Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35683005

RESUMO

Graphene oxide is well known for its excellent fluorescence quenching ability. In this study, positively charged graphene oxide (pGO25000) was developed as a fluorescence quencher that is water-soluble and synthesized by grafting polyetherimide onto graphene oxide nanosheets by a carbodiimide reaction. Compared to graphene oxide, the fluorescence quenching ability of pGO25000 is significantly improved by the increase in the affinity between pGO25000 and the DNA strand, which is introduced by the additional electrostatic interaction. The FAM-labeled single-stranded DNA probe can be almost completely quenched at concentrations of pGO25000 as low as 0.1 µg/mL. A simple and novel FAM-labeled single-stranded DNA sensor was designed for Hg2+ detection to take advantage of exonuclease I-triggered single-stranded DNA hydrolysis, and pGO25000 acted as a fluorescence quencher. The FAM-labeled single-stranded DNA probe is present as a hairpin structure by the formation of T-Hg2+-T when Hg2+ is present, and no fluorescence is observed. It is digested by exonuclease I without Hg2+, and fluorescence is recovered. The fluorescence intensity of the proposed biosensor was positively correlated with the Hg2+ concentration in the range of 0-250 nM (R2 = 0.9955), with a seasonable limit of detection (3σ) cal. 3.93 nM. It was successfully applied to real samples of pond water for Hg2+ detection, obtaining a recovery rate from 99.6% to 101.1%.


Assuntos
Técnicas Biossensoriais , Grafite , Mercúrio , DNA de Cadeia Simples , Exodesoxirribonucleases , Grafite/química , Limite de Detecção , Água
2.
Mikrochim Acta ; 188(5): 168, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33884514

RESUMO

Metal-organic frameworks (MOFs) have captured substantial attention of an increasing number of scientists working in sensing analysis fields, due to their large surface area, high porosity, and tunable structure. Recently, MOFs as attractive fluorescence quenchers have been extensively investigated. Given their high quenching efficiency toward the fluorescence intensity of dyes-labeled specific biological recognition molecules, such as nucleic acids, MOFs have been widely developed to switch fluorescence biosensors with low background fluorescence signal. These strategies not only lead to specificity, simplicity, and low cost of biosensors, but also possess advantages such as ultrasensitive, rapid, and multiple detection of switch fluorescence methods. At present, researches of the analysis of switch fluorescence biosensors based on MOFs and nucleic acids mainly focus on sensing of different types of in vitro and intracellular analytes, indicating their increasing potential. In this review, we briefly introduce the principle of switch fluorescence biosensor and the mechanism of fluorescence quenching of MOFs, and mainly discuss and summarize the state-of-the-art advances of MOFs and nucleic acids-based switch fluorescence biosensors over the years 2013 to 2020. Most of them have been proposed to the in vitro detection of different types of analytes, showing their wide scope and applicability, such as deoxyribonucleic acid (DNAs), ribonucleic acid (RNAs), proteins, enzymes, antibiotics, and heavy metal ions. Besides, some of them have also been applied to the bioimaging of intracellular analytes, emerging their potential for biomedical applications, for example, cellular adenosine triphosphate (ATP) and subcellular glutathione (GSH). Finally, the remaining challenges in this sensing field and prospects for future research trends are addressed. Graphical abstract.


Assuntos
Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/química , Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Linhagem Celular Tumoral , Fluorescência , Humanos
3.
Mikrochim Acta ; 187(11): 622, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33089357

RESUMO

In photoelectrochemical (PEC) detection, enhancing the PEC signal and depressing the blank signal are conducive to improve the sensitivity. Because the carbon nanotube (CNT) effectively transfers photogenerated electrons from SnSe to the electrode, the composite nanomaterial CNTs/SnSe generates a strong PEC signal. Methionine (Met), AuNPs, and probe DNA are woven together forming a nanoprobe which is used as a quencher to quench the PEC signal of CNTs/SnSe. When the nanoprobe and CNTs/SnSe are modified onto the electrode, there is a low blank signal. In the presence of metastatic breast cancer cells, the cells interact with the aptamer of dsDNA; concomitantly, cDNA is released to trigger catalytic hairpin assembly (CHA). As a result, a new dsDNA which has an overhang is formed. The nanoprobe on the surface of the electrode hybridizes with the newly formed dsDNA. Subsequently, the nanoprobe is released from the surface of the electrode and the quenching effect between the nanoprobe and the CNTs/SnSe disappears. The PEC aptasensor is linear in the concentration range of 300-5,000 cells/mL, and the detection limit is 180 cells/mL under optimized conditions. The relative standard deviation (RSD) is 3.6% at 10,000 cells/mL. This work demonstrates a promising strategy using CNTs/SnSe as the photoactive material and Met-AuNPs as the quencher to establish a PEC aptasensor with a high PEC response and low blank signal. It can be used to detect bioactive substances at ultralow levels prospectively. Graphical abstract.

4.
Mikrochim Acta ; 186(8): 572, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31342193

RESUMO

A nanohybrid probe was fabricated from manganese dioxide nanosheets (MnO2 NSs), molybdenum disulfide quantum dots (MoS2 QDs) and o-phenylenediamine (OPD) for ratiometric detection of glutathione (GSH) in aqueous solutions and living cells. The MoS2 QDs act as the fluorescent "turn off-on" units. The MnO2 NSs have 3 functions, viz. (a) as fluorescence quencher, (b) as fluorescence initiator for oxidized OPD (ox OPD) and (c) as selective recognizer of GSH. The quenched blue fluorescence of the MoS2 QDs can be restored by introducing GSH that reduces the MnO2 NSs. However, the green fluorescence of ox OPD is decreased through the loss of peroxidase activity of MnO2 NSs in the presence of GSH. Therefore, the ratio of the fluorescence intensities at 560 and 400 nm (from ox OPD and MoS2 QDs, respectively) linearly decreases with increasing concentrations of GSH. Under the optimal conditions, the detection limit for GSH is as low as 90 nM. The method was successfully applied to the determination of GSH in human serum samples. This nanohybrid also is shown to be membrane-permeable and to have low cytotoxicity. This paved the way to intracellular sensing of GSH in living normal HFF and cancerous HeLa cells. Additionally, by combining with logic gate, this assay was successfully applied to visually discriminate changes in the intracellular GSH. The combination of ratiometric fluorometry and peroxidase mimicking can provide a wide range of application in bioanalysis and intracellular imaging. Graphical abstract Schematic representation of the ratiometric fluorometric detection and cellular imaging of glutathione using a nanohybrid composed of MoS2 quantum dots and MnO2 nanosheets with dual (blue and green emission and peroxidase mimicking properties.


Assuntos
Glutationa/sangue , Nanoestruturas/química , Imagem Óptica/métodos , Pontos Quânticos/química , Linhagem Celular , Linhagem Celular Tumoral , Dissulfetos , Fluorometria/métodos , Glutationa/análise , Células HeLa , Humanos , Limite de Detecção , Compostos de Manganês , Molibdênio , Óxidos , Peroxidase
5.
Biosens Bioelectron ; 251: 116129, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364329

RESUMO

Acute myocardial infarction (AMI) represents the leading cause of cardiovascular death worldwide, and it is thus pivotal to develop effective approaches for the timely detection of AMI markers, especially possessing the characteristics of antibody-free, signal amplification, and manipulation convenience. We herein construct a MoS2 nanosheet-powered CRISPR/Cas12a sensing strategy for sensitive determination of miR-499, a superior AMI biomarker to protein markers. The presence of miR-499 at a trace level is able to induce a significantly enhanced fluorescence signal in a DNA-based molecular engineering platform, which consists of CRISPR/Cas12a enzymatic reactions and MoS2 nanosheet-controllable signal reporting components. The MoS2 nanosheets were characterized by using atomic force microscopy (AFM) and transmission electron microscope (TEM). The detection feasibility was verified by using polyacrylamide gel electrophoresis (PAGE) analysis and fluorescence measurements. The detection limit is determined as 381.78 pM with the linear range from 0.1 ⅹ 10-9 to 13.33 ⅹ 10-9 M in a fast manner (about 30 min). Furthermore, miRNA detection in real human serum is also conducted with desirable recovery rates (89.5 %-97.6 %), which may find potential application for the clinic diagnosis. We describe herein the first example of MoS2 nanosheet-based signal amplified fluorescence sensor for effective detection of AMI-related miRNA.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Infarto do Miocárdio , Humanos , MicroRNAs/análise , Molibdênio , Sistemas CRISPR-Cas/genética , Técnicas Biossensoriais/métodos , Dissulfetos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética
6.
Mol Med Rep ; 27(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37144477

RESUMO

Sudden viral outbreaks have increased in the early part of the 21st century, such as those of severe acute respiratory syndrome coronavirus (SARS­CoV), Middle East respiratory syndrome corona virus, and SARS­CoV­2, owing to increased human access to wildlife habitats. Therefore, the likelihood of zoonotic transmission of human­associated viruses has increased. The emergence of severe acute respiratory syndrome coronavirus 2 in China and its spread worldwide within months have highlighted the need to be ready with advanced diagnostic and antiviral approaches to treat newly emerging diseases with minimal harm to human health. The gold­standard molecular diagnostic approaches currently used are time­consuming, require trained personnel and sophisticated equipment, and therefore cannot be used as point­of­care devices for widespread monitoring and surveillance. Clustered regularly interspaced short palindromic repeats (CRISPR)­associated (Cas) systems are widespread and have been reported in bacteria, archaea and bacteriophages. CRISPR­Cas systems are organized into CRISPR arrays and adjacent Cas proteins. The detection and in­depth biochemical characterization of class 2 type V and VI CRISPR­Cas systems and orthologous proteins such as Cas12 and Cas13 have led to the development of CRISPR­based diagnostic approaches, which have been used to detect viral diseases and distinguish between serotypes and subtypes. CRISPR­based diagnostic approaches detect human single nucleotide polymorphisms in samples from patients with cancer and are used as antiviral agents to detect and destroy viruses that contain RNA as a genome. CRISPR­based diagnostic approaches are likely to improve disease detection methods in the 21st century owing to their ease of development, low cost, reduced turnaround time, multiplexing and ease of deployment. The present review discusses the biochemical properties of Cas12 and Cas13 orthologs in viral disease detection and other applications. The present review expands the scope of CRISPR­based diagnostic approaches to detect diseases and fight viruses as antivirals.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Sistemas CRISPR-Cas/genética , Pandemias , Bactérias/genética , Teste para COVID-19
7.
Anal Chim Acta ; 1192: 339340, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057960

RESUMO

Sensitive and accurate detection of nucleic acid biomarkers is critical for early cancer diagnosis, disease monitoring, and clinical treatment. In this study, we developed a switch fluorescence biosensor for simple and high-efficient detection of nucleic acid biomarkers using 6-carboxyfluorescein (FAM)-modified single-stranded DNA (ssDNA) probes (FAM-P1/P2), and zirconium porphyrin metal-organic framework nanoparticles (ZrMOF) acted as fluorescence quencher. FAM-P1/P2 probes were adsorbed on ZrMOF surface because of π-π stacking, hydrogen bonding, and electrostatic interactions. Fluorescence quenching event occurred by fluorescence resonance energy transfer (FRET) and photo-induced electron transfer (PET) processes, thereby achieving the "off" fluorescence status. Once the specific binding was formed between the fluorescence probes and the targets, the rigid double-stranded DNA (dsDNA) structures were released from ZrMOF surface, resulting in the recovery of fluorescence and the "on" status. Because of the superior adsorption ability of ZrMOF toward ssDNA than dsDNA, the switch of fluorescence signals from "off" to "on" allowed rapid and ultrasensitive detection of ssDNA (T1) and microRNA-21 (miR-21) within 30 min. The limit of detection (signal-to-noise ratio = 3) for T1 and miR-21 were 2 fM and 11 aM, respectively. Moreover, the proposed strategy was very simple as it worked by the facile adsorption-quenching-recovery mechanism without difficult and complicated immobilization processes. Also, this biosensor showed an excellent analytical performance in the detection of miR-21 in human serum samples. Therefore, this biosensor might be considered a potential tool for the detection of DNA and miRNA biomarkers in clinical samples.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , MicroRNAs , Porfirinas , DNA , Humanos , Zircônio
8.
ACS Appl Mater Interfaces ; 8(45): 30863-30870, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27768288

RESUMO

Owing to their ability to act as light-harvesting scaffolds, porphyrin-containing metal-organic frameworks (MOFs) are in the forefront of research on the application of highly ordered molecular materials to problems in solar-energy conversion. In this work, solvent-assisted linker exchange (SALE) is performed on a pillared paddlewheel porphyrin containing MOF thin film to collapse a 3D framework to a 2D framework. The change in dimensionality of the framework is confirmed by a decrease in the film thickness, the magnitude of which is in agreement with crystallographic parameters for related bulk materials. Furthermore, NMR spectroscopy performed on the digested sample suggests a similar change in geometry is achieved in bulk MOF samples. The decreased distance between the porphyrin chromophores in the 2D MOF film compared to the 3D film results in enhanced energy transfer through the film. The extent of energy transport was probed by assembling MOF thin film where the outermost layers are palladium porphyrin (P2) units, which act as energy traps and fluorescence quenchers. Steady-state emission spectroscopy together with time-resolved emission spectroscopy indicates that excitons can travel through about 9-11 layers (porphyrin layers) in 2D films, whereas in 3D films energy transfer occurs through no more than about 6-8 layers. The results are difficult to understand if only changes in MOF interlayer spacing are considered but become much more understandable if dipole-dipole coupling distances are considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA