Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 795
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39168124

RESUMO

During wound healing, different pools of stem cells (SCs) contribute to skin repair. However, how SCs become activated and drive the tissue remodeling essential for skin repair is still poorly understood. Here, by developing a mouse model allowing lineage tracing and basal cell lineage ablation, we monitor SC fate and tissue dynamics during regeneration using confocal and intravital imaging. Analysis of basal cell rearrangements shows dynamic transitions from a solid-like homeostatic state to a fluid-like state allowing tissue remodeling during repair, as predicted by a minimal mathematical modeling of the spatiotemporal dynamics and fate behavior of basal cells. The basal cell layer progressively returns to a solid-like state with re-epithelialization. Bulk, single-cell RNA, and epigenetic profiling of SCs, together with functional experiments, uncover a common regenerative state regulated by the EGFR/AP1 axis activated during tissue fluidization that is essential for skin SC activation and tissue repair.

2.
Cell ; 181(3): 716-727.e11, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32259488

RESUMO

Human cells are able to sense and adapt to variations in oxygen levels. Historically, much research in this field has focused on hypoxia-inducible factor (HIF) signaling and reactive oxygen species (ROS). Here, we perform genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen (213 genes) or low oxygen (109 genes), most without known connection to HIF or ROS. Knockouts of many mitochondrial pathways thought to be essential, including complex I and enzymes in Fe-S biosynthesis, grow relatively well at low oxygen and thus are buffered by hypoxia. In contrast, in certain cell types, knockout of lipid biosynthetic and peroxisomal genes causes fitness defects only in low oxygen. Our resource nominates genetic diseases whose severity may be modulated by oxygen and links hundreds of genes to oxygen homeostasis.


Assuntos
Metabolismo dos Lipídeos/genética , Mitocôndrias/genética , Oxigênio/metabolismo , Transcriptoma/genética , Hipóxia Celular , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Células HEK293 , Humanos , Hipóxia/metabolismo , Células K562 , Metabolismo dos Lipídeos/fisiologia , Lipídeos/genética , Lipídeos/fisiologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
3.
Mol Cell ; 77(1): 82-94.e4, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31630970

RESUMO

FUS is a nuclear RNA-binding protein, and its cytoplasmic aggregation is a pathogenic signature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). It remains unknown how the FUS-RNA interactions contribute to phase separation and whether its phase behavior is affected by ALS-linked mutations. Here we demonstrate that wild-type FUS binds single-stranded RNA stoichiometrically in a length-dependent manner and that multimers induce highly dynamic interactions with RNA, giving rise to small and fluid condensates. In contrast, mutations in arginine display a severely altered conformation, static binding to RNA, and formation of large condensates, signifying the role of arginine in driving proper RNA interaction. Glycine mutations undergo rapid loss of fluidity, emphasizing the role of glycine in promoting fluidity. Strikingly, the nuclear import receptor Karyopherin-ß2 reverses the mutant defects and recovers the wild-type FUS behavior. We reveal two distinct mechanisms underpinning potentially disparate pathogenic pathways of ALS-linked FUS mutants.


Assuntos
Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Mutação/genética , Proteína FUS de Ligação a RNA/genética , RNA/genética , Transporte Ativo do Núcleo Celular/genética , Glicina/genética , Humanos
4.
Trends Biochem Sci ; 48(11): 963-977, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37652754

RESUMO

Biomembranes are complex materials composed of lipids and proteins that compartmentalize biochemistry. They are actively remodeled in response to physical and metabolic cues, as well as during cell differentiation and stress. The concept of homeoviscous adaptation has become a textbook example of membrane responsiveness. Here, we discuss limitations and common misconceptions revolving around it. By highlighting key moments in the life cycle of a transmembrane protein, we illustrate that membrane thickness and a finely regulated membrane compressibility are crucial to facilitate proper membrane protein insertion, function, sorting, and inheritance. We propose that the unfolded protein response (UPR) provides a mechanism for endoplasmic reticulum (ER) membrane homeostasis by sensing aberrant transverse membrane stiffening and triggering adaptive responses that re-establish membrane compressibility.


Assuntos
Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático/fisiologia , Homeostase/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(26): e2405553121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889144

RESUMO

The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.


Assuntos
Citoplasma , Schizosaccharomyces , Esporos Fúngicos , Trealose , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiologia , Citoplasma/metabolismo , Trealose/metabolismo , Glucose/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais
6.
EMBO J ; 41(5): e109800, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35037270

RESUMO

All living organisms adapt their membrane lipid composition in response to changes in their environment or diet. These conserved membrane-adaptive processes have been studied extensively. However, key concepts of membrane biology linked to regulation of lipid composition including homeoviscous adaptation maintaining stable levels of membrane fluidity, and gel-fluid phase separation resulting in domain formation, heavily rely upon in vitro studies with model membranes or lipid extracts. Using the bacterial model organisms Escherichia coli and Bacillus subtilis, we now show that inadequate in vivo membrane fluidity interferes with essential complex cellular processes including cytokinesis, envelope expansion, chromosome replication/segregation and maintenance of membrane potential. Furthermore, we demonstrate that very low membrane fluidity is indeed capable of triggering large-scale lipid phase separation and protein segregation in intact, protein-crowded membranes of living cells; a process that coincides with the minimal level of fluidity capable of supporting growth. Importantly, the in vivo lipid phase separation is not associated with a breakdown of the membrane diffusion barrier function, thus explaining why the phase separation process induced by low fluidity is biologically reversible.


Assuntos
Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Fluidez de Membrana/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas/metabolismo , Bacillus subtilis/fisiologia , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Escherichia coli/fisiologia
7.
Proc Natl Acad Sci U S A ; 120(3): e2212507120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626558

RESUMO

Intracellular cargos are often membrane-enclosed and transported by microtubule-based motors in the presence of microtubule-associated proteins (MAPs). Whereas increasing evidence reveals how MAPs impact the interactions between motors and microtubules, critical questions remain about the impact of the cargo membrane on transport. Here we combined in vitro optical trapping with theoretical approaches to determine the effect of a lipid cargo membrane on kinesin-based transport in the presence of MAP tau. Our results demonstrate that attaching kinesin to a fluid lipid membrane reduces the inhibitory effect of tau on kinesin. Moreover, adding cholesterol, which reduces kinesin diffusion in the cargo membrane, amplifies the inhibitory effect of tau on kinesin binding in a dosage-dependent manner. We propose that reduction of kinesin diffusion in the cargo membrane underlies the effect of cholesterol on kinesin binding in the presence of tau, and we provide a simple model for this proposed mechanism. Our study establishes a direct link between cargo membrane cholesterol and MAP-based regulation of kinesin-1. The cholesterol effects uncovered here may more broadly extend to other lipid alterations that impact motor diffusion in the cargo membrane, including those associated with aging and neurological diseases.


Assuntos
Cinesinas , Proteínas Associadas aos Microtúbulos , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Transporte Biológico/fisiologia , Lipídeos
8.
Proc Natl Acad Sci U S A ; 120(24): e2213241120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276406

RESUMO

The inner mitochondrial membrane (IMM), housing components of the electron transport chain (ETC), is the site for respiration. The ETC relies on mobile carriers; therefore, it has long been argued that the fluidity of the densely packed IMM can potentially influence ETC flux and cell physiology. However, it is unclear if cells temporally modulate IMM fluidity upon metabolic or other stimulation. Using a photostable, red-shifted, cell-permeable molecular-rotor, Mitorotor-1, we present a multiplexed approach for quantitatively mapping IMM fluidity in living cells. This reveals IMM fluidity to be linked to cellular-respiration and responsive to stimuli. Multiple approaches combining in vitro experiments and live-cell fluorescence (FLIM) lifetime imaging microscopy (FLIM) show Mitorotor-1 to robustly report IMM 'microviscosity'/fluidity through changes in molecular free volume. Interestingly, external osmotic stimuli cause controlled swelling/compaction of mitochondria, thereby revealing a graded Mitorotor-1 response to IMM microviscosity. Lateral diffusion measurements of IMM correlate with microviscosity reported via Mitorotor-1 FLIM-lifetime, showing convergence of independent approaches for measuring IMM local-order. Mitorotor-1 FLIM reveals mitochondrial heterogeneity in IMM fluidity; between-and-within cells and across single mitochondrion. Multiplexed FLIM lifetime imaging of Mitorotor-1 and NADH autofluorescence reveals that IMM fluidity positively correlates with respiration, across individual cells. Remarkably, we find that stimulating respiration, through nutrient deprivation or chemically, also leads to increase in IMM fluidity. These data suggest that modulating IMM fluidity supports enhanced respiratory flux. Our study presents a robust method for measuring IMM fluidity and suggests a dynamic regulatory paradigm of modulating IMM local order on changing metabolic demand.


Assuntos
Membranas Mitocondriais , Sondas Moleculares/química , Membranas Mitocondriais/química , Respiração Celular , Fluidez de Membrana , Pressão Osmótica , Difusão
9.
Proc Natl Acad Sci U S A ; 120(36): e2221982120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37643215

RESUMO

Stem cells in organoids self-organize into tissue patterns with unknown mechanisms. Here, we use skin organoids to analyze this process. Cell behavior videos show that the morphological transformation from multiple spheroidal units with morphogenesis competence (CMU) to planar skin is characterized by two abrupt cell motility-increasing events before calming down. The self-organizing processes are controlled by a morphogenetic module composed of molecular sensors, modulators, and executers. Increasing dermal stiffness provides the initial driving force (driver) which activates Yap1 (sensor) in epidermal cysts. Notch signaling (modulator 1) in epidermal cyst tunes the threshold of Yap1 activation. Activated Yap1 induces Wnts and MMPs (epidermal executers) in basal cells to facilitate cellular flows, allowing epidermal cells to protrude out from the CMU. Dermal cell-expressed Rock (dermal executer) generates a stiff force bridge between two CMU and accelerates tissue mixing via activating Laminin and ß1-integrin. Thus, this self-organizing coalescence process is controlled by a mechano-chemical circuit. Beyond skin, self-organization in organoids may use similar mechano-chemical circuit structures.


Assuntos
Epiderme , Pele , Personalidade , Organoides , Emoções , Proteínas Adaptadoras de Transdução de Sinal
10.
Mol Microbiol ; 121(3): 578-592, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308564

RESUMO

Pathogenic Rhodococcus equi release the virulence-associated protein A (VapA) within macrophage phagosomes. VapA permeabilizes phagosome and lysosome membranes and reduces acidification of both compartments. Using biophysical techniques, we found that VapA interacts with model membranes in four steps: (i) binding, change of mechanical properties, (ii) formation of specific membrane domains, (iii) permeabilization within the domains, and (iv) pH-specific transformation of domains. Biosensor data revealed that VapA binds to membranes in one step at pH 6.5 and in two steps at pH 4.5 and decreases membrane fluidity. The integration of VapA into lipid monolayers was only significant at lateral pressures <20 mN m-1 indicating preferential incorporation into membrane regions with reduced integrity. Atomic force microscopy of lipid mono- and bilayers showed that VapA increased the surface heterogeneity of liquid disordered domains. Furthermore, VapA led to the formation of a new microstructured domain type and, at pH 4.5, to the formation of 5 nm high domains. VapA binding, its integration and lipid domain formation depended on lipid composition, pH, protein concentration and lateral membrane pressure. VapA-mediated permeabilization is clearly distinct from that caused by classical microbial pore formers and is a key contribution to the multiplication of Rhodococcus equi in phagosomes.


Assuntos
Rhodococcus equi , Proteína Estafilocócica A , Virulência , Proteína Estafilocócica A/metabolismo , Fatores de Virulência/metabolismo , Rhodococcus equi/metabolismo , Proteínas de Bactérias/metabolismo , Lipídeos
11.
Bioessays ; 45(12): e2300116, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37712937

RESUMO

One persistent puzzle in the life sciences is the asymmetric lipid composition of the cellular plasma membrane: while the exoplasmic leaflet is enriched in lipids carrying predominantly saturated fatty acids, the cytoplasmic leaflet hosts preferentially lipids with (poly-)unsaturated fatty acids. Given the high energy requirements necessary for cells to maintain this asymmetry, the question naturally arises regarding its inherent benefits. In this paper, we propose asymmetry to represent a potential solution for harmonizing two conflicting requirements for the plasma membrane: first, the need to build a barrier for the uncontrolled influx or efflux of substances; and second, the need to form a fluid and dynamic two-dimensional substrate for signaling processes. We hence view here the plasma membrane as a composite material, where the exoplasmic leaflet is mainly responsible for the functional integrity of the barrier and the cytoplasmic leaflet for fluidity. We reinforce the validity of the proposed mechanism by presenting quantitative data from the literature, along with multiple examples that bolster our model.


Assuntos
Lipídeos de Membrana , Lipídeos de Membrana/química , Membrana Celular/metabolismo , Transporte Biológico
12.
J Lipid Res ; 65(7): 100533, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522749

RESUMO

Mycobacterial plasma membrane, together with the peptidoglycan-arabinogalactan cell wall and waxy outer membrane, creates a robust permeability barrier against xenobiotics. The fact that several antituberculosis drugs target plasma membrane-embedded enzymes underscores the importance of the plasma membrane in bacterial physiology and pathogenesis. Nevertheless, its accurate phospholipid composition remains undefined, with conflicting reports on the abundance of phosphatidylinositol mannosides (PIMs), physiologically important glycolipids evolutionarily conserved among mycobacteria and related bacteria. Some studies indicate cardiolipin, phosphatidylethanolamine, and phosphatidylinositol as dominant structural phospholipids. Conversely, some suggest PIMs dominate the plasma membrane. A striking example of the latter is the use of reverse micelle extraction, showing diacyl phosphatidylinositol dimannoside (Ac2PIM2) as the most abundant phospholipid in a model organism, Mycobacterium smegmatis. Our recent work reveals a rapid response mechanism to membrane-fluidizing stress in mycobacterial plasma membrane: monoacyl phosphatidylinositol dimannoside and hexamannoside (AcPIM2 and AcPIM6) are converted to diacyl forms (Ac2PIM2 and Ac2PIM6). Given the dynamic nature of PIMs, we aimed to resolve the conflicting data in the literature. We show that unstressed M. smegmatis lacks an Ac2PIM2-dominated plasma membrane. Ac2PIM2 accumulation is induced by experimental conditions involving sodium docusate, a component of the reverse micellar solution. Using chemically synthesized PIMs as standards, we accurately quantified phospholipid ratio in M. smegmatis through liquid chromatography-mass spectrometry, revealing that mycobacterial plasma membrane is dominated by cardiolipin, phosphatidylethanolamine, and phosphatidylinositol. PIMs are quantitatively minor but responsive to environmental stresses in M. smegmatis. Our study paves the way for accurate modeling of mycobacterial plasma membrane.


Assuntos
Mycobacterium smegmatis , Fosfatidilinositóis , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Fosfatidilinositóis/metabolismo , Fosfatidilinositóis/química , Detergentes/química , Detergentes/farmacologia , Membrana Celular/metabolismo
13.
J Biol Chem ; 299(6): 104799, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37164154

RESUMO

The human AdipoR2 and its Caenorhabditis elegans homolog PAQR-2 are multipass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labeled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids. To elucidate the molecular basis of these activities, we performed immunoprecipitations of tagged AdipoR2 and PAQR-2 expressed in HEK293 cells or whole C. elegans, respectively, and identified coimmunoprecipitated proteins using mass spectrometry. We found that several of the evolutionarily conserved AdipoR2/PAQR-2 interactors are important for fatty acid elongation and incorporation into phospholipids. We experimentally verified some of these interactions, namely, with the dehydratase HACD3 that is essential for the third of four steps in long-chain fatty acid elongation and ACSL4 that is important for activation of unsaturated fatty acids and their channeling into phospholipids. We conclude that AdipoR2 and PAQR-2 can recruit protein interactors to promote the production and incorporation of unsaturated fatty acids into phospholipids.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Membrana Celular , Ácidos Graxos , Fluidez de Membrana , Receptores de Adiponectina , Animais , Humanos , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Células HEK293 , Fluidez de Membrana/fisiologia , Fosfolipídeos/metabolismo , Receptores de Adiponectina/metabolismo , Ligação Proteica
14.
Mol Microbiol ; 120(4): 490-501, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37243899

RESUMO

In every bacterial cell, the plasma membrane plays a key role in viability as it forms a selective barrier between the inside of the cell and its environment. This barrier function depends on the physical state of the lipid bilayer and the proteins embedded or associated with the bilayer. Over the past decade or so, it has become apparent that many membrane-organizing proteins and principles, which were described in eukaryote systems, are ubiquitous and play important roles in bacterial cells. In this minireview, we focus on the enigmatic roles of bacterial flotillins in membrane compartmentalization and bacterial dynamins and ESCRT-like systems in membrane repair and remodeling.

15.
Plant Cell Physiol ; 65(5): 790-797, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38441322

RESUMO

Cyanobacteria inhabit areas with a broad range of light, temperature and nutrient conditions. The robustness of cyanobacterial cells, which can survive under different conditions, may depend on the resilience of photosynthetic activity. Cyanothece sp. PCC 8801 (Cyanothece), a freshwater cyanobacterium isolated from a Taiwanese rice field, had a higher repair activity of photodamaged photosystem II (PSII) under intense light than Synechocystis sp. PCC 6803 (Synechocystis), another freshwater cyanobacterium. Cyanothece contains myristic acid (14:0) as the major fatty acid at the sn-2 position of the glycerolipids. To investigate the role of 14:0 in the repair of photodamaged PSII, we used a Synechocystis transformant expressing a T-1274 encoding a lysophosphatidic acid acyltransferase (LPAAT) from Cyanothece. The wild-type and transformant cells contained 0.2 and 20.1 mol% of 14:0 in glycerolipids, respectively. The higher content of 14:0 in the transformants increased the fluidity of the thylakoid membrane. In the transformants, PSII repair was accelerated due to an enhancement in the de novo synthesis of D1 protein, and the production of singlet oxygen (1O2), which inhibited protein synthesis, was suppressed. The high content of 14:0 increased transfer of light energy received by phycobilisomes to PSI and CP47 in PSII and the content of carotenoids. These results indicated that an increase in 14:0 reduced 1O2 formation and enhanced PSII repair. The higher content of 14:0 in the glycerolipids may be required as a survival strategy for Cyanothece inhabiting a rice field under direct sunlight.


Assuntos
Luz , Ácido Mirístico , Complexo de Proteína do Fotossistema II , Synechocystis , Tilacoides , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Synechocystis/genética , Ácido Mirístico/metabolismo , Tilacoides/metabolismo , Fotossíntese , Aciltransferases/metabolismo , Aciltransferases/genética , Oxigênio Singlete/metabolismo
16.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36017702

RESUMO

Dictyostelium discoideum is a unicellular eukaryote that eats bacteria, and eventually outgrows the bacteria. D. discoideum cells accumulate extracellular polyphosphate (polyP), and the polyP concentration increases as the local cell density increases. At high cell densities, the correspondingly high extracellular polyP concentrations allow cells to sense that they are about to outgrow their food supply and starve, causing the D. discoideum cells to inhibit their proliferation. In this report, we show that high extracellular polyP inhibits exocytosis of undigested or partially digested nutrients. PolyP decreases plasma membrane recycling and apparent cell membrane fluidity, and this requires the G protein-coupled polyP receptor GrlD, the polyphosphate kinase Ppk1 and the inositol hexakisphosphate kinase I6kA. PolyP alters protein contents in detergent-insoluble crude cytoskeletons, but does not significantly affect random cell motility, cell speed or F-actin levels. Together, these data suggest that D. discoideum cells use polyP as a signal to sense their local cell density and reduce cell membrane fluidity and membrane recycling, perhaps as a mechanism to retain ingested food when the cells are about to starve. This article has an associated First Person interview with the first author of the paper.


Assuntos
Dictyostelium , Actinas/metabolismo , Detergentes/metabolismo , Dictyostelium/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Nutrientes , Polifosfatos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
17.
J Membr Biol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133276

RESUMO

Cell-based therapies hold great potential for cancer immunotherapy. This approach is based on manipulation of dendritic cells to activate immune system against specific cancer antigens. For the development of an effective cell vaccine platform, gene transfer, and cell fusion have been used for modification of dendritic or tumor cells to express immune (co)stimulatory signals and to load dendritic cells with tumor antigens. Both, gene transfer and cell fusion can be achieved by single technique, a cell membrane electroporation. The cell membrane exposed to external electric field becomes temporarily permeable, enabling introduction of genetic material, and also fusogenic, enabling the fusion of cells in the close contact. We tested the feasability of combining gene electrotransfer and electrofusion into a single-step technique and evaluated the effects of electroporation buffer, pulse parameters, and cell membrane fluidity for single or combined method of gene delivery or cell fusdion. We determined the percentage of fused cells expressing green fluorescence protein (GFP) in a murine cell model of melanoma B16F1, cell line used in our previous studies. Our results suggest that gene electrotransfer and cell electrofusion can be applied in a single step. The percentage of viable hybrid cells expressing GFP depends on electric pulse parameters and the composition of the electroporation buffer. Furthermore, our results suggest that cell membrane fluidity is not related to the efficiency of the gene electrotransfer and electrofusion. The protocol is compatible with microfluidic devices, however further optimization of electric pulse parameters and buffers is still needed.

18.
J Virol ; 97(12): e0171923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032199

RESUMO

IMPORTANCE: All viruses initiate infection by utilizing receptors to attach to target host cells. These virus-receptor interactions can therefore dictate viral replication and pathogenesis. Understanding the nature of virus-receptor interactions could also be important for the development of novel therapies. Noroviruses are non-enveloped icosahedral viruses of medical importance. They are a common cause of acute gastroenteritis with no approved vaccine or therapy and are a tractable model for studying fundamental virus biology. In this study, we utilized the murine norovirus model system to show that variation in a single amino acid of the major capsid protein alone can affect viral infectivity through improved attachment to suspension cells. Modulating plasma membrane mobility reduced infectivity, suggesting an importance of membrane mobility for receptor recruitment and/or receptor conformation. Furthermore, different substitutions at this site altered viral tissue distribution in a murine model, illustrating how in-host capsid evolution could influence viral infectivity and/or immune evasion.


Assuntos
Infecções por Caliciviridae , Proteínas do Capsídeo , Norovirus , Animais , Camundongos , Substituição de Aminoácidos , Infecções por Caliciviridae/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Evasão da Resposta Imune , Norovirus/metabolismo , Proteínas do Core Viral/metabolismo
19.
Eur J Clin Invest ; 54(3): e14121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37929812

RESUMO

AIMS: Improving the composition of circulating fatty acids (FA) leads to a reduction in cardiovascular diseases (CVD) in high-risk individuals. The membrane fluidity of red blood cells (RBC), which reflects circulating FA status, may be a valid biomarker of cardiovascular (CV) risk in type 2 diabetes (T2D). METHODS: Red blood cell membrane fluidity, quantified as general polarization (GP), was assessed in 234 subjects with T2D, 86 with prior major CVD. Based on GP distribution, a cut-off of .445 was used to divide the study cohort into two groups: the first with higher GP, called GEL, and the second, defined as lower GP (LGP). Lipidomic analysis was performed to evaluate FA composition of RBC membranes. RESULTS: Although with comparable CV risk factors, the LGP group had a greater percentage of patients with major CVD than the GEL group (40% vs 24%, respectively, p < .05). Moreover, in a logistic regression analysis, a lower GP value was independently associated with the presence of macrovascular complications. Lipidomic analysis showed a clear shift of LGP membranes towards a pro-inflammatory condition due to higher content of arachidonic acid and increased omega 6/omega 3 index. CONCLUSIONS: Increased membrane fluidity is associated with a higher CV risk in subjects with T2D. If confirmed in prospective studies, membrane fluidity could be a new biomarker for residual CV risk assessment in T2D.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Membrana Eritrocítica/metabolismo , Fluidez de Membrana , Estudos Prospectivos , Fatores de Risco , Eritrócitos/metabolismo , Ácidos Graxos/metabolismo , Fatores de Risco de Doenças Cardíacas , Biomarcadores/metabolismo
20.
Arch Microbiol ; 206(2): 87, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305908

RESUMO

Here, we studied the effect of low-shear modeled microgravity (LSMMG) on cross stress resistance (heat, acid, and oxidative), fatty acid content, and pathogenicity along with alteration in expression of stress-/virulence-associated genes in Legionella pneumophila. The stress resistance analysis result indicated that bacteria cultivated under LSMMG environments showed higher resistance with elevated D-values at 55 °C and in 1 mM of hydrogen peroxide (H2O2) conditions compared to normal gravity (NG)-grown bacteria. On the other hand, there was no significant difference in tolerance (p < 0.05) toward simulated gastric fluid (pH-2.5) acid conditions. In fatty acid analysis, our result showed that a total amount of saturated and cyclic fatty acids was increased in LSMMG-grown cells; as a consequence, they might possess low membrane fluidity. An upregulated expression level was noticed for stress-related genes (hslV, htrA, grpE, groL, htpG, clpB, clpX, dnaJ, dnaK, rpoH, rpoE, rpoS, kaiB, kaiC, lpp1114, ahpC1, ahpC2, ahpD, grlA, and gst) under LSMMG conditions. The reduced virulence (less intracellular bacteria and less % of induce apoptosis in RAW 264.7 macrophages) of L. pneumophila under LSMMG conditions may be because of downregulation related genes (dotA, dotB, dotC, dotD, dotG, dotH, dotL, dotM, dotN, icmK, icmB, icmS, icmT, icmW, ladC, rtxA, letA, rpoN, fleQ, fleR, and fliA). In the LSMMG group, the expression of inflammation-related factors, such as IL-1α, TNF-α, IL-6, and IL-8, was observed to be reduced in infected macrophages. Also, scanning electron microscopy (SEM) analysis showed less number of LSMMG-cultivated bacteria attached to the host macrophages compared to NG. Thus, our study provides understandings about the changes in lipid composition and different genes expression due to LSMMG conditions, which apparently influence the alterations of L. pneumophila' stress/virulence response.


Assuntos
Legionella pneumophila , Ausência de Peso , Virulência/genética , Lipídeos de Membrana , Legionella pneumophila/genética , Peróxido de Hidrogênio , Ácidos Graxos , Macrófagos/microbiologia , Proteínas de Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA