONS: These results not only show the neuroprotective effects of FGF9, but also clarify the critical mechanisms in HD cells, further providing an insight for the therapeutic potential of FGF9 in HD.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 9 de Crescimento de Fibroblastos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Butadienos/farmacologia , Caspase 3/metabolismo , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Transgênicos , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Córtex Visual/citologia , Córtex Visual/efeitos dos fármacos , Córtex Visual/metabolismo , Proteína bcl-X/metabolismo
10.
BMC Biotechnol ; 18(1): 51, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157831

RESUMO

BACKGROUND: Fibroblast growth factor 9 (FGF9) is a heparin-binding growth factor, secreted by both mesothelial and epithelial cells, which participates in hair follicle regeneration, wound healing, and bone development. A suitable source of recombinant human FGF9 (rhFGF9) is needed for research into potential clinical applications. We present that expression of oleosin-rhFGF9 fusion protein in safflower (Carthamus tinctorius L.) seeds stimulates hair growth and wound healing. RESULTS: The oleosin-rhFGF9 expressed in safflower seeds, in which it localizes to the surface of oil bodies. The expression of oleosin-rhFGF9 was confirmed by polyacrylamide gel electrophoresis and western blotting. According to BCA and Enzyme-linked immunosorbent assay (ELISA) assay, the results show that the expression level of oleosin-rhFGF9 was 0.14% of oil body protein. The oil body bound oleosin-rhFGF9 showed mitogenic activity towards NIH3T3 cells in a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. The efficacy of oil body bound oleosin-rhFGF9 in promoting hair growth and wound healing was investigated in C57BL/6 mice. In a hair regeneration experiment, 50 µg/µl oil body bound oleosin-rhFGF9 was applied to the dorsal skin of mice in the resting phase of the hair growth cycle. After 15 days, thicker hair and increased number of new hairs were seen compared with controls. Furthermore, the number of new hairs was greater compared with rhFGF9-treated mice. The hair follicles of mice treated with oil body bound oleosin-rhFGF9 expressed ß-catenin more abundantly. In a wound healing experiment, dorsal skin wounds were topically treated with 50 µg/µl oil body bound oleosin-rhFGF9. Wound healing was quicker compared with mice treated with rhFGF9 and controls, especially in the earlier stages of healing. CONCLUSIONS: The oil body bound oleosin-rhFGF9 promotes both hair growth and wound healing. It appears to promote hair growth, at least in part, by up-regulating ß-catenin expression. The potential of oil body bound oleosin-rhFGF9 as an external drug can treat the alopecia and wounds or use in further clinical application.


Assuntos
Carthamus tinctorius/genética , Fator 9 de Crescimento de Fibroblastos/administração & dosagem , Fator 9 de Crescimento de Fibroblastos/genética , Cabelo/crescimento & desenvolvimento , Gotículas Lipídicas/metabolismo , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/genética , Ferimentos e Lesões/tratamento farmacológico , Animais , Carthamus tinctorius/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Cabelo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Proteínas de Plantas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Cicatrização , Ferimentos e Lesões/genética , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/fisiopatologia , beta Catenina/genética , beta Catenina/metabolismo
11.
Respir Res ; 19(1): 71, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29690905

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive disease with high mortality, and the pathogenesis of the disease is still incompletely understood. Although lymphocytes, especially CD4+CD25+FoxP3+ regulatory T cells (Tregs), have been implicated in the development of IPF, contradictory results have been reported regarding the contribution of Tregs to fibrosis both in animals and humans. The aim of this study was to investigate whether a specific T cell subset has therapeutic potential in inhibiting bleomycin (BLM)-induced murine pulmonary fibrosis. METHODS: C57BL/6 mice received BLM (100 mg/kg body weight) with osmotic pumps (day 0), and pulmonary fibrosis was induced. Then, splenocytes or Tregs were adoptively transferred via the tail vein. The lungs were removed and subjected to histological and biochemical examinations to study the effects of these cells on pulmonary fibrosis, and blood samples were collected by cardiac punctures to measure relevant cytokines by enzyme-linked immunosorbent assay. Tregs isolated from an interleukin (IL)-10 knock-out mice were used to assess the effect of this mediator. To determine the roles of the spleen in this model, spleen vessels were carefully cauterized and the spleen was removed either on day 0 or 14 after BLM challenge. RESULTS: Splenocytes significantly ameliorated BLM-induced pulmonary fibrosis when they were administered on day 14. This effect was abrogated by depleting Tregs with an anti-CD25 monoclonal antibody. Adoptive transfer of Tregs on day 14 after a BLM challenge significantly attenuated pulmonary fibrosis, and this was accompanied by decreased production of fibroblast growth factor (FGF) 9-positive cells bearing the morphology of alveolar epithelial cells. In addition, BLM-induced plasma IL-10 expression reverted to basal levels after adoptive transfer of Tregs. Moreover, BLM-induced fibrocyte chemoattractant chemokine (CC motif) ligand-2 production was significantly ameliorated by Treg adoptive transfer in lung homogenates, accompanied by reduced accumulation of bone-marrow derived fibrocytes. Genetic ablation of IL-10 abrogated the ameliorating effect of Tregs on pulmonary fibrosis. Finally, splenectomy on day 0 after a BLM challenge significantly ameliorated lung fibrosis, whereas splenectomy on day 14 had no effect. CONCLUSIONS: These findings warrant further investigations to develop a cell-based therapy using Tregs for treating IPF.


Assuntos
Bleomicina/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/terapia , Baço/transplante , Linfócitos T Reguladores/transplante , Animais , Bleomicina/administração & dosagem , Bombas de Infusão Implantáveis , Transfusão de Linfócitos/métodos , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/metabolismo , Baço/citologia , Linfócitos T Reguladores/metabolismo
12.
Appl Microbiol Biotechnol ; 102(2): 605-613, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29198068

RESUMO

The fibroblast growth factor (FGF) 9 subfamily is a member of the FGF family, including FGF9, 16, and 20, potentially sharing similar biochemical functions due to their high degree of sequence homology. Unlike other secreted proteins which have a cleavable N-terminal secreted signal peptide, FGF9/16/20 have non-cleaved N-terminal signal peptides. As an intercellular signaling molecule, they are involved in a variety of complex responses in animal development. Cardiogenesis is controlled by many members of the transcription factor family. Evidence suggests that FGF signaling, including the FGF9 subfamily, has a pretty close association with these cardiac-specific genes. In addition, recent studies have shown that the FGF9 subfamily maintains functional adaptation and survival after myocardial infarction in adult myocardium. Since FGF9/16/20 are secreted proteins, their function characterization in cardiac regeneration can promote their potential to be developed for the treatment of cardioprotection and revascularization. Here, we conclude that the FGF9 subfamily roles in cardiac development and maintenance of postnatal cardiac homeostasis, especially cardiac function maturation and functional maintenance of the heart after injury.


Assuntos
Fator 9 de Crescimento de Fibroblastos/classificação , Fator 9 de Crescimento de Fibroblastos/fisiologia , Coração/fisiologia , Animais , Desenvolvimento Embrionário , Fator 9 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Coração/fisiopatologia , Cardiopatias/fisiopatologia , Cardiopatias/terapia , Humanos , Infarto do Miocárdio , Transdução de Sinais , Fatores de Transcrição
13.
Proc Natl Acad Sci U S A ; 112(38): 11953-8, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351673

RESUMO

Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9's function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders.


Assuntos
Afeto , Fator 9 de Crescimento de Fibroblastos/metabolismo , Adulto , Afeto/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Animais , Ansiedade/complicações , Ansiedade/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Estudos de Casos e Controles , Demografia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/metabolismo , Feminino , Fator 9 de Crescimento de Fibroblastos/administração & dosagem , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Lentivirus/metabolismo , Masculino , Microinjeções , Pessoa de Meia-Idade , Mudanças Depois da Morte , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/genética , Adulto Jovem
14.
Zhongguo Zhong Yao Za Zhi ; 43(13): 2758-2763, 2018 Jul.
Artigo em Zh | MEDLINE | ID: mdl-30111028

RESUMO

The expression of fibroblast growth factor 9 (FGF9) recombinant fusion protein in Carthamus tinctorius was used to identify its effect on hair regrowth and wound repair system in mice, providing a basis for C. tinctorius as a plant bioreactor, and establishing a foundation for commercial applications of FGF9 fusion protein in hair regrowth and wound repair. The identified pOTBar-oleosin-rhFGF9 plasmid was transformed into Agrobacterium tumefaciens EHA105 by freeze-thaw method, and the oleosin-rhFGF9 gene was transformed into safflower leaves by A. tumefaciens mediated method. Transgenic safflower seedlings were then obtained by tissue culture. After basta screening, transgenic T3 safflower seeds were obtained by grafting method, PCR verification and propagation. The expression of oleosin-rhFGF9 was detected by Western blot, and the content of oleosin-rhFGF9 fusion protein was 0.09% by using ELISA quantitative method. It was observed that 60 µg·L⁻¹ transgenic safflower oil had better effect on promoting NIH/3T3 cells proliferation in a certain dose-dependent manner. Sixty C57BL/6 mice were used to establish alopecia model and wound model respectively, and then were randomly divided into control group (treated with PBS or saline), negative group (treated with wild type safflower seed oil bodies, 60 g·L⁻¹), positive group (treated with FGF9, 0.054 g·L⁻¹), low dose group (treated with transgenic safflower oil bodies, 10 g·L⁻¹) and high dose group (treated with transgenic safflower oil bodies, 60 g·L⁻¹). The skin of all above-mentioned mice models were coated with soft adhesive manner every other day, 100 µL/time. After 15 days, the mice skin was cut and embedded for histological analysis. The hair regrowth experimental results showed that the hair of mice grew well, and the mice in high dose group had bushy hair, with significant effect on regeneration hair number as compared with the positive group. The healing was obvious in wound experiment, with significant healing effect in positive group, high dose group and low dose group as compared to blank control group. Furthermore, high dose group remarkably showed a better and higher healing effect than the positive group at day 5. Oleosin-rhFGF9 was successfully transformed into safflower, and T3 transgenic safflower oil bodies expressed oleosin-rhFGF9 fusion protein were obtained, with the role of promoting hair regeneration and wound repair in mice.


Assuntos
Carthamus tinctorius , Animais , Fator 9 de Crescimento de Fibroblastos , Cabelo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Regeneração , Sementes
15.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L781-L795, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28729349

RESUMO

Fibroblast growth factor 9 (FGF9) is necessary for fetal lung development and is expressed by epithelium and mesothelium. We evaluated the role of FGF9 overexpression on adenoviral-induced pleural injury in vivo and determined the biological effects of FGF9 on mesothelial cells in vitro. We assessed the expression of FGF9 and FGF receptors by mesothelial cells in both human and mouse lungs. Intrapleural injection of an adenovirus expressing human FGF9 (AdFGF9) or a control adenovirus (AdCont) was performed. Mice were euthanized at days 3, 5, and 14 Expression of FGF9 and markers of inflammation and myofibroblastic differentiation was studied by qPCR and immunohistochemistry. In vitro, rat mesothelial cells were stimulated with FGF9 (20 ng/ml), and we assessed its effect on proliferation, survival, migration, and differentiation. FGF9 was expressed by mesothelial cells in human idiopathic pulmonary fibrosis. FGF receptors, mainly FGFR3, were expressed by mesothelial cells in vivo in humans and mice. AdCont instillation induced diffuse pleural thickening appearing at day 5, maximal at day 14 The altered pleura cells strongly expressed α-smooth muscle actin and collagen. AdFGF9 injection induced maximal FGF9 expression at day 5 that lasted until day 14 FGF9 overexpression prevented pleural thickening, collagen and fibronectin accumulation, and myofibroblastic differentiation of mesothelial cells. In vitro, FGF9 decreased mesothelial cell migration and inhibited the differentiating effect of transforming growth factor-ß1. We conclude that FGF9 has a potential antifibrotic effect on mesothelial cells.


Assuntos
Adenoviridae/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fator 9 de Crescimento de Fibroblastos/farmacologia , Fibrose Pulmonar Idiopática/virologia , Pulmão/patologia , Animais , Diferenciação Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Epitélio/patologia , Epitélio/virologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/prevenção & controle , Pulmão/virologia , Camundongos Endogâmicos C57BL , Pleura/efeitos dos fármacos , Ratos
16.
Cell Physiol Biochem ; 42(6): 2318-2329, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848153

RESUMO

BACKGROUND: Fibroblast growth factors (FGFs), in complex with their receptors (FGFRs), regulate a broad spectrum of biological functions including cellular proliferation, survival, migration, and differentiation. In human endometrial stromal cells, FGF9 is regulated with estrogen (E). METHODS/RESULTS: First, we report that in uterus tissue of ovariectomized wild type mice, FGF9 is present in three isoforms and is regulated with E. Second, we found that during peri-implantation, Fgf9 expression reached its peak at day 4.5 of pregnancy. Immunofluorescence analyses demonstrated overlapping FGF9 and COX2 expression surrounding the blastocyst attachment site. Next, we identified FGF9- and CD31-positive cells as a part of the microvessels; however, expression was localized to a distinct population of cells. Finally, our data showed synchronized, spatial expression of FGF9 on the luminal epithelium with FGFR2 present on the trophectoderm. CONCLUSION: Our data suggest that FGF9 is a crucial factor required to establish the appropriate microenvironment for successful implantation and the maintenance of pregnancy.


Assuntos
Fator 9 de Crescimento de Fibroblastos/metabolismo , Animais , Blastocisto/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Implantação do Embrião , Feminino , Fator 9 de Crescimento de Fibroblastos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gravidez , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Útero/metabolismo , Útero/patologia
17.
J Dairy Sci ; 99(11): 9143-9151, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27614836

RESUMO

Fibroblast growth factor 9 (FGF9) has been suggested to act as an antidifferentiation factor in cattle by reducing steroidogenesis and increasing cell proliferation in granulosa (GC) and theca (TC) cells. The objective of this study was to characterize FGF9 mRNA abundance in GC and TC during development of dominant follicles in dairy cattle. Estrous cycles of nonlactating dairy cattle were synchronized, and ovaries were collected on either d 3 to 4 (n=8) or 5 to 6 (n=8) postovulation for GC and TC RNA extraction from small (1-5mm), medium (5.1-8mm), and large (8.1-18mm) follicles for PCR analysis. The FGF9 mRNA abundance was greater in GC than in TC. In GC, FGF9 mRNA abundance was greater in small, medium, and large estrogen-inactive [i.e., concentrations of estradiol (E2)P4) follicles at both early (d 3-4) and late (d 5-6) growing phases of first dominant follicle. Abundance of FGF9 mRNA increased in medium-sized follicles from early to late growing phase of the dominant follicle. In TC, FGF9 mRNA abundance was greater in large E2-inactive follicles than in large E2-active follicles on d 3 to 4 postovulation; no significant differences in TC FGF9 mRNA existed among follicle types on d 5 to 6 postovulation. Correlations among levels of follicular fluid hormones and FGF9 mRNA levels revealed significant negative correlations between GC FGF9 mRNA abundance and follicular fluid E2 (r=-0.68), free IGF-1 (r=-0.63), and E2-to-P4 ratio (r=-0.58). In summary, abundance of FGF9 mRNA in GC and TC increases in medium-sized follicles during development of dominant follicles and is less in dominant E2-active than subordinate E2-inactive follicles, suggesting that FGF9 signaling could contribute to normal follicle development and steroidogenesis in dairy cattle.


Assuntos
Fator 9 de Crescimento de Fibroblastos , Células Tecais , Animais , Bovinos , Estradiol , Feminino , Células da Granulosa/metabolismo , Folículo Ovariano/química , Progesterona , RNA Mensageiro/metabolismo
18.
Protein Expr Purif ; 116: 127-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26276471

RESUMO

Fibroblast growth factor 9 (FGF9) has autocrine and paracrine functions in chondrogenesis osteogenesis, hair growth, and gonadal differentiation. We have expressed recombinant human FGF9 (rhFGF9) in the oil bodies of Arabidopsis thaliana via the floral dip method. The expression vector pOTB-rhFGF9 contained an oleosin-rhFGF9 fusion gene and a glufosinate resistance gene for selection. This plasmid was transformed into A. thaliana and expression of the fusion protein oleosin-rhFGF9 confirmed by SDS-PAGE and Western blotting. Furthermore, MTT assays demonstrated that the oil bodies expressed oleosin-rhFGF9 from the transgenic A. thaliana had a remarkable proliferation effect on NIH/3T3 cells.


Assuntos
Arabidopsis/genética , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/metabolismo , Animais , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Proliferação de Células , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Fator 9 de Crescimento de Fibroblastos/isolamento & purificação , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Células NIH 3T3 , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Transformação Genética
19.
Gen Comp Endocrinol ; 193: 210-20, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23968773

RESUMO

The molecular mechanisms governing sex determination and differentiation in the zebrafish (Danio rerio) are not fully understood. To gain more insights into the function of specific genes in these complex processes, the expression of multiple candidates needs to be assessed, preferably on the protein level. Here, we developed a targeted proteomics method based on selected reaction monitoring (SRM) to study the candidate sex-related proteins in zebrafish which were selected based on a global proteomics analysis of adult gonads and representational difference analysis of male and female DNA, as well as on published information on zebrafish and other vertebrates. We employed the developed SRM protocols to acquire time-resolved protein expression profiles during the gonad differentiation period in vas::EGFP transgenic zebrafish. Evidence on protein expression was obtained for the first time for several candidate genes previously studied only on the mRNA level or suggested by bioinformatic predictions. Tuba1b (tubulin alpha 1b), initially included in the study as one of the potential housekeeping proteins, was found to be preferentially expressed in the adult testis with nearly absent expression in the ovary. The revealed changes in protein expression patterns associated with gonad differentiation suggest that several of the examined proteins, especially Ilf2 and Ilf3 (interleukin enhancer-binding factors 2 and 3), Raldh3 (retinaldehyde dehydrogenase type 3), Zgc:195027 (low density lipoprotein-related receptor protein 3) and Sept5a (septin 5a), may play a specific role in the sexual differentiation in zebrafish.


Assuntos
Gônadas/metabolismo , Proteômica/métodos , Proteínas de Peixe-Zebra/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/crescimento & desenvolvimento , Masculino , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/genética , Proteínas do Fator Nuclear 90/metabolismo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Diferenciação Sexual/genética , Diferenciação Sexual/fisiologia , Testículo/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
20.
J Clin Med ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36769456

RESUMO

BACKGROUND: The application of random pattern skin flaps is limited in plastic surgery reconstruction due to necrosis. Fibroblast growth factor 9 (FGF9) was reported to exert a protective effect against myocardial damage and cerebral ischemia injury, but the impact of FGF9 in random flap survival is still unclear. In this study, we used a mouse model of random flaps to verify that FGF9 can directly increase flap survival area and blood flow intensity by promoting angiogenesis. MATERIALS AND METHODS: In total, 84 male C57BL/6 mice weighing between 22 and 25 g were randomly divided into three groups (n = 28 each group). After skin flap operation, one group served as a control, a treatment group received FGF9, and a treatment group received FGF9+U0126. All flap samples were incised on postoperative day 7. RESULTS: Our results showed that flap survival was significantly increased in the FGF9 group compared with that in the control group. This protective function was restrained by U0126. The results of histopathology, laser Doppler, and fluorescent staining all showed significant increases in capillary count, collagen deposition, and angiogenesis. FGF9 also significantly increased the expression of antioxidant stress proteins SOD1, eNOS, HO-1, vascular marker proteins CD31, VE cadherin, and pericyte marker protein PDGFRß. Western blot showed that the phosphorylation degree of ERK1/2 increased after FGF9 treatment, and the expression of Nrf2, a downstream factor, was u-regulated. Western blot and immunofluorescence results of apoptosis-related proteins cleaved caspase-3, BAX, and Bcl2 showed that FGF9 inhibited apoptosis. ERK inhibitor U01926 reduced the beneficial effects of FGF9 on skin flap survival, including promoting angiogenesis, and showing antiapoptosis and antioxidative stress activities. CONCLUSIONS: Exogenous FGF9 stimulates angiogenesis of random flap and survival of tissue. the impact of FGF9 is closely linked to the prevention of oxidative stress mediated by ERK1/2-Nrf2. In the function of FGF9 in promoting effective angiogenesis, there may be a close interaction in the FGF9-FGFR-PDGFR-ERK-VE cadherin pathway. In particular, PDGFR and VE cadherin may interact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA