RESUMO
Flow cytometry allows to characterize nanoparticles (NPs) and extracellular vesicles (EVs) but results are often expressed in arbitrary units of fluorescence. We evaluated the precision and accuracy of molecules of equivalent soluble fluorophores (MESF) beads for calibration of NPs and EVs. Firstly, two FITC-MESF bead sets, 2 and 6 um in size, were measured on three flow cytometers. We showed that arbitrary units could not be compared between instruments but after calibration, comparable FITC MESF units were achieved. However, the two calibration bead sets displayed varying slopes that were consistent across platforms. Further investigation revealed that the intrinsic uncertainty related to the MESF beads impacts the robust assignment of values to NPs and EVs based on extrapolation into the dim fluorescence range. Similar variations were found with PE MESF calibration. Therefore, the same calibration materials and numbers of calibration points should be used for reliable comparison of submicron sized particles.
Assuntos
Vesículas Extracelulares , Nanopartículas , Calibragem , Fluoresceína-5-Isotiocianato , Citometria de Fluxo/métodos , Corantes FluorescentesRESUMO
Photoimmunotherapy is a promising cancer treatment modality. While potent 1-e- oxidative species are known to induce immunogenic cell death (ICD), they are also associated with unspecific oxidation and collateral tissue damage. This difficulty may be addressed by post-generation radical reinforcement. Namely, non-oxidative radicals are first generated and subsequently activated into powerful oxidative radicals to induce ICD. Here, we developed a photo-triggered molecular donor (NPCD565) of nitrosoperoxycarbonate (ONOOCO2 -), the first of its class to our knowledge, and further evaluated its feasibility for immunotherapy. Upon irradiation of NPCD565 by light within a broad spectral region from ultraviolet to red, ONOOCO2 - is released along with a bright rhodamine dye (RD565), whose fluorescence is a reliable and convenient build-in reporter for the localization, kinetics, and dose of ONOOCO2 - generation. Upon photolysis of NPCD565 in 4T1 cells, damage-associated molecular patterns (DAMPs) indicative of ICD were observed and confirmed to exhibit immunogenicity by induced maturation of dendritic cells. In vivo studies with a bilateral tumor-bearing mouse model showcased the potent tumor-killing capability of NPCD565 of the primary tumors and growth suppression of the distant tumors. This work unveils the potent immunogenicity of ONOOCO2 -, and its donor (NPCD565) has broad potential for photo-immunotherapy of cancer.
Assuntos
Carbono , Imunoterapia , Rodaminas , Animais , Camundongos , Rodaminas/química , Carbono/química , Fototerapia , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Corantes Fluorescentes/químicaRESUMO
When investigating the interaction of cells with surfaces, it is becoming increasingly important to perform quantitative measurements of surface protein density to understand reaction kinetics. Previously, to calibrate a surface for an experiment one would have to use a radiometric assay or strip the surface with acid and perform a mass quantification. Although both of these methodologies have been proven to be effective measurement techniques for surface quantification, they can be time consuming and require substantial amounts of material. The latter is particularly problematic when working with specialized molecules or constructs that may be expensive to produce and/or only available in small quantities. Here we present a simple method to measure the intensity and penetration depth of an evanescent wave, and use this information to quantify the density of surface molecules in a microscopic region of a transparent surface.
Assuntos
Proteínas de Bactérias/análise , Calibragem , Vidro/química , Microscopia/métodos , Adsorção , Proteínas de Bactérias/química , Humanos , Cinética , Propriedades de SuperfícieRESUMO
Small, monomeric guanine triphosphate hydrolases (GTPases) are ubiquitous cellular integrators of signaling. A signal activates the GTPase, which then binds to an effector molecule to relay a signal inside the cell. The GTPase effector trap flow cytometry assay (G-Trap) utilizes bead-based protein immobilization and dual-color flow cytometry to rapidly and quantitatively measure GTPase activity status in cell or tissue lysates. Beginning with commercial cytoplex bead sets that are color-coded with graded fluorescence intensities of a red (700 nm) wavelength, the bead sets are derivatized to display glutathione on the surface through a detailed protocol described here. A different glutathione-S-transferase-effector protein (GST-effector protein) can then be attached to the surface of each set. For the assay, users can incubate bead sets individually or in a multiplex format with lysates for rapid, selective capture of active, GTP-bound GTPases from a single sample. After that, flow cytometry is used to identify the bead-borne GTPase based on red bead intensity, and the amount of active GTPase per bead is detected using monoclonal antibodies conjugated to a green fluorophore or via labeled secondary antibodies. Three examples are provided to illustrate the efficacy of the effector-functionalized beads for measuring the activation of at least five GTPases in a single lysate from fewer than 50,000 cells.
Assuntos
Citometria de Fluxo/métodos , GTP Fosfo-Hidrolases/química , Guanosina Trifosfato/química , Animais , Anticorpos Monoclonais/química , Linhagem Celular , Corantes Fluorescentes/química , GTP Fosfo-Hidrolases/metabolismo , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Guanosina Trifosfato/metabolismo , HumanosRESUMO
Multicolor flow cytometer assays are routinely used in clinical laboratories for immunophenotyping, monitoring disease and treatment, and determining prognostic factors. However, existing methods for quantitative measurements have not yet produced satisfactory results independent of flow cytometers used. This chapter details a procedure for quantifying surface and intracellular protein biomarkers by calibrating the output of a multicolor flow cytometer in units of antibodies bound per cell (ABC). The procedure includes the following critical steps: (a) quality control (QC) and performance characterization of the multicolor flow cytometer, (b) fluorescence calibration using hard dyed microspheres assigned with fluorescence intensity values in equivalent number of reference fluorophores (ERF), (c) compensation for correction of fluorescence spillover, and (d) application of a biological reference standard for translating the ERF scale to the ABC scale. The chapter also points out current efforts for implementing quantification of biomarkers in a manner which is independent of instrument platforms and reagent differences.
Assuntos
Citometria de Fluxo/métodos , Anticorpos , Linfócitos T CD4-Positivos/metabolismo , Calibragem , Citometria de Fluxo/normas , Corantes Fluorescentes , Humanos , Imunofenotipagem , Microesferas , Controle de Qualidade , Padrões de ReferênciaRESUMO
Multicolor flow cytometer assays with fluorescently labeled antibodies are routinely used in clinical laboratories to measure the cell number of specific immunophenotypes and to estimate expression levels of specific receptors/antigens either on the cell surface or intracellularly. The cell number and specific receptors/antigens serve as biomarkers for pathological conditions at various stages of a disease. Existing methods and cell reference materials for quantitative expression measurements have not yet produced results that are of wide clinical interest or are instrument-independent across all fluorescence channels. This unit details a procedure for quantifying surface and intracellular biomarkers by calibrating the output of a multicolor flow cytometer in units of antibody bound per cell (ABC). The procedure includes (1) quality control of the flow cytometer, (2) fluorescence intensity calibration using hard dyed microspheres assigned with fluorescence intensity values, (3) compensation for fluorescence spillover between adjacent fluorescence channels, and (4) application of a biological reference calibrator to establish an ABC scale. The unit also points out current efforts for quantifying biomarkers in a manner that is independent of instrument platforms and reagent differences.