Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(32): E7532-E7540, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30037993

RESUMO

Marine population dynamics often depend on dispersal of larvae with infinitesimal odds of survival, creating selective pressure for larval behaviors that enhance transport to suitable habitats. One intriguing possibility is that larvae navigate using physical signals dominating their natal environments. We tested whether flow-induced larval behaviors vary with adults' physical environments, using congeneric snail larvae from the wavy continental shelf (Tritia trivittata) and from turbulent inlets (Tritia obsoleta). Turbulence and flow rotation (vorticity) induced both species to swim more energetically and descend more frequently. Accelerations, the strongest signal from waves, induced a dramatic response in T. trivittata but almost no response in competent T. obsoleta Early stage T. obsoleta did react to accelerations, ruling out differences in sensory capacities. Larvae likely distinguished turbulent vortices from wave oscillations using statocysts. Statocysts' ability to sense acceleration would also enable detection of low-frequency sound from wind and waves. T. trivittata potentially hear and react to waves that provide a clear signal over the continental shelf, whereas T. obsoleta effectively "go deaf" to wave motions that are weak in inlets. Their contrasting responses to waves would cause these larvae to move in opposite directions in the water columns of their respective adult habitats. Simulations showed that the congeners' transport patterns would diverge over the shelf, potentially reinforcing the separate biogeographic ranges of these otherwise similar species. Responses to turbulence could enhance settlement but are unlikely to aid large-scale navigation, whereas shelf species' responses to waves may aid retention over the shelf via Stokes drift.


Assuntos
Comportamento Animal/fisiologia , Sinais (Psicologia) , Larva/fisiologia , Caramujos/fisiologia , Movimentos da Água , Animais , Organismos Aquáticos/fisiologia , Ecossistema , Movimento (Física) , Oceanos e Mares , Dinâmica Populacional , Som , Natação/psicologia
2.
J Physiol ; 598(9): 1741-1752, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31106399

RESUMO

The left-right organizer (LRO) in the mouse consists of pit cells within the depression, located at the end of the developing notochord, also known as the embryonic node and crown cells lining the outer periphery of the node. Cilia on pit cells are posteriorly tilted, rotate clockwise and generate leftward fluid flow. Primary cilia on crown cells are required to interpret the directionality of fluid movement and initiate flow-dependent gene transcription. Crown cells express PC1-L1 and PC2, which may form a heteromeric polycystin channel complex on primary cilia. It is still only poorly understood how fluid flow activates the ciliary polycystin complex. Besides polycystin channels voltage gated channels like HCN4 and KCNQ1 have been implicated in establishing asymmetry. How this electrical network of ion channels initiates left-sided signalling cascades and differential gene expression is currently only poorly defined.


Assuntos
Padronização Corporal , Cílios , Animais , Camundongos , Transdução de Sinais , Canais de Cátion TRPP/metabolismo
3.
Proc Biol Sci ; 287(1937): 20200568, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33109007

RESUMO

Schooling is a collective behaviour that enhances the ability of a fish to sense and respond to its environment. Although schooling is essential to the biology of a diversity of fishes, it is generally unclear how this behaviour is coordinated by different sensory modalities. We used experimental manipulation and kinematic measurements to test the role of vision and flow sensing in the rummy-nose tetra (Hemigrammus rhodostomus), which swims with intermittent phases of bursts and coasts. Groups of five fish required a minimum level of illuminance (greater than 1.5 lx) to achieve the necessary close nearest-neighbour distance and high polarization for schooling. Compromising the lateral line system with an antibiotic treatment caused tetras to swim with greater nearest-neighbour distance and lower polarization. Therefore, vision is both necessary and sufficient for schooling in H. rhodostomus, and both sensory modalities aid in attraction. These results can serve as a basis for understanding the individual roles of sensory modalities in schooling for some fish species.


Assuntos
Comportamento Animal/fisiologia , Characidae/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Escolaridade , Relações Interpessoais , Modelos Biológicos , Comportamento Social , Visão Ocular
4.
Proc Natl Acad Sci U S A ; 114(46): 12120-12125, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087323

RESUMO

The ultimate aim of flow sensing is to represent the perturbations of the medium perfectly. Hundreds of millions of years of evolution resulted in hair-based flow sensors in terrestrial arthropods that stand out among the most sensitive biological sensors known, even better than photoreceptors which can detect a single photon (10-18-10-19 J) of visible light. These tiny sensory hairs can move with a velocity close to that of the surrounding air at frequencies near their mechanical resonance, despite the low viscosity and low density of air. No man-made technology to date demonstrates comparable efficiency. Here we show that nanodimensional spider silk captures fluctuating airflow with maximum physical efficiency (Vsilk/Vair ∼ 1) from 1 Hz to 50 kHz, providing an effective means for miniaturized flow sensing. Our mathematical model shows excellent agreement with experimental results for silk with various diameters: 500 nm, 1.6 µm, and 3 µm. When a fiber is sufficiently thin, it can move with the medium flow perfectly due to the domination of forces applied to it by the medium over those associated with its mechanical properties. These results suggest that the aerodynamic property of silk can provide an airborne acoustic signal to a spider directly, in addition to the well-known substrate-borne information. By modifying a spider silk to be conductive and transducing its motion using electromagnetic induction, we demonstrate a miniature, directional, broadband, passive, low-cost approach to detect airflow with full fidelity over a frequency bandwidth that easily spans the full range of human hearing, as well as that of many other mammals.


Assuntos
Audição/fisiologia , Seda/química , Som , Aranhas/fisiologia , Tato/fisiologia , Animais , Humanos , Movimento (Física) , Seda/ultraestrutura , Transdutores , Vibração , Viscosidade
5.
Sensors (Basel) ; 19(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212636

RESUMO

Submersible robotics have improved in efficiency and versatility by incorporating features found in aquatic life, ranging from thunniform kinematics to shark skin textures. To fully realize these benefits, sensor systems must be incorporated to aid in object detection and navigation through complex flows. Again, inspiration can be taken from biology, drawing on the lateral line sensor systems and neuromast structures found on fish. To maintain a truly soft-bodied robot, a man-made flow sensor must be developed that is entirely complaint, introducing no rigidity to the artificial "skin." We present a capacitive cupula inspired by superficial neuromasts. Fabricated via lost wax methods and vacuum injection, our 5 mm tall device exhibits a sensitivity of 0.5 pF/mm (capacitance versus tip deflection) and consists of room temperature liquid metal plates embedded in a soft silicone body. In contrast to existing capacitive examples, our sensor incorporates the transducers into the cupula itself rather than at its base. We present a kinematic theory and energy-based approach to approximate capacitance versus flow, resulting in equations that are verified with a combination of experiments and COMSOL simulations.

6.
Sensors (Basel) ; 19(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509939

RESUMO

In nature, there are several examples of sophisticated sensory systems to sense flows, e.g., the vibrissae of mammals. Seals can detect the flow of their prey, and rats are able to perceive the flow of surrounding air. The vibrissae are arranged around muzzle of an animal. A vibrissa consists of two major components: a shaft (infector) and a follicle-sinus complex (receptor), whereby the base of the shaft is supported by the follicle-sinus complex. The vibrissa shaft collects and transmits stimuli, e.g., flows, while the follicle-sinus complex transduces them for further processing. Beside detecting flows, the animals can also recognize the size of an object or determine the surface texture. Here, the combination of these functionalities in a single sensory system serves as paragon for artificial tactile sensors. The detection of flows becomes important regarding the measurement of flow characteristics, e.g., velocity, as well as the influence of the sensor during the scanning of objects. These aspects are closely related to each other, but, how can the characteristics of flow be represented by the signals at the base of a vibrissa shaft or by an artificial vibrissa-like sensor respectively? In this work, the structure of a natural vibrissa shaft is simplified to a slender, cylindrical/tapered elastic beam. The model is analyzed in simulation and experiment in order to identify the necessary observables to evaluate flows based on the quasi-static large deflection of the sensor shaft inside a steady, non-uniform, laminar, in-compressible flow.

7.
Sensors (Basel) ; 17(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788059

RESUMO

Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell is monolithically fabricated at the center of a 2 µm thick silicon membrane that is photo-patterned with a full-bridge bias circuit. Ambient flow variations exert a drag force on the hair cell, which causes a displacement of the sensing membrane. This in turn leads to the resistance imbalance in the bridge circuit generating a voltage output. Inspired by the biological neuromast, a biomimetic synthetic hydrogel cupula is incorporated on the hair cell. The morphology, swelling behavior, porosity and mechanical properties of the hyaluronic acid hydrogel are characterized through rheology and nanoindentation techniques. The sensitivity enhancement in the sensor output due to the material and mechanical contributions of the micro-porous hydrogel cupula is investigated through experiments.


Assuntos
Biomimética , Ácido Hialurônico , Hidrogel de Polietilenoglicol-Dimetacrilato , Mecanorreceptores , Sistemas Microeletromecânicos
8.
Sensors (Basel) ; 17(5)2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28489040

RESUMO

The response to different force load ranges and actuation at low energies is of considerable interest for applications of compliant and flexible devices undergoing large deformations. We present a review of technological platforms based on nitride materials (aluminum nitride and silicon nitride) for the microfabrication of a class of flexible micro-electro-mechanical systems. The approach exploits the material stress differences among the constituent layers of nitride-based (AlN/Mo, Si x N y /Si and AlN/polyimide) mechanical elements in order to create microstructures, such as upwardly-bent cantilever beams and bowed circular membranes. Piezoresistive properties of nichrome strain gauges and direct piezoelectric properties of aluminum nitride can be exploited for mechanical strain/stress detection. Applications in flow and tactile sensing for robotics are described.

9.
Sensors (Basel) ; 17(12)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29206149

RESUMO

Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU), which allowed us to directly detect refractive index variations in the 10-7 RIU range.

10.
Proc Biol Sci ; 283(1826): 20152794, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26984621

RESUMO

Adipose fins are found on approximately 20% of ray-finned fish species. The apparently rudimentary anatomy of adipose fins inspired a longstanding hypothesis that these fins are vestigial and lack function. However, adipose fins have evolved repeatedly within Teleostei, suggesting adaptive function. Recently, adipose fins were proposed to function as mechanosensors, detecting fluid flow anterior to the caudal fin. Here we test the hypothesis that adipose fins are mechanosensitive in the catfish Corydoras aeneus. Neural activity, recorded from nerves that innervate the fin, was shown to encode information on both movement and position of the fin membrane, including the magnitude of fin membrane displacement. Thus, the adipose fin of C. aeneus is mechanosensitive and has the capacity to function as a 'precaudal flow sensor'. These data force re-evaluation of adipose fin clipping, a common strategy for tagging fishes, and inform hypotheses of how function evolves in novel vertebrate appendages.


Assuntos
Nadadeiras de Animais , Peixes-Gato/fisiologia , Mecanorreceptores , Adiposidade , Nadadeiras de Animais/citologia , Nadadeiras de Animais/fisiologia , Animais , Evolução Biológica
11.
J Exp Biol ; 219(Pt 7): 937-48, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27030774

RESUMO

The survival of many animals depends in part on their ability to sense the flow of the surrounding fluid medium. To date, however, little is known about how terrestrial mammals sense airflow direction or speed. The present work analyzes the mechanical response of isolated rat macrovibrissae (whiskers) to airflow to assess their viability as flow sensors. Results show that the whisker bends primarily in the direction of airflow and vibrates around a new average position at frequencies related to its resonant modes. The bending direction is not affected by airflow speed or by geometric properties of the whisker. In contrast, the bending magnitude increases strongly with airflow speed and with the ratio of the whisker's arc length to base diameter. To a much smaller degree, the bending magnitude also varies with the orientation of the whisker's intrinsic curvature relative to the direction of airflow. These results are used to predict the mechanical responses of vibrissae to airflow across the entire array, and to show that the rat could actively adjust the airflow data that the vibrissae acquire by changing the orientation of its whiskers. We suggest that, like the whiskers of pinnipeds, the macrovibrissae of terrestrial mammals are multimodal sensors - able to sense both airflow and touch - and that they may play a particularly important role in anemotaxis.


Assuntos
Tato/fisiologia , Vibrissas/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Estimulação Física , Ratos , Ratos Long-Evans , Vento
12.
J Exp Biol ; 219(Pt 7): 1050-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27030780

RESUMO

The mechanosensory lateral line system of fishes detects water motions within a few body lengths of the source. Several types of artificial stimuli have been used to probe lateral line function in the laboratory, but few studies have investigated the role of flow sensing in benthic feeding teleosts. In this study, we used artificial flows emerging from a sandy substrate to assess the contribution of flow sensing to prey detection in the peacock cichlid, Aulonocara stuartgranti, which feeds on benthic invertebrates in Lake Malawi. Using a positive reinforcement protocol, we trained fish to respond to flows lacking the visual and chemical cues generated by tethered prey in prior studies with A. stuartgranti Fish successfully responded to artificial flows at all five rates presented (characterized using digital particle image velocimetry), and showed a range of flow-sensing behaviors, including an unconditioned bite response. Immediately after lateral line inactivation, fish rarely responded to flows and the loss of vital fluorescent staining of hair cells (with 4-di-2-ASP) verified lateral line inactivation. Within 2 days post-treatment, some aspects of flow-sensing behavior returned and after 7 days, flow-sensing behavior and hair cell fluorescence both returned to pre-treatment levels, which is consistent with the reported timing of hair cell regeneration in other vertebrates. The presentation of ecologically relevant water flows to assess flow-sensing behaviors and the use of a positive reinforcement protocol are methods that present new opportunities to study the role of flow sensing in the feeding ecology of benthic feeding fishes.


Assuntos
Ciclídeos/fisiologia , Sistema da Linha Lateral/fisiologia , Mecanorreceptores/fisiologia , Movimentos da Água , África Austral , Animais , Lagos , Comportamento Predatório/fisiologia , Reologia
13.
J Neurophysiol ; 112(6): 1329-39, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24966296

RESUMO

The lateral line system of fishes contains mechanosensory receptors along the body surface called neuromasts, which can detect water motion relative to the body. The ability to sense flow informs many behaviors, such as schooling, predator avoidance, and rheotaxis. Here, we developed a new approach to stimulate individual neuromasts while either recording primary sensory afferent neuron activity or swimming motoneuron activity in larval zebrafish (Danio rerio). Our results allowed us to characterize the transfer functions between a controlled lateral line stimulus, its representation by primary sensory neurons, and its subsequent behavioral output. When we deflected the cupula of a neuromast with a ramp command, we found that the connected afferent neuron exhibited an adapting response which was proportional in strength to deflection velocity. The maximum spike rate of afferent neurons increased sigmoidally with deflection velocity, with a linear range between 0.1 and 1.0 µm/ms. However, spike rate did not change when the cupula was deflected below 8 µm, regardless of deflection velocity. Our findings also reveal an unexpected sensitivity in the larval lateral line system: stimulation of a single neuromast could elicit a swimming response which increased in reliability with increasing deflection velocities. At high deflection velocities, we observed that lateral line evoked swimming has intermediate values of burst frequency and duty cycle that fall between electrically evoked and spontaneous swimming. An understanding of the sensory capabilities of a single neuromast will help to build a better picture of how stimuli are encoded at the systems level and ultimately translated into behavior.


Assuntos
Sistema da Linha Lateral/fisiologia , Mecanorreceptores/fisiologia , Neurônios Motores/fisiologia , Animais , Potencial Evocado Motor , Larva/fisiologia , Sistema da Linha Lateral/citologia , Tempo de Reação , Natação , Peixe-Zebra
14.
Proc Biol Sci ; 281(1790)2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25030986

RESUMO

Many prey species, from soil arthropods to fish, perceive the approach of predators, allowing them to escape just in time. Thus, prey capture is as important to predators as prey finding. We extend an existing framework for understanding the conjoint trajectories of predator and prey after encounters, by estimating the ratio of predator attack and prey danger perception distances, and apply it to wolf spiders attacking wood crickets. Disturbances to air flow upstream from running spiders, which are sensed by crickets, were assessed by computational fluid dynamics with the finite-elements method for a much simplified spider model: body size, speed and ground effect were all required to obtain a faithful representation of the aerodynamic signature of the spider, with the legs making only a minor contribution. The relationship between attack speed and the maximal distance at which the cricket can perceive the danger is parabolic; it splits the space defined by these two variables into regions differing in their values for this ratio. For this biological interaction, the ratio is no greater than one, implying immediate perception of the danger, from the onset of attack. Particular attention should be paid to the ecomechanical aspects of interactions with such small ratio, because of the high degree of bidirectional coupling of the behaviour of the two protagonists. This conclusion applies to several other predator-prey systems with sensory ecologies based on flow sensing, in air and water.


Assuntos
Movimentos do Ar , Gryllidae/fisiologia , Comportamento Predatório/fisiologia , Aranhas/fisiologia , Animais , Fenômenos Biomecânicos , Tamanho Corporal , Simulação por Computador , Hidrodinâmica , Corrida , Limiar Sensorial
15.
J Exp Biol ; 217(Pt 24): 4328-36, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25520384

RESUMO

Prey fish possess a remarkable ability to sense and evade an attack from a larger fish. Despite the importance of these events to the biology of fishes, it remains unclear how sensory cues stimulate an effective evasive maneuver. Here, we show that larval zebrafish (Danio rerio) evade predators using an escape response that is stimulated by the water flow generated by an approaching predator. Measurements of the high-speed responses of larvae in the dark to a robotic predator suggest that larvae respond to the subtle flows in front of the predator using the lateral line system. This flow, known as the bow wave, was visualized and modeled with computational fluid dynamics. According to the predictions of the model, larvae direct their escape away from the side of their body exposed to more rapid flow. This suggests that prey fish use a flow reflex that enables predator evasion by generating a directed maneuver at high speed. These findings demonstrate a sensory-motor mechanism that underlies a behavior that is crucial to the ecology and evolution of fishes.


Assuntos
Reação de Fuga , Sistema da Linha Lateral/fisiologia , Peixe-Zebra/fisiologia , Animais , Fenômenos Biomecânicos , Hidrodinâmica , Larva/fisiologia , Comportamento Predatório , Natação
16.
Bioinspir Biomim ; 19(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38252966

RESUMO

In this work, we explored a bioinspired method for underwater object sensing based on active proprioception. We investigated whether the fluid flows generated by a robotic flapper, while interacting with an underwater wall, can encode the distance information between the wall and the flapper, and how to decode this information using the proprioception within the flapper. Such touchless wall-distance sensing is enabled by the active motion of a flapping plate, which injects self-generated flow to the fluid environment, thus representing a form of active sensing. Specifically, we trained a long short-term memory (LSTM) neural network to predict the wall distance based on the force and torque measured at the base of the flapping plate. In addition, we varied the Rossby number (Ro, or the aspect ratio of the plate) and the dimensionless flapping amplitude (A∗) to investigate how the rotational effects and unsteadiness of self-generated flow respectively affect the accuracy of the wall-distance prediction. Our results show that the median prediction error is within 5% of the plate length for all the wall-distances investigated (up to 40 cm or approximately 2-3 plate lengths depending on theRo); therefore, confirming that the self-generated flow can enable underwater perception. In addition, we show that stronger rotational effects at lowerRolead to higher prediction accuracy, while flow unsteadiness (A∗) only has moderate effects. Lastly, analysis based on SHapley Additive exPlanations (SHAP) indicate that temporal features that are most prominent at stroke reversals likely promotes the wall-distance prediction.


Assuntos
Modelos Biológicos , Procedimentos Cirúrgicos Robóticos , Fenômenos Biomecânicos , Voo Animal , Redes Neurais de Computação
17.
Micromachines (Basel) ; 15(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38793233

RESUMO

The laminar flow meter (LFM) boasts several advantages such as no moving parts, a wide range ratio, high measurement accuracy, quick dynamic response, etc., and is a promising technology for micro gas flow measurement. In order to explore the influence of different curvature radii on curved surface gap LFM, three curved structures with different curvature radii were designed. The computational fluid dynamics method is applied to simulate the flow feature of three structures. The simulated velocity cloud and pressure distribution show that the larger the curvature radius, the more stable the flow of gas medium. The relationship between differential pressure and volume flow was obtained through the test within a flow range of 0~540 sccm. Regression analysis revealed that the volume flow measured by the curved surface LFM had a high linear relationship with the differential pressure. Experimental findings indicate that differential pressure of the structure with a curvature radius of 2 mm was greater than that of other two structures (curvature radius of 6 mm and 3 mm) at the same point. This indicates that adding the number of surfaces can effectively increase the pressure loss, so as to obtain a larger range ratio, but will increase the measurement error.

18.
Ann N Y Acad Sci ; 1536(1): 107-121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837424

RESUMO

One feature of animal wings is their embedded mechanosensory system that can support flight control. Insect wings are particularly interesting as they are highly deformable yet the actuation is limited to the wing base. It is established that strain sensors on insect wings can directly mediate reflexive control; however, little is known about airflow sensing by insect wings. What information can flow sensors capture and how can flow sensing benefit flight control? Here, we use the dragonfly (Sympetrum striolatum) as a model to explore the function of wing sensory bristles in the context of flight control. Combining our detailed anatomical reconstructions of both the sensor microstructures and wing architecture, we used computational fluid dynamics simulations to ask the following questions. (1) Are there strategic locations on wings that sample flow for estimating aerodynamically relevant parameters such as the local effective angle of attack? (2) Is the sensory bristle distribution on dragonfly wings optimal for flow sensing? (3) What is the aerodynamic effect of microstructures found near the sensory bristles on dragonfly wings? We discuss the benefits of flow sensing for flexible wings and how the evolved sensor placement affects information encoding.


Assuntos
Voo Animal , Odonatos , Asas de Animais , Animais , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Odonatos/fisiologia , Voo Animal/fisiologia , Fenômenos Biomecânicos/fisiologia , Hidrodinâmica , Simulação por Computador
19.
Front Bioeng Biotechnol ; 11: 1339831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283172

RESUMO

Introduction: Ventriculoperitoneal (VP) shunts divert cerebrospinal fluid (CSF) out of cerebral ventricles in patients with hydrocephalus or elevated intracranial pressure (ICP). Despite high failure rates, there exist limited clinically viable solutions for long-term and continuous outpatient monitoring of CSF flow rate through VP shunts. We present a novel, low-power method for sensing analog CSF flow rate through a VP shunt premised on induced spatial electrical charge variation. Methods: Two geometric variants of the proposed sensing mechanism were prototyped: linear wire (P1) and cylindrical (P2) electrodes. Normal saline was gravity-driven through P1 and a commercially available shunt system in series. True flow rates were measured using a high-precision analytical balance. Subsequently, artificial CSF was driven by a programmable syringe pump through P2. Flow rate prediction models were empirically derived and tested. Sensor response was also assessed during simulated obstruction trials. Finally, power consumption per flow measurement was measured. Results: P1 (17 mm long) and P2 (22 mm long) averaged 7.2% and 4.2% error, respectively, in flow rate measurement from 0.01 to 0.90 mL/min. Response curves exhibited an appreciably flattened profile during obstruction trials compared to non-obstructed states. P2 consumed 37.5 µJoules per flow measurement. Conclusion: We propose a novel method for accurately sensing CSF flow rate through a VP shunt and validate this method at the benchtop with normal saline and artificial CSF over a board range of flows (0.01-0.90 mL/min). The sensing element is highly power efficient, compact, insertable into existing shunt and valve assemblies, and does not alter CSF flow mechanics.

20.
Dis Model Mech ; 16(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909406

RESUMO

The endothelium, the monolayer of endothelial cells that line blood vessels, is exposed to a number of mechanical forces, including frictional shear flow, pulsatile stretching and changes in stiffness influenced by extracellular matrix composition. These forces are sensed by mechanosensors that facilitate their transduction to drive appropriate adaptation of the endothelium to maintain vascular homeostasis. In the aorta, the unique architecture of the vessel gives rise to changes in the fluid dynamics, which, in turn, shape cellular morphology, nuclear architecture, chromatin dynamics and gene regulation. In this Review, we discuss recent work focusing on how differential mechanical forces exerted on endothelial cells are sensed and transduced to influence their form and function in giving rise to spatial variation to the endothelium of the aorta. We will also discuss recent developments in understanding how nuclear mechanosensing is implicated in diseases of the aorta.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Células Endoteliais/fisiologia , Mecanotransdução Celular/fisiologia , Endotélio Vascular , Matriz Extracelular , Aorta , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA