Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.659
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Pharm ; 21(4): 1691-1704, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430187

RESUMO

In the clinical application of freeze-dried highly concentrated omalizumab formulations, extensive visible bubbles (VBs) can be generated and remain for a long period of time in the reconstitution process, which greatly reduces the clinical use efficiency. It is necessary to understand the forming and breaking mechanism of VBs in the reconstitution process, which is a key factor for efficient and safe administration of biopharmaceutical injection. The effects of different thermal treatments on the volume of VBs and stability of omalizumab, mAb-1, and mAb-2 were investigated. The internal microvoids of the cake were characterized by scanning electron microscopy and mercury intrusion porosimetry. Electron paramagnetic resonance was applied to obtain the molecular mobility of the protein during annealing. A large number of VBs were generated in the reconstitution process of unannealed omalizumab and remained for a long period of time. When annealing steps were added, the volume of VBs was dramatically reduced. When annealed at an aggressive temperature (i.e., -6 °C), although the volume of VBs decreased, the aggregation and acidic species increased significantly. Thus, our observations highlight the importance of setting an additional annealing step with a suitable temperature, which contributes to reducing the VBs while maintaining the stability of the high concentration freeze-dried protein formulation.


Assuntos
Omalizumab , Proteínas , Temperatura , Liofilização , Estabilidade de Medicamentos
2.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38551918

RESUMO

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Assuntos
Varredura Diferencial de Calorimetria , Excipientes , Liofilização , Poloxâmero , Trealose , Liofilização/métodos , Poloxâmero/química , Excipientes/química , Trealose/química , Varredura Diferencial de Calorimetria/métodos , Sacarose/química , Difração de Raios X , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Cristalização/métodos , Química Farmacêutica/métodos , Proteínas/química , Composição de Medicamentos/métodos , Congelamento
3.
Pharm Res ; 41(10): 2057-2073, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39394484

RESUMO

PURPOSE: Insomnia is a major health concern, and melatonin (MLT) is key for initiating sleep. Delivering MLT nasally can enhance brain bioavailability by targeting the olfactory region. This study aimed to fabricate MLT embedded microparticles for nasal delivery. METHODS: MLT-cyclodextrin (CD) derivatives complex microparticles (MCCMPs) were fabricated by spray drying and spray freeze drying MLT and CD derivative solutions. Phase solubility and 1H-1H ROSEY NMR analysis assessed MLT-CD assembly. The effects of formulation compositions and process parameters on microparticle structural attributes were investigated. The in vitro nasal release and deposition performances were evaluated by a modified paddle-over-disk apparatus and 3D-printed nasal cavity cast, respectively. RESULTS: Sodium sulphobutylether-ß-cyclodextrin (SBE-ß-CD) exhibited the best complexation ability with MLT, with the indole structure of MLT included in its cavity. Spray dried MCCMPs showed dense structure with high density, while the spray freeze dried counterpart showed the brittle and porous structure with low density. Despite the porous structure may promote the release rate of spray freeze dried samples, the high hydrophilicity of the CD derivative overshadows this advantage. Samples prepared by spray drying not only exhibited rapid release rates but also could deposit more effectively in the olfactory region, as they avoid breakage due to their higher mechanical strength. The optimal sample showed ~ 86.70% of the MLT released at 20 min and ~ 10.57% of the deposition fraction in the olfactory region. CONCLUSIONS: This work compares MCCMPs fabricated by spray drying and spray freeze drying, providing the optimal formulation and process combinations.


Assuntos
Administração Intranasal , Liofilização , Melatonina , Tamanho da Partícula , Secagem por Atomização , beta-Ciclodextrinas , Melatonina/administração & dosagem , Melatonina/química , Melatonina/farmacocinética , Liofilização/métodos , beta-Ciclodextrinas/química , Solubilidade , Composição de Medicamentos/métodos , Microesferas , Liberação Controlada de Fármacos , Porosidade , Sistemas de Liberação de Medicamentos/métodos
4.
Pharm Res ; 41(8): 1671-1682, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39078576

RESUMO

OBJECTIVE: This paper investigates the critical role of material thickness in freeze-dried pellets for enhancing the storage stability of encapsulated bacteria. Freeze dried material of varying thicknesses obtained from different annealing durations is quantified using Scanning Electron Microscopy (SEM) and X-ray microtomography (µCT), the material thickness is then correlated to the storage stability of the encapsulated cells. METHODS: A formulation comprising of sucrose, maltodextrin, and probiotic cells is quenched in liquid nitrogen to form pellets. The pellets undergo different durations of annealing before undergoing freeze-drying. The material thickness is quantified using SEM and µCT. Storage stability in both oxygen-rich and oxygen-poor environments is evaluated by measuring CFU counts and correlated with the pellet structure. RESULTS: The varying annealing protocols produce a range of material thicknesses, with more extensive annealing resulting in thicker materials. Storage stability exhibits a positive correlation with material thickness, indicating improved stability with thicker materials. Non-annealed pellets exhibit structural irregularities and inconsistent storage stability, highlighting the impracticality of avoiding annealing in the freeze-drying process. CONCLUSIONS: Extensive annealing not only enhances the storage stability of probiotic products but also provides greater control over the freeze-drying process, ensuring homogeneous and reproducible products. This study underscores the importance of material thickness in freeze-dried pellets for optimizing storage stability for probiotic formulations, and emphasize the necessity of annealing as a critical step in freeze-drying quenched pellets to achieve desired structural and stability outcomes.


Assuntos
Liofilização , Probióticos , Liofilização/métodos , Probióticos/química , Sacarose/química , Microscopia Eletrônica de Varredura/métodos , Polissacarídeos/química , Microtomografia por Raio-X , Estabilidade de Medicamentos , Armazenamento de Medicamentos
5.
Naturwissenschaften ; 111(6): 58, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412668

RESUMO

Investigating the conspicuousness of animal color patterns to different observers is crucial for understanding their function. This study examines the peculiar case of a jumping spider (Saitis barbipes) whose males display red and black ornaments during courtship despite an apparent inability to distinguish these colors. We propose that, through predator eyes, red may actually be a better match than black to the spiders' leaf litter background, and that the black fringe of hairs surrounding red ornaments may blur with red at natural predator acuities and viewing distances to produce a background-matching desaturated red. In a field experiment, we test whether red ornaments reduce predation relative to red ornaments painted black, and find that, unexpectedly, spiders with red ornaments are more heavily predated upon. Having established birds as the spiders' primary predators, we image the spiders in their natural habitat using an avian-vision camera. We find their red coloration to have similar color contrast, but lower achromatic contrast, with the background than black coloration. We also find that red and black elements blur together at typical avian acuities and viewing distances to produce lower chromatic and achromatic contrasts with the background than would be seen by animals with higher acuities and/or closer viewing distances. Interestingly, red ornaments appear orange or yellow when viewed obliquely, which reduces their achromatic, but not chromatic, contrast with the background. Our imaging results provide support for our hypothesis that red is camouflaging, whereas the results of our predation experiment do not. Any functional significance of the spiders' red coloration therefore remains unresolved.


Assuntos
Cor , Comportamento Predatório , Aranhas , Animais , Aranhas/fisiologia , Masculino , Comportamento Predatório/fisiologia , Mimetismo Biológico/fisiologia , Pigmentação/fisiologia , Aves/fisiologia , Feminino
6.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38100838

RESUMO

The assembly of MXene materials into microcapsules has drawn great attentions due to their unique properties. However, rational design and synthesis of MXene-based microcapsules with specific nanostructures at the molecular scale remains challenging. Herein, we report a strategy to synthesize N/P co-doped MXene hollow flower-like microcapsules with adjustable permeability via dual surfactants assisted hydrothermal-freeze drying method. In contrast to anionic surfactants, cationic surfactants exhibited effective electrostatic interactions with MXene nanosheets during the hydrothermal process. Manipulation of dual surfactants in hydrothermal process realized N and P co-doping of MXene to improve flexibility and promoted the generation of abundant internal cavities in flower-like microcapsules. Based on the unique microstructure, the prepared hollow flower-like microcapsules showed excellent performance, stability and reusability in size-selective release of small organic molecules. Moreover, the release rate can be controlled by turning the oxidation state and type of MXene. The strategy delineates promising prospects for the design of MXene-based microcapsules with specific structures.

7.
Microbiol Immunol ; 68(4): 130-147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294180

RESUMO

Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.


Assuntos
Vacina BCG , Mycobacterium bovis , Animais , Camundongos , Vacina BCG/genética , Tóquio , Mycobacterium bovis/genética , Ativação Linfocitária , Engenharia Genética , Vacinas Sintéticas
8.
Appl Microbiol Biotechnol ; 108(1): 12, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38157004

RESUMO

Functional microbiome development has steadily increased; with this, the viability of microbial strains must be maintained not only after the manufacturing process but also at the time of consumption. Survival is threatened by various unavoidable factors during freeze-drying and shelf storage. Here, the aim was to optimize the manufacturing process of the functional strain Lactiplantibacillus plantarum IDCC 3501 after freeze-drying and storage. Explosive growth was achieved using a medium composition with two nitrogen sources and a mineral, and growth was drastically improved by neutralizing the medium pH during the culture of L. plantarum IDCC 3501. Culture optimization involved a smaller cell size, leading to less intracellular free water. Moreover, when maltodextrin (MD) powder was directly added to the harvested cells, some intracellular free water was extracted from the bacterial cells, resulting in a dramatic increase in the viability of L. plantarum IDCC 3501 after freeze-drying and subsequent storage. Furthermore, MD enhanced survival in a dose-dependent manner. Bacterial survival was correlated with lysozyme tolerance; therefore, the positive result might have been caused by the osmotic dehydration of intracellular free water, which would potentially damage the bacterial cells via ice crystallization and/or a phase transition during freeze-drying. These critical factors of L. plantarum IDCC 3501 processing provide perspectives on survival issues for manufacturing microbiome strains. KEY POINTS: • Culture conditions for probiotic bacteria were optimized for high growth yield. • Osmotic dehydration improved bacterial survival after manufacturing and shelf storage. • Reduction in intracellular free water content is crucial for intact survival.


Assuntos
Desidratação , Lactobacillus plantarum , Humanos , Liofilização/métodos , Água
9.
Antonie Van Leeuwenhoek ; 117(1): 61, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520511

RESUMO

Yersinia pestis, the causative agent of plague, is a highly virulent bacterium that poses a significant threat to human health. Preserving this bacterium in a viable state is crucial for research and diagnostic purposes. This paper presents and evaluates a simple lyophilization protocol for the long-term storage of Y. pestis strains from Fiocruz-CYP, aiming to explore its impact on viability and long-term stability, while replacing the currently used methodologies. The lyophilization tests were conducted using the non-virulent Y. pestis strain EV76, subjected to the lyophilization process under vacuum conditions. Viability assessment was performed to evaluate the effects of lyophilization and storage conditions on Y. pestis under multiple temperature conditions (- 80 °C, - 20 °C, 4-8 °C and room temperature). The lyophilization protocol employed in this study consistently demonstrated its efficacy in maintaining high viability rates for Y. pestis samples in a up to one year follow-up. The storage temperature that consistently exhibited the highest recovery rates was - 80 °C, followed by - 20 °C and 4-8 °C. Microscopic analysis of the post-lyophilized cultures revealed preserved morphological features, consistent with viable bacteria. The high viability rates observed in the preserved samples indicate the successful preservation of Y. pestis using this protocol. Overall, the presented lyophilization protocol provides a valuable tool for the long-term storage of Y. pestis, offering stability, viability, and functionality. By refining the currently used methods of lyophilization, this protocol can improve long-term preservation for Y. pestis strains collections, facilitating research efforts, diagnostic procedures, and the development of preventive and therapeutic strategies against plague.


Assuntos
Peste , Yersinia pestis , Humanos , Peste/microbiologia , Brasil , Liofilização , Temperatura
10.
Cryobiology ; 116: 104938, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960349

RESUMO

It is thought that surface melting and puffing of freeze-dried amorphous materials are related to the difference between the surface temperature (Tsur) and freeze-concentrated glass transition temperature (Tg') of the materials. Although Tg' is a material-specific parameter, Tsur is affected by the type and amount of solute and freeze-drying conditions. Therefore, it will be practically useful for preventing surface melting and puffing if Tsur can be calculated using only the minimum necessary parameters. This study aimed to establish a predictive model for the surface melting and puffing of freeze-dried amorphous materials according to the calculated Tsur. First, a Tsur-predictive model was proposed under the thermodynamic equilibrium assumptions. Second, solutions with various solute mass fractions of sucrose, maltodextrin, and sucrose-maltodextrin mixture were prepared, and three material-specific parameters (Tg', unfrozen water content, and true density) were experimentally determined. According to the proposed model with the parameters, the Tsur of the samples was calculated at chamber pressures of 13, 38, and 103 Pa. The samples were freeze-dried at the chamber pressures, and their appearance was observed. As expected, surface melting and puffing occurred at calculated Tsur > Tg' with some exceptions. The water activity (aw) of the freeze-dried samples increased as the Tsur - Tg' increased. This will have resulted from surface melting and puffing, which created a covering film, thereby preventing subsequent dehydration. The observations suggest that the proposed model is also useful for predetermining the drying efficiency and storage stability of freeze-dried amorphous materials.


Assuntos
Liofilização , Polissacarídeos , Sacarose , Temperatura de Transição , Sacarose/química , Polissacarídeos/química , Água/química , Termodinâmica , Vitrificação , Congelamento , Propriedades de Superfície
11.
Mar Drugs ; 22(8)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39195480

RESUMO

The objective of this study was to investigate the nutrient composition of low-grade New Zealand commercial fish (Gemfish and Hoki) roe and to investigate the effects of delipidation and freeze-drying processes on roe hydrolysis and antioxidant activities of their protein hydrolysates. Enzymatic hydrolysis of the Hoki and Gemfish roe homogenates was carried out using three commercial proteases: Alcalase, bacterial protease HT, and fungal protease FP-II. The protein and lipid contents of Gemfish and Hoki roes were 23.8% and 7.6%; and 17.9% and 10.1%, respectively. The lipid fraction consisted mainly of monounsaturated fatty acid (MUFA) in both Gemfish roe (41.5%) and Hoki roe (40.2%), and docosahexaenoic (DHA) was the dominant polyunsaturated fatty acid (PUFA) in Gemfish roe (21.4%) and Hoki roe (18.6%). Phosphatidylcholine was the main phospholipid in Gemfish roe (34.6%) and Hoki roe (28.7%). Alcalase achieved the most extensive hydrolysis, and its hydrolysate displayed the highest 2,2-dipheny1-1-picrylhydrazyl (DPPH)˙ and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities and ferric reducing antioxidant power (FRAP). The combination of defatting and freeze-drying treatments reduced DPPH˙ scavenging activity (by 38%), ABTS˙ scavenging activity (by 40%) and ferric (Fe3+) reducing power by18% (p < 0.05). These findings indicate that pre-processing treatments of delipidation and freeze-drying could negatively impact the effectiveness of enzymatic hydrolysis in extracting valuable compounds from low grade roe.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Nova Zelândia , Liofilização , Hidrólise , Peixes/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Produtos Pesqueiros/análise , Subtilisinas
12.
Drug Dev Ind Pharm ; : 1-17, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39320267

RESUMO

BACKGROUND: Quetiapine fumarate (QTP) is commonly prescribed for schizophrenic patient, typically available in tablet or oral suspension form, presenting challenges such as administration difficulties, fear of choking and distaste for its bitter taste. Fast melt films (FMF) offer an alternative dosage form with a simple development process, ease of administration and rapid drug absorption and action onset. OBJECTIVE: This study aims to prepare FMF with different formulations using solvent casting methods and to compare the effects of different drying methods, including oven drying and freeze drying, on the properties of the films. METHODS: Various formulations were created by manipulating polymer types (starch, hydroxypropyl methylcellulose (HPMC) and guar gum) at different concentrations, along with fixed concentrations of QTP and other excipients. Characterization tests including surface morphology, weight, thickness, pH, tensile strength, elongation length, Young's modulus, folding endurance and disintegration time were conducted. The optimal FMF formulation was identified and further evaluated for moisture and drug content, dissolution behavior, accelerated stability, X-ray diffraction (XRD), and palatability. RESULTS: FMF containing 10 mg guar gum/film developed using oven drying emerged as the optimum choice, exhibiting desirable film appearance, ultra-thin thickness (0.453 ± 0.002 mm), appropriate pH for oral intake (pH 5.0), optimal moisture content of 11.810%, rapid disintegration (52.67 ± 1.53 s), high flexibility (folding endurance > 300 times) and lower Young's modulus (1.308 ± 0.214). CONCLUSION: Oven drying method has been proven to be favorable for developing FMF containing QTP, meeting all testing criteria and providing an alternative option for QTP prescription.

13.
Cell Tissue Bank ; 25(1): 305-323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37840108

RESUMO

Amniotic membrane (AM), the innermost layer of the placenta, is an exceptionally effective biomaterial with divers applications in clinical medicine. It possesses various biological functions, including scar reduction, anti-inflammatory properties, support for epithelialization, as well as anti-microbial, anti-fibrotic and angio-modulatory effects. Furthermore, its abundant availability, cost-effectiveness, and ethical acceptability make it a compelling biomaterial in the field of medicine. Given the potential unavailability of fresh tissue when needed, the preservation of AM is crucial to ensure a readily accessible and continuous supply for clinical use. However, preserving the properties of AM presents a significant challenge. Therefore, the establishment of standardized protocols for the collection and preservation of AM is vital to ensure optimal tissue quality and enhance patient safety. Various preservation methods, such as cryopreservation, lyophilization, and air-drying, have been employed over the years. However, identifying a preservation method that effectively safeguards AM properties remains an ongoing endeavor. This article aims to review and discuss different sterilization and preservation procedures for AM, as well as their impacts on its histological, physical, and biochemical characteristics.


Assuntos
Âmnio , Criopreservação , Gravidez , Feminino , Humanos , Âmnio/química , Criopreservação/métodos , Liofilização/métodos , Placenta , Materiais Biocompatíveis/farmacologia
14.
Cell Tissue Bank ; 25(3): 773-784, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38780817

RESUMO

Decellularization is regarded as a xenogenic antigen-reduction technique because it effectively eliminates all cellular and nuclear components while mitigating any negative impact on the composition, biological functionality, and structural integrity of the remaining extracellular matrix. This study aimed to histologically evaluate native, freeze dried and chemically decellularized bovine pericardium membrane. Also, this study focused on preservation of extracellular matrix after decellularization. Bovine pericardium membrane was decellularized by freeze thaw cycle followed by freeze drying and 1% sodium dodecyl sulphate. Unprocessed pericardium was used as control. The effectiveness of Decellularization was assessed based on the reduction of histologically visible nuclei. Decellularization by freeze thaw cycle followed by freeze drying resulted in 17.84% reduction in nuclei content and decellularization by sodium dodecyl sulphate results in 92% reduction in nuclei content compare to control group. Picrosirius red staining for freeze dried group displayed loosely organised, thin collagen bundles that exhibit reddish-yellow birefringence and sodium dodecyl sulfate group revealed dense collagen bundles that are parallelly organised and compact, exhibiting reddish-yellow birefringence and showed good structural integrity. These results suggested that the sodium do decyl sulfate showed optimal decellularization results with better extracellular matrix preservation. It may be a suitable protocol for producing a suitable scaffold for periodontal tissue regeneration.


Assuntos
Liofilização , Pericárdio , Dodecilsulfato de Sódio , Animais , Pericárdio/citologia , Pericárdio/química , Bovinos , Dodecilsulfato de Sódio/química , Matriz Extracelular Descelularizada/química , Matriz Extracelular/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos
15.
Int J Mol Sci ; 25(19)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39408932

RESUMO

The success of mRNA vaccines against SARS-CoV-2 has prompted interest in mRNA-based pharmaceuticals due to their rapid production, adaptability, and safety. Despite these advantages, the inherent instability of mRNA and its rapid degradation in vivo underscores the need for an encapsulation system for the administration and delivery of RNA-based therapeutics. Lipid nanoparticles (LNPs) have proven the most robust and safest option for in vivo applications. However, the mid- to long-term storage of mRNA-LNPs still requires sub-zero temperatures along the entire chain of supply, highlighting the need to develop alternatives to improve mRNA vaccine stability under non-freezing conditions to facilitate logistics and distribution. Lyophilization presents itself as an effective alternative to prolong the shelf life of mRNA vaccines under refrigeration conditions, although a complex optimization of the process parameters is needed to maintain the integrity of the mRNA-LNPs. Recent studies have demonstrated the feasibility of freeze-drying LNPs, showing that lyophilized mRNA-LNPs retain activity and stability. However, long-term functional data remain limited. Herein, we focus on obtaining an optimized lyophilizable mRNA-LNP formulation through the careful selection of an optimal buffer and cryoprotectant and by tuning freeze-drying parameters. The results demonstrate that our optimized lyophilization process maintains LNP characteristics and functionality for over a year at refrigerated temperatures, offering a viable solution to the logistical hurdles of mRNA vaccine distribution.


Assuntos
COVID-19 , Liofilização , Nanopartículas , RNA Mensageiro , SARS-CoV-2 , Liofilização/métodos , Nanopartículas/química , RNA Mensageiro/genética , SARS-CoV-2/genética , Animais , COVID-19/prevenção & controle , Lipídeos/química , Estabilidade de RNA , Vacinas contra COVID-19 , Vacinas de mRNA , Camundongos , Humanos , Lipossomos/química , Crioprotetores/química
16.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791401

RESUMO

Porous ß-tricalcium phosphate (Ca3(PO4)2; ß-TCP) was prepared via freeze-drying and the effects of this process on pore shapes and sizes were investigated. Various samples were prepared by freezing ß-TCP slurries above a liquid nitrogen surface at -180 °C with subsequent immersion in liquid nitrogen at -196 °C. These materials were then dried under reduced pressure in a freeze-dryer, after which they were sintered with heating. Compared with conventional heat-based drying, the resulting pores were more spherical, which increased both the mechanical strength and porosity of the ß-TCP. These materials had a wide range of pore sizes from 50 to 200 µm, with the mean and median values both approximately 100 µm regardless of the freeze-drying conditions. Mercury porosimetry data showed that the samples contained small, interconnected pores with sizes of 1.24 ± 0.25 µm and macroscopic, interconnected pores of 25.8 ± 4.7 µm in size. The effects of nonionic surfactants having different hydrophilic/lipophilic balance (HLB) values on foaming and pore size were also investigated. Materials made with surfactants having lower HLB values exhibited smaller pores and lower porosity, whereas higher HLB surfactants gave higher porosity and slightly larger macropores. Even so, the pore diameter could not be readily controlled solely by adjusting the HLB value. The findings of this work indicated that high porosity (>75%) and good compressive strength (>2 MPa) can both be obtained in the same porous material and that foaming agents with HLB values between 12.0 and 13.5 were optimal.


Assuntos
Fosfatos de Cálcio , Cerâmica , Liofilização , Liofilização/métodos , Fosfatos de Cálcio/química , Porosidade , Cerâmica/química , Tensoativos/química , Teste de Materiais , Difração de Raios X
17.
Molecules ; 29(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39203045

RESUMO

Porous carbon materials from food waste have gained growing interest worldwide for multiple applications due to their natural abundance and the sustainability of the raw materials and the cost-effective synthetic processing. Herein, orange waste-derived porous carbon (OWPC) was developed through a freeze-drying method to prevent the demolition of the original biomass structure and then was pyrolyzed to create a large number of micro, meso and macro pores. The novelty of this work lies in the fact of using the macro-channels of the orange waste in order to create a macroporous network via the freeze-drying method which remains after the pyrolysis steps and creates space for the development of different types of porous in the micro and meso scale in a controlled way. The results showed the successful preparation of a porous carbon material with a high specific surface area of 644 m2 g-1 without any physical or chemical activation. The material's cytocompatibility was also investigated against a fibroblast cell line (NIH/3T3 cells). OWPC triggered a mild intracellular reactive oxygen species production without initiating apoptosis or severely affecting cell proliferation and survival. The combination of their physicochemical characteristics and high cytocompatibility renders them promising materials for further use in biomedical and pharmaceutical applications.


Assuntos
Carbono , Citrus sinensis , Liofilização , Carbono/química , Porosidade , Camundongos , Animais , Células NIH 3T3 , Citrus sinensis/química , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Resíduos
18.
Prep Biochem Biotechnol ; : 1-11, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028537

RESUMO

Recombinant human acidic fibroblast growth factor (rh-aFGF) is a widely used biological product, but it is unstable and its biological activity is easy to decrease. In order to maintain the long-term stability and biological activity of rh-aFGF, based on the response surface method, the freeze-drying characterization and cell proliferation rate of rh-aFGF freeze-dried powder were evaluated by scoring and Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay in this study. The optimal concentrations of trehalose, glycine and BSA were optimized, and the optimal formulation was verified by regression experiment. The results showed that trehalose, glycine and BSA had significant effects on the characterization of lyophilized rh-aFGF and cell proliferation. The optimal formulation of 5.7% trehalose, 2.04% glycine and 1.98%BSA combined with rh-aFGF could achieve the optimal freeze-dried characterization and biological activity. Using the best formulation to verify, the freeze-dried formability index of the freeze-dried powder was 23.35, and the rate of cell proliferation was 43.59%, which was close to the expected 23 and 41.69%. This study determined a freeze-dried formulation of rh-aFGF that meets the requirements of freeze-dried formalization integrity and maintains biological activity, providing reliable support for the subsequent development of related drugs.

19.
Molecules ; 29(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39202956

RESUMO

The scalable fabrication of cost-efficient bifunctional catalysts with enhanced hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance plays a significant role in overall water splitting in hydrogen production fields. MoSe2 is considered to be one of the most promising candidates because of its low cost and high catalytic activity. Herein, hierarchical nitrogen-doped carbon networks were constructed to enhance the catalytic activity of the MoSe2-based materials by scalable free-drying combined with an in situ selenization strategy. The rationally designed carbonaceous network-encapsulated MoSe2 composite (MoSe2/NC) endows a continuous honeycomb-like structure. When utilized as a bifunctional electrocatalyst for both HER and OER, the MoSe2/NC electrode exhibits excellent electrochemical performance. Significantly, the MoSe2/NC‖MoSe2/NC cells require a mere 1.5 V to reach a current density of 10 mA cm-2 for overall water splitting in 1 M KOH. Ex situ characterizations and electrochemical kinetic analysis reveal that the superior catalytic performance of the MoSe2/NC composite is mainly attributed to fast electron and ion transportation and good structural stability, which is derived from the abundant active sites and excellent structural flexibility of the honeycomb-like carbon network. This work offers a promising pathway to the scalable fabrication of advanced non-noble bifunctional electrodes for highly efficient hydrogen evolution.

20.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257290

RESUMO

Lemon balm (Melissa officinalis) is an aromatic and medicinal plant, rich in bioactive ingredients and with superior antioxidant activity. The essential oil of this plant is an expensive product, so the use of the by-products of the essential oil industry is particularly useful. The aim of this research was to process Melissa officinalis distillation by-products to develop a series of polyphenol-rich formulations. In the present research, lemon balm was distilled in a laboratory-scale distiller, and the recovered by-product was used for further successive extractions with acetone and water, using a fixed-bed semi-batch extractor. Acetone extract exhibited relatively poor results as far as yield, phenolic composition and antiradical activity are concerned. However, the aqueous extract presented high yield in both total phenolic content (i.e., 111 mg gallic acid equivalents (GAE)/g, on a dry herb basis (dw)), and anti-radical capacity (205 mg trolox equivalents (TE)/g dw). On a dried extract basis, the results were also impressive, with total phenols reaching 322 mg GAE/g dry extract and antiradical capacity at 593 mg TE/g dry extract. The phenolic components of the extract were identified and quantified by HPLC-DAD. Rosmarinic acid was the major component and amounted to 73.5 mg/g dry extract, while the total identified compounds were quantified at 165.9 mg/g dry extract. Finally, formulations with two different wall materials (gum arabic-maltodextrin and maltodextrin) and two different drying methods (spray-drying and freeze-drying) were applied and evaluated to assess their performance, yield, efficiency and shelf-life of total phenolic content and rosmarinic acid concentration. From the present investigation, it is concluded that after one year of storage, rosmarinic acid does not decrease significantly, while total phenolic content shows a similar decrease for all powders. According to the yield and efficiency of microencapsulation, maltodextrin alone was chosen as the wall material and freeze-drying as the preferred drying method.


Assuntos
Melissa , Óleos Voláteis , Polifenóis , Acetona , Destilação , Fenóis , Ácido Gálico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA