RESUMO
The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. VIDEO ABSTRACT.
Assuntos
Biodiversidade , Plâncton/fisiologia , Água do Mar/microbiologia , Geografia , Modelos Teóricos , Oceanos e Mares , FilogeniaRESUMO
Two-dimensional transition metal carbides/nitrides (MXenes) have shown great promise in various applications. However, mass production of MXenes suffers from the excessive use of toxic fluorine-containing reagents. Herein, a new method was validated for synthesizing MXenes from five MAX ceramics. The method features a minimized (stoichiometric) dosage of F-containing reagent (NaBF4) and polyols (glycerol, erythritol, and xylitol) as the reaction solvent. Due to the sweetness of polyols and the low environmental impact, we refer to this method as a "sweet" synthesis of MXenes. An in-depth molecular dynamics simulation study, combined with experimental kinetic parameters, further revealed that the diffusion of F- in the confined interplanar space is rate-determining for the etching reaction. The expansion of interlayer spacing by polyols effectively reduces the diffusion activation energy of F- and accelerates the etching reaction.
RESUMO
This work addresses the challenges in developing carbon fiber paper-based supercapacitors (SCs) with high energy density by focusing on the limited capacity of carbon fiber. To overcome this limitation, a sponge-like porous carbon fiber paper enriched with oxygen functional groups (OFGs) is prepared, and Cu(OH)2 nanorods are grown on its surface to construct the SC anode. This design results in a multi-layered carbon fiber paper-based electrode with a specific structure and enhanced capacitance. The Cu(OH)2 @PCFP anode exhibits an areal capacitance of 547.83 mF cm-2 at a current density of 1 mA cm-2 and demonstrates excellent capacitance retention of 99.8% after 10 000 cycles. Theoretical calculations further confirm that the Cu(OH)2 /OFGs-graphite heterostructure exhibits higher conductivity, facilitating faster charge transfer. A solid-state SC is successfully assembled using Ketjen Black@PCFP as the cathode and KOH/PVA as the gel electrolyte. The resulting device exhibits an energy density of 0.21 Wh cm-2 at 1.50 mW cm-2 , surpassing the performance of reported Cu(OH)2 SCs. This approach, combining materials design with an understanding of underlying mechanisms, not only expands the range of electrode materials but also provides valuable insights for the development of high-capacity energy storage devices.
RESUMO
The overall maximization of photocatalytic H2O2 production efficiency urgently requires the comprehensive optimization of each step in multiplex photocatalysis. Despite numerous endeavors, isolated researches focusing on single efficiencies hinder further advancements in overall catalytic activity. In this work, a series of imine-linked COFs (TT-COF-X), incorporating electronically tunable functional groups (X = âH, âOMe, âOH, âBr), are rationally fabricated for visible-light-driven H2O2 production via a dual-channel pathway involving 2e- water oxidation and 2e- oxygen reduction. Combined simulations and characterizations reveal that the synergistic modification of functional groups for electronic conjugation and locally intramolecular polarity collectively enhanced light absorption, charge separation and transfer, and interface water-oxygen affinity efficiency. Notably, femtosecond time-resolved transient absorption (fs-TA) reveals that the polarity-induced built-in electric field play a crucial role in facilitating exciton dissociation by reacting BIEF-mediated shallow trapping state. The simultaneously optimal tri-efficiency ultimately results in the highest H2O2 production rate of 3406.25 µmol h-1 g-1 and apparent quantum yields of 8.1% of TT-COF-OH. This study offers an emerging strategy to rational design of photocatalysts from the comprehensive tri-efficiency-oriented perspective.
RESUMO
Management of functional groups in hole transporting materials (HTMs) is a feasible strategy to improve perovskite solar cells (PSCs) efficiency. Therefore, starting from the carbazole-diphenylamine-based JY7 molecule, JY8 and JY9 molecules are incorporated into the different electron-withdrawing groups of fluorine and cyano groups on the side chains. The theoretical results reveal that the introduction of electron-withdrawing groups of JY8 and JY9 can improve these highest occupied molecular orbital (HOMO) energy levels, intermolecular stacking arrangements, and stronger interface adsorption on the perovskite. Especially, the results of molecular dynamics (MD) indicate that the fluorinated JY8 molecule can yield a preferred surface orientation, which exhibits stronger interface adsorption on the perovskite. To validate the computational model, the JY7-JY9 are synthesized and assembled into PSC devices. Experimental results confirm that the HTMs of JY8 exhibit outstanding performance, such as high hole mobility, low defect density, and efficient hole extraction. Consequently, the PSC devices based on JY8 achieve a higher PCE than those of JY7 and JY9. This work highlights the management of the electron-withdrawing groups in HTMs to realize the goal of designing HTMs for the improvement of PSC efficiency.
RESUMO
Hematite (α-Fe2O3) has become a research hotspot in the field of photoelectrochemical water splitting (PEC-WS), but the low photogenerated carrier separation efficiency limits further application. The electronic structure regulation, such as element doping and organic functional groups with different electrical properties, is applied to alleviate the problems of poor electrical conductivity, interface defects, and band mismatch. Herein, α-Fe2O3 photoanodes are modified to regulate their electric structures and improve photogenerated carrier transport by the bimetallic metal-organic frameworks (MOFs), which are constructed with Fe/Ni and terephthalate (BDC) with 2-substitution of different organic functional groups (âH, âBr, âNO2 and âNH2). The α-Fe2O3 photoanode loaded with FeNi-NH2BDC MOF catalyst exhibits the optimal photocurrent density (2 mA cm-2) at 1.23 VRHE, which is 2.33 times that of the pure α-Fe2O3 photoanode. The detailed PEC analyses demonstrate that the bimetallic synergistic effect between Fe and Ni can improve the conductivity and inhibit the photogenerated carrier recombination of α-Fe2O3 photoanodes. The âNH2 group as an electron-donor group can effectively regulate the electron distribution and band structure of α-Fe2O3 photoanodes to prolong the lifetime of photogenerated holes, which facilitates photogenerated carrier transport and further enhances the PEC-WS performance of α-Fe2O3 photoanode.
RESUMO
Control over particle size and shape heterogeneity is highly relevant to the design of photonic coatings and supracolloidal assemblies. Most developments in the area have relied on mineral and petroleum-derived polymers that achieve well-defined chemical and dimensional characteristics. Unfortunately, it is challenging to attain such control when considering renewable nanoparticles. Herein, a pathway toward selectable biobased particle size and physicochemical profiles is proposed. Specifically, lignin is fractionated, a widely available heterogeneous polymer that can be dissolved in aqueous solution, to obtain a variety of monodispersed particle fractions. A two-stage cascade and density gradient centrifugation that relieves the need for solvent pre-extraction or other pretreatments but achieves particle bins of uniform size (~60 to 860 nm and polydispersity, PDI<0.06, dynamic light scattering) along with characteristic surface chemical features is introduced. It is found that the properties and associated colloidal behavior of the particles are suitably classified in distinctive size populations, namely, i) nanoscale (50-100 nm), ii) photonic (100-300 nm) and iii) near-micron (300-1000 nm). The strong correlation that exists between size and physicochemical characteristics (molar mass, surface charge, bonding and functional groups, among others) is introduced as a powerful pathway to identify nanotechnological uses that benefit from the functionality and cost-effectiveness of biogenic particles.
RESUMO
Li-ion batteries with superior interior thermal management are crucial to prevent thermal runaway and ensure safe, long-lasting operation at high temperatures or during rapid discharging and charging. Typically, such thermal management is achieved by focusing on the separator and electrolyte. Here, the study introduces a Se-terminated MXene free-standing electrode with exceptional electrical conductivity and low infrared emissivity, synergistically combining high-rate capacity with reduced heat radiation for safe, large, and fast Li+ storage. This is achieved through a one-step organic Lewis acid-assisted gas-phase reaction and vacuum filtration. The Se-terminated Nb2Se2C outperformed conventional disordered O/OH/F-terminated materials, enhancing Li+-storage capacity by ≈1.5 times in the fifth cycle (221 mAh·g-1 at 1 A·g-1) and improving mid-infrared adsorption with low thermal radiation. These benefits result from its superior electrical conductivity, excellent structural stability, and high permittivity in the infrared region. Calculations further reveal that increased permittivity and conductivity along the z-direction can reduce heat radiation from electrodes. This work highlights the potential of surface groups-terminated layered material-based free-standing flexible electrodes with self-thermal management ability for safe, fast energy storage.
RESUMO
Multispecies planting is an important approach to deliver ecosystem functions in afforestation projects. However, the importance of species richness vs specific species composition in this context remains unresolved. To estimate species or functional group richness and compositional change between two communities, we calculated nestedness, where one community contains a subset of the species of another, and turnover, where two communities differ in species composition but not in species richness. We evaluated the effects of species/functional group nestedness and turnover on stand productivity using 315 mixed plots from a pool of 40 tree species in a large forest biodiversity experiment in subtropical China. We found that the greater the differences in species or functional group nestedness and turnover, the greater the differences in stand productivity between plots. Additionally, the strong effects of both nestedness and turnover on stand productivity developed over the 11-yr observation period. Our results indicate that selection of specific tree species is as important as planting a large number of species to support the productivity function of forests. Furthermore, the selection of specific tree species should be based on functionality, because beneficial effects of functional group composition were stronger than those of species composition.
RESUMO
Climate change due to anthropogenic CO2 emissions affects plant performance globally. To improve crop resilience, we need to understand the effects of elevated CO2 concentration (e[CO2]) on CO2 assimilation and Rubisco biochemistry. However, the interactive effects of e[CO2] and abiotic stress are especially unclear. This study analyses the CO2 effect on photosynthetic capacity under different water availability and temperature conditions in 42 different crop species, varying in functional group, photosynthetic pathway and phenological stage. We analysed close to 3000 data points extracted from 120 published manuscripts. For C3 species, e[CO2] increases net photosynthesis and intercellular [CO2], while reducing stomatal conductance and transpiration. Vmaxc, Rubisco in vitro extractable maximal activity and content also decrease with e[CO2] in C3 species, while C4 crops are less responsive to e[CO2]. The interaction with drought and/or heat stress does not significantly alter these photosynthetic responses, indicating that the photosynthetic capacity of stressed plants responds to e[CO2]. Moreover, e[CO2] has strong effect on the photosynthetic capacity of grasses mainly in the final stages of development. This study provides insight into the intricate interactions within the plant photosynthetic apparatus under the influence of climate change, enhancing the understanding of mechanisms governing plant responses to environmental parameters.
RESUMO
Humans have substantially transformed the global land surface, resulting in the decline in variation in biotic communities across scales, a phenomenon known as "biological homogenization." However, different biota are affected by biological homogenization to varying degrees, but this variation and the underlying mechanisms remain little studied, particularly in soil systems. To address this topic, we used metabarcoding to investigate the biogeography of soil protists and their prey/hosts (prokaryotes, fungi, and meso- and macrofauna) in three human land-use ecosystem types (farmlands, residential areas, and parks) and natural forest ecosystems across subtropical and temperate regions in China. Our results showed that the degree of community homogenization largely differed between taxa and functional groups of soil protists, and was strongly and positively linked to their colonization ability of human land-use systems. Removal analysis showed that the introduction of widespread, generalist taxa (OTUs, operational taxonomic units) rather than the loss of narrow-ranged, specialist OTUs was the major cause of biological homogenization. This increase in generalist OTUs seemingly alleviated the negative impact of land use on specialist taxa, but carried the risk of losing functional diversity. Finally, homogenization of prey/host biota and environmental conditions were also important drivers of biological homogenization in human land-use systems, with their importance being more pronounced in phagotrophic than parasitic and phototrophic protists. Overall, our study showed that the variation in biological homogenization strongly depends on the colonization ability of taxa in human land-use systems, but is also affected by the homogenization of resources and environmental conditions. Importantly, biological homogenization is not the major cause of the decline in the diversity of soil protists, and conservation and study efforts should target at taxa highly sensitive to local extinction, such as parasites.
Assuntos
Biodiversidade , Solo , China , Solo/química , Ecossistema , Microbiologia do Solo , Atividades Humanas , Humanos , Fungos , FlorestasRESUMO
Atmospheric nitrogen (N) deposition has been substantially reduced due to declines in the reactive N emission in major regions of the world. Nevertheless, the impact of reduced N deposition on soil microbial communities and the mechanisms by which they are regulated remain largely unknown. Here, we examined the effects of N addition and cessation of N addition on plant and soil microbial communities through a 17-year field experiment in a temperate grassland. We found that extreme N input did not irreversibly disrupt the ecosystem, but ceasing high levels of N addition led to greater resilience in bacterial and fungal communities. Fungi exhibited diminished resilience compared to bacteria due to their heightened reliance on changes in plant communities. Neither bacterial nor fungal diversity fully recovered to their original states. Their sensitivity and resilience were mainly steered by toxic metal ions and soil pH differentially regulating on functional taxa. Specifically, beneficial symbiotic microbes such as N-fixing bacteria and arbuscular mycorrhizal fungi experienced detrimental effects from toxic metal ions and lower pH, hindering their recovery. The bacterial functional groups involved in carbon decomposition, and ericoid mycorrhizal and saprotrophic fungi were positively influenced by soil metals, and demonstrated gradual recovery. These findings could advance our mechanistic understanding of microbial community dynamics under ongoing global changes, thereby informing management strategies to mitigate the adverse effects of N enrichment on soil function.
Assuntos
Bactérias , Metais , Microbiota , Nitrogênio , Microbiologia do Solo , Solo , Nitrogênio/metabolismo , Solo/química , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/classificação , Metais/metabolismo , Fungos/fisiologia , Fungos/metabolismo , Pradaria , Micorrizas/fisiologia , Concentração de Íons de HidrogênioRESUMO
Functional group (FG) is one of the cornerstone concepts in organic chemistry and related areas. The wide spread of bioisosterism ideas in medicinal chemistry and beyond caused a striking rise in demand for novel FGs with a defined impact on the developed compound properties. In this work, the evaluation of the 3,3-difluorooxetane unit (3,3-diFox) as a functional group for bioisosteric replacements is disclosed. A comprehensive experimental study (including multigram building block synthesis, quantification of steric and electronic properties, measurements of pKa, LogP, chemical stability, and biological evaluation of the 3,3-diFox-derived bioisostere of a drug candidate) revealed a prominent behavior of the 3,3-diFox fragment as a versatile substituent for early drug discovery programs.
RESUMO
Recent years have witnessed great research interests in developing high-performance electrocatalysts for the two-electron (2e-) oxygen reduction reaction (ORR) that enables the sustainable and flexible synthesis of H2O2. Carbon-based electrocatalysts exhibit attractive catalytic performance for the 2e- ORR, where oxygen-containing functional groups (OFGs) play a decisive role. However, current understanding is far from adequate, and the contribution of OFGs to the catalytic performance remains controversial. Therefore, a critical overview on OFGs in carbon-based electrocatalysts toward the 2e- ORR is highly desirable. Herein, we go over the methods for constructing OFGs in carbon including chemical oxidation, electrochemical oxidation, and precursor inheritance. Then we review the roles of OFGs in activating carbon toward the 2e- ORR, focusing on the intrinsic activity of different OFGs and the interplay between OFGs and metal species or defects. At last, we discuss the reasons for inconsistencies among different studies, and personal perspectives on the future development in this field are provided. The results provide insights into the origin of high catalytic activity and selectivity of carbon-based electrocatalysts toward the 2e- ORR and would provide theoretical foundations for the future development in this field.
RESUMO
Conductive additives are of great importance for the adequate utilization of active materials in all-solid-state lithium batteries by establishing conductive networks in the composite cathode. However, it usually causes severe interfacial side reactions with solid electrolytes, especially sulfide electrolytes, leading to sluggish ion transportation and accelerated performance degradation. Herein, a simple hydrogen thermal reduction process is proposed on a commonly used conductive additive Superâ P, which effectively removes the surface oxygen functional groups and weakens the interfacial side reactions with sulfide. With a small amount of 1â wt % reduced Superâ P, ASSLBs demonstrates a competitive capacity of 180.2â mAh g-1, which is much higher than the 130.8â mAh g-1 of untreated Superâ P. Impressively, reduced Superâ P based ASSLBs also exhibit a higher capacity retention of 81.8 % than 64.6 % of untreated Superâ P. The cathode interfacial chemical evolutions reveal that reduced Superâ P could effectively alleviate the side reactions of sulfide. Reduced Superâ P shows better reversible capacity compared to reduced carbon nanofiber with almost no loss of capacity retention, due to its more complete conductive network. Our results highlight the importance of oxygen-containing functional groups for conductive additives, lightening the prospect of low-cost 0D conductive additives for practical ASSLBs.
RESUMO
Wetlands in arid or semiarid zones are vital for maintaining biodiversity but face growing threats. Flooding regime variability is a key driver of ecological dynamism in these systems, dictating primary productivity on a large spatial scale. The functional composition or diversity of wetland-dependent bird species has been found to be sensitive to fluctuations in hydrological regimes and can thus be indicative of cascading ecosystem responses associated with climate change. In this paper, we investigate whether large-scale changes in inundation and fire-a significant additional biodiversity determinant in (semi-)arid landscapes-are reliable predictors of functional group responses of wetland-dependent birds along a perennial channel of the Okavango Delta, Botswana. We fit generalized additive models (GAMs) to 6 years of bird survey data collected along ~190-km-long annual transects and use remotely sensed landscape-level inundation estimates, as well as spatiotemporal distance to fire, to predict the responsiveness of seven trait-based functional group abundances. During the surveys, a total of 89 different wetland-dependent bird species were recorded, including 76 residents, across all years, with below-surface feeding waders consistently the most abundant functional group. Including estimated spatiotemporal variability in flooding and fire, as well as their interactions, improved model fit for all seven functional groups, explaining between 46.8% and 68.3% of variability in functional group abundances. Covariates representing longer-term variability in inundation generally performed better than shorter-term ones. For example, variability in inundation over the 5 months preceding a survey best predicted the responses of all functional groups, which also all exhibited responsiveness to the interaction between flooding and fire. We were able to interpret the responses of individual functional groups, based on the resource exploitation assumption. Overall, our results suggest that perennial waters in dryland wetlands offer functional refugia to wetland-dependent birds and highlight the indicative power of large-scale trait-based bird monitoring. Our findings demonstrate the potential utility of such a monitoring regime for dryland wetland ecosystems vulnerable to industrial-scale anthropogenic pressure and associated climate change.
Assuntos
Ecossistema , Áreas Alagadas , Animais , Biodiversidade , Aves , InundaçõesRESUMO
Fungi play vital regulatory roles in terrestrial ecosystems. Local community assembly mechanisms, including deterministic and stochastic processes, as well as the size of regional species pools (gamma diversity), typically influence overall soil microbial community beta diversity patterns. However, there is limited evidence supporting their direct and indirect effects on beta diversity of different soil fungal functional groups in forest ecosystems. To address this gap, we collected 1606 soil samples from a 25-ha subtropical forest plot in southern China. Our goal was to determine the direct effects and indirect effects of regional species pools on the beta diversity of soil fungi, specifically arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant-pathogenic, and saprotrophic fungi. We quantified the effects of soil properties, mycorrhizal tree abundances, and topographical factors on soil fungal diversity. The beta diversity of plant-pathogenic fungi was predominantly influenced by the size of the species pool. In contrast, the beta diversity of EcM fungi was primarily driven indirectly through community assembly processes. Neither of them had significant effects on the beta diversity of AM and saprotrophic fungi. Our results highlight that the direct and indirect effects of species pools on the beta diversity of soil functional groups of fungi can significantly differ even within a relatively small area. They also demonstrate the independent and combined effects of various factors in regulating the diversities of soil functional groups of fungi. Consequently, it is crucial to study the fungal community not only as a whole but also by considering different functional groups within the community.
Assuntos
Microbiota , Micorrizas , China , Florestas , Raios gama , SoloRESUMO
Efficient use of humic acid (HA) for eco-friendly farming and environmental remediation requires further understanding of how targeted modification of HA affects the chemical structure of HA and thereby its effectiveness in enhancing soil quality. We developed novel selective modifiers (SMs) for extracting HA by codoping sodium and copper elements into the birnessite lattice. The structure of SMs was thoroughly examined, and the HAs extracted using SMs, referred to as SMHs, were subjected to a detailed evaluation of their functional groups, molecular weight, carbon composition, flocculation limits, and effectiveness in saline soil remediation. The results showed that replacing manganese with sodium and copper in SMs alters the valence state and reactive oxygen species. In contrast, SMHs exhibited increased acidic functional groups, a lower molecular weight, and transformed aliphatic carbon. Furthermore, the saline soil was improved through increased salt leaching and an optimized soil aggregate structure by SMHs. This research highlights the importance of targeted modification of HA and demonstrates the potential of these modifiers in improving soil quality for eco-friendly farming and environmental remediation.
Assuntos
Substâncias Húmicas , Solo , Solo/química , Recuperação e Remediação Ambiental/métodos , Poluentes do SoloRESUMO
Humin, endowed with abundant redox functional groups, can be reduced anaerobically under dark. When reduced humin encounters O2, the possibility of ·OH formation arises. However, the exploration of ·OH generation mediated by humin has not been comprehensively conducted. The study found that O2 oxidized the reduced humin, generating 8.61 µmol/g of ·OH. After isolating humin using the methyl isobutyl ketone (MIBK) method, the lipid component was identified as the primary contributor to ·OH generation. Subsequent polar separation revealed that the lipid fraction extracted from the ethanol-water mixture with a volume ratio of 7:3 (LFEW7:3) played the most significant role in ·OH production. Further characterization confirmed that the simultaneous presence of aromatic CâC and CâO were the predominant features contributing to the ·OH generation. The ·OH generation experiments with humin-pyridine analogue compound demonstrated that polycyclic pyridine N (≥3 rings) played a significant role in promoting the ·OH generation. Most importantly, the study compared the ·OH production by humin and homologous humic acid, indicating that ·OH generated by humin was higher than that of humic acid. Overall, these affirmative findings manifested the overlooked role of humin in ·OH production and offered valuable insights into the mechanism of ·OH generation by humin in the dark.
Assuntos
Radical Hidroxila , Oxigênio , Radical Hidroxila/química , Oxirredução , Substâncias HúmicasRESUMO
Nanoplastics (NPs) are emerging pollutants and have been reported to cause the disintegration of anaerobic granular sludge (AnGS). However, the mechanism involved in AnGS disintegration was not clear. In this study, polyvinyl chloride nanoplastics (PVC-NPs) were chosen as target NPs and their long-term impact on AnGS structure was investigated. Results showed that increasing PVC-NPs concentration resulted in the inhibition of acetoclastic methanogens, syntrophic propionate, and butyrate degradation, as well as AnGS disintegration. At the presence of 50 µg·L-1 PVC-NPs, the hydrophobic interaction was weakened with a higher energy barrier due to the relatively higher hydrophilic functional groups in extracellular polymeric substances (EPS). PVC-NPs-induced ROS inhibited quorum sensing, significantly downregulated hydrophobic amino acid synthesis, whereas it highly upregulated the genes related to the synthesis of four hydrophilic amino acids (Cys, Glu, Gly, and Lys), resulting in a higher hydrophily degree of protein secondary structure in EPS. The differential expression of genes involved in EPS biosynthesis and the resulting protein secondary structure contributed to the greater hydrophilic interaction, reducing microbial aggregation ability. The findings provided new insight into the long-term impact of PVC-NPs on AnGS when treating wastewater containing NPs and filled the knowledge gap on the mechanism involved in AnGS disintegration by PVC-NPs.