Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Transl Med ; 20(1): 15, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986855

RESUMO

BACKGROUND: Invasive malignant pleomorphic adenoma (IMPA) is a highly malignant neoplasm of the oral salivary glands with a poor prognosis and a considerable risk of recurrence. Many disease-causing genes of IMPA have been identified in recent decades (e.g., P53, PCNA and HMGA2), but many of these genes remain to be explored. Weighted gene coexpression network analysis (WGCNA) is a newly emerged algorithm that can cluster genes and form modules based on similar gene expression patterns. This study constructed a gene coexpression network of IMPA via WGCNA and then carried out multifaceted analysis to identify novel disease-causing genes. METHODS: RNA sequencing (RNA-seq) was performed for 10 pairs of IMPA and normal tissues to acquire the gene expression profiles. Differentially expressed genes (DEGs) were screened out with the cutoff criteria of |log2 Fold change (FC)|> 1 and adjusted p value < 0.05. Then, WGCNA was applied to systematically identify the hidden diagnostic hub genes of IMPA. RESULTS: In this research, a total of 1970 DEGs were screened out in IMPA tissues, including 1056 upregulated DEGs and 914 downregulated DEGs. Functional enrichment analysis was performed for identified DEGs and revealed an enrichment of tumor-associated GO terms and KEGG pathways. We used WGCNA to identify gene module most relevant with the histological grade of IMPA. The gene FZD2 was then recognized as the hub gene of the selected module with the highest module membership (MM) value and intramodule connectivity in protein-protein interaction (PPI) network. According to immunohistochemistry (IHC) staining, the expression level of FZD2 was higher in low-grade IMPA than in high-grade IMPA. CONCLUSION: FZD2 shows an expression dynamic that is negatively correlated with the clinical malignancy of IMPA and it plays a central role in the transcription network of IMPA. Thus, FZD2 serves as a promising histological indicator for the precise prediction of IMPA histological stages.


Assuntos
Adenoma Pleomorfo , Redes Reguladoras de Genes , Adenoma Pleomorfo/genética , Receptores Frizzled/genética , Perfilação da Expressão Gênica , Humanos , Mapas de Interação de Proteínas/genética , Transcriptoma
2.
Cancer Cell Int ; 21(1): 199, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832493

RESUMO

BACKGROUND: Breast cancer (BC) is one of the commonest female cancers, which is characterized with high incidence. Although treatments have been improved, the prognosis of BC patients in advanced stages remains unsatisfactory. Thus, exploration of the molecular mechanisms underneath BC progression is necessary to find novel therapeutic methods. Frizzled class receptor 2 (FZD2) belongs to Frizzled family, which has been proven to promote cell growth and invasion in various human cancers. The purpose of our current study was to detect the functions of FZD2 in BC and explore its underlying molecular mechanism. METHODS: The level of FZD2 was measured in BC tissues by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry (IHC), respectively. Cell Counting Kit-8 (CCK-8), colony formation assay, transwell assays, wound healing assay and flow cytometry analyses were separately conducted to detect cell viability, invasion, migration, apoptosis and cell cycle distribution. The levels of Epithelial-mesenchymal transition (EMT) biomarkers were examined by using Immunofluorescence assay. Xenograft tumorigenicity assay was performed to assess the effect of FZD2 on tumor growth in vivo. RESULTS: FZD2 mRNA and protein expression was abundant in BC tissues. Moreover, high level of FZD2 had significant correlation with poor prognosis in BC patients. In vitro functional assays revealed that silencing of FZD2 had suppressive effects on BC cell growth, migration and invasion. Animal study further demonstrated that FZD2 silencing inhibited BC cell growth in vivo. In addition, FZD2 induced EMT process in BC cells in a transforming growth factor (TGF)-ß1-dependent manner. Mechanistically, knockdown of FZD2 led to the inactivation of Notch signaling pathway. CONCLUSION: FZD2 facilitates BC progression and promotes TGF-ß1-inudced EMT process through activating Notch signaling pathway.

3.
Cancer Cell Int ; 20(1): 543, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33292271

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are important functional regulators of many biological processes of cancers. However, the mechanisms by which lncRNAs modulate androgen-independent prostate cancer (AIPC) development remain largely unknown. METHODS: Next-generation sequencing technology and RT-qPCR were used to assess LEF1-AS1 expression level in AIPC tissues and adjacent normal tissues. Functional in vitro experiments, including colony formation, EDU and transwell assays were performed to assess the role of LEF1-AS1 in AIPC. Xenograft assays were conducted to assess the effect of LEF1-AS1 on cell proliferation in vivo. Chromatin immunoprecipitation (ChIP) and RNA binding protein immunoprecipitation (RIP) assays were performed to elucidate the regulatory network of LEF1-AS1. RESULTS: The next-generation sequencing results showed that LEF1-AS1 is significantly overexpressed in AIPC. Furthermore, our RT-qPCR assay data showed that LEF1-AS1 is overexpressed in AIPC tissues. Functional experiments showed that LEF1-AS1 promotes the proliferation, migration, invasion and angiogenic ability of AIPC cells in vitro and tumour growth in vivo by recruiting the transcription factor C-myb to the promoter of FZD2, inducing its transcription. Furthermore, LEF1-AS1 was shown to function as a competing endogenous RNA (ceRNA) that sponges miR-328 to activate CD44. CONCLUSION: In summary, the results of our present study revealed that LEF1-AS1 acts as a tumour promoter in the progression of AIPC. Furthermore, the results revealed that LEF1-AS1 functions as a ceRNA and regulates Wnt/ß-catenin pathway activity via FZD2 and CD44. Our results provide new insights into the mechanism that links the function of LEF1-AS1 with AIPC and suggests that LEF1-AS1 may serve as a novel potential target for the improvement of AIPC therapy.

4.
Biochem Biophys Res Commun ; 513(2): 528-533, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30979497

RESUMO

The ALPL gene is linked to hypophosphatasia, a rare genetic disease. Owing to the inverse relationships between ALPL expression and both the International Federation of Gynecology and Obstetrics (FIGO) stages and histological grades assigned to patients with serous ovarian cancer (SOC), this study was designed to explore the role and possible mechanisms of ALPL in cell motility of high grade SOC (HGSOC). The effects of ALPL overexpression on migration and invasion were detected in HGSOC cell lines SKOV3 and HEY. Gene ontology analysis for differential genes with ALPL overexpression identified several biological processes, including EMT, correlated with cell motility. Genes potentially implicated in EMT and associated with ALPL were screened using The Cancer Genome Atlas (TCGA) database. The WNT receptor Frizzled2 (FZD2) was identified and its role in HGSOC cell motility and survival was investigated. It was found that forced expression of ALPL could inhibit migration, invasion, and EMT in HGSOC cells. It also reduced the expression of FZD2 and its ligand WNT5A, accompanied by suppressed expression of their downstream target phosphorylated-STAT3 (pSTAT3). These effects were initiated via the FZD2 knockdown using siRNA and reversed by recombinant WNT5A protein. The relationship between FZD2 expression and poor HGSOC patient survival was also investigated. This data supports that ALPL might restrict the function of WNT5A-FZD2-STAT3 axis, a non-canonical WNT pathway for promoting EMT progression, which results in attenuated migration and invasion in HGSOC cells and improves survival in patients with SOC.


Assuntos
Fosfatase Alcalina/metabolismo , Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/patologia , Via de Sinalização Wnt , Linhagem Celular Tumoral , Movimento Celular , Cistadenocarcinoma Seroso/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Humanos , Invasividade Neoplásica/patologia , Neoplasias Ovarianas/metabolismo
5.
Am J Med Genet A ; 176(3): 739-742, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29383834

RESUMO

Omodysplasia-2 (OMOD2; OMIM%16475) is a rare autosomal dominant (AD) skeletal dysplasia characterized by shortened humeri, short first metacarpal, craniofacial dysmorphism (frontal bossing, depressed nasal bridge, bifid nasal tip, and long philtrum), and variable degrees of genitourinary anomalies. This clinical phenotype overlaps with that of AD type Robinow syndrome. Recently, a mutation in FZD2 encoding a Frizzled Class Receptor 2 has been identified in a family with AD omodysplasia (an affected girl and her affected mother). Here, we present the second report on a heterozygous novel nonsense FZD2 mutation in OMOD2 or Robinow syndrome-like phenotype. The proband was a 16-year-old boy, who has been followed from infancy to adolescence. He presented with rhizomelic short stature with elbow restriction, mild facial dysmorphism (depressed broad bridge, short nose, anteverted nostrils, long philtrum, and low-set ears), and genital hypoplasia. Radiological examination in infancy showed short, broad humeri with relatively narrow distal ends, mildly broad femora, thick proximal ulnae with hypoplastic, dislocated proximal radii, and short first metacarpals. The abnormal skeletal pattern was persistent in adolescence; however, the humeri and femora became less undermodeled, while the humeri and radii became mildly bowed. Molecular analysis identified a de novo, heterozygous, nonsense mutation (c.1640C>A, p.S547*) in FZD2. The affected codon was next to the previously reported mutation (p.Trp548*). The results indicate that OMOD2 or Robinow syndome-like phenotype can be caused by a heterozygous nonsense FZD2 mutation impairing Wnt signaling. Further molecular studies will permit better clarification of the phenotypic spectrum in patients with OMOD2.


Assuntos
Códon sem Sentido , Receptores Frizzled/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Úmero/anormalidades , Ossos Metacarpais/anormalidades , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Fenótipo , Anormalidades Craniofaciais/diagnóstico , Análise Citogenética , Análise Mutacional de DNA , Nanismo/diagnóstico , Fácies , Estudos de Associação Genética/métodos , Humanos , Lactente , Deformidades Congênitas dos Membros/diagnóstico , Masculino , Radiografia , Anormalidades Urogenitais/diagnóstico
6.
Mol Neurobiol ; 61(8): 5882-5900, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38244148

RESUMO

Aurantii Fructus Immaturus total flavonoids (AFIF) is the main effective fraction extracted from AFI, which has a good effect on promoting gastrointestinal motility. This study aimed to investigate AFIF which regulates miR-5100 to improve constipation symptoms in mice by targeting Frizzled-2 (Fzd2) to alleviate interstitial cells of Cajal (ICCs) calcium ion balance and autophagy apoptosis. The constipated mouse model was induced by an antibiotic suspension, and then treated with AFIF. RNA-seq sequencing, luciferase assay, immunofluorescence staining, transmission electron microscopy, ELISA, flow cytometry, quantitative polymerase chain reaction (PCR), and Western blot were applied in this study. The results showed that AFIF improved constipation symptoms in antibiotic-induced constipated mice, and decreased the autophagy-related protein Beclin1 levels and the LC3-II/I ratio in ICCs. miR-5100 and its target gene Fzd2 were screened as key miRNAs and regulator associated with autophagy. Downregulation of miR-5100 caused increased expression of Fzd2, decreased proliferation activity of ICCs, increased apoptotic cells, and enhanced calcium ion release and autophagy signals. After AFIF treatment, miR-5100 expression was upregulated and Fzd2 was downregulated, while autophagy-related protein levels and calcium ion concentration decreased. Furthermore, AFIF increased the levels of SP, 5-HT, and VIP, and increased the expression of PGP9.5, Sy, and Cx43, which alleviated constipation by improving the integrity of the enteric nervous system network. In conclusion, AFIF could attenuate constipation symptoms by upregulating the expression of miR-5100 and targeting inhibition of Fzd2, alleviating calcium overload and autophagic death of ICCs, regulating the content of neurotransmitters, and enhancing the integrity of the enteric nervous system network.


Assuntos
Autofagia , Cálcio , Constipação Intestinal , Flavonoides , Receptores Frizzled , Células Intersticiais de Cajal , MicroRNAs , Animais , Camundongos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/metabolismo , Flavonoides/farmacologia , Receptores Frizzled/metabolismo , Células Intersticiais de Cajal/metabolismo , Células Intersticiais de Cajal/efeitos dos fármacos , Células Intersticiais de Cajal/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino
7.
Cancer Med ; 13(7): e7148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558536

RESUMO

BACKGROUND: Non-canonical WNT family (WNT5A pathway) signaling via WNT5A through ROR1 and its partner, ROR2, or Frizzled2 (FZD2) is linked to processes driving tumorigenesis and therapy resistance. We utilized a large dataset of urothelial carcinoma (UC) tumors to characterize non-canonical WNT signaling through WNT5A, ROR1, ROR2, or FZD2 expression. METHODS: NextGen Sequencing of DNA (592 genes or WES)/RNA (WTS) was performed for 4125 UC tumors submitted to Caris Life Sciences. High and low expression of WNT5A, ROR1, ROR2, and FZD2 was defined as ≥ top and

Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
8.
Dis Model Mech ; 16(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867021

RESUMO

Human Robinow syndrome (RS) and dominant omodysplasia type 2 (OMOD2), characterized by skeletal limb and craniofacial defects, are associated with heterozygous mutations in the Wnt receptor FZD2. However, as FZD2 can activate both canonical and non-canonical Wnt pathways, its precise functions and mechanisms of action in limb development are unclear. To address these questions, we generated mice harboring a single-nucleotide insertion in Fzd2 (Fzd2em1Smill), causing a frameshift mutation in the final Dishevelled-interacting domain. Fzd2em1Smill mutant mice had shortened limbs, resembling those of RS and OMOD2 patients, indicating that FZD2 mutations are causative. Fzd2em1Smill mutant embryos displayed decreased canonical Wnt signaling in developing limb mesenchyme and disruption of digit chondrocyte elongation and orientation, which is controlled by the ß-catenin-independent WNT5A/planar cell polarity (PCP) pathway. In line with these observations, we found that disruption of FZD function in limb mesenchyme caused formation of shortened bone elements and defects in Wnt/ß-catenin and WNT5A/PCP signaling. These findings indicate that FZD2 controls limb development by mediating both canonical and non-canonical Wnt pathways and reveal causality of pathogenic FZD2 mutations in RS and OMOD2 patients.


Assuntos
Osteocondrodisplasias , Via de Sinalização Wnt , Humanos , Animais , Camundongos , beta Catenina/metabolismo , Osteocondrodisplasias/genética , Fácies , Receptores Frizzled/genética , Receptores Frizzled/metabolismo
9.
Front Oncol ; 10: 1168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766155

RESUMO

Esophageal cancer micro environment factor WNT2 was critical in cancer metastasis. However, very little is known about WNT2 receptors and their role in the malignant progression of ESCC. The clinical significance and underlying molecular mechanisms of FZD2, one of the receptors of WNT2, was further investigated in ESCC. We found that FZD2 expression was positively correlated with WNT2 levels in clinical ESCC specimens through database analysis. Upregulated FZD2 expression was detected in 69% (69/100) of the primary ESCC cases examined, and increased FZD2 expression was significantly correlated with poor prognosis (P < 0.05). Mechanistically, FZD2 induced the migration and invasion of ESCC cells by regulating the FZD2/STAT3 signaling. In vivo xenograft experiments further revealed the metastasis-promoting role of FZD2 in ESCC. Moreover, we found that the WNT2 ligand could stabilize and phosphorylate the FZD2 receptor by attenuating FZD2 ubiquitination, leading to the activation of STAT3 signaling and the initiation of ESCC cell metastasis. Collectively, our data revealed that a novel non-canonical WNT2/FZD2/STAT3 signaling axis is critical for ESCC progression. Strategies targeting this specific signaling axis might be developed to treat patients with ESCC.

10.
Int J Biol Sci ; 15(11): 2330-2339, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31595151

RESUMO

Many studies have shown that FZD2 is significantly associated with tumor development and tumor metastasis. The purpose of the present study was to gain insight into the role of FZD2 in the cell proliferation and invasion of tongue squamous cell carcinoma. According to TCGA-HNSC dataset, among the 10 Frizzled receptors, FZD2 exhibited the highest degree of differential expression between cancer tissues and normal tissues, and the overall survival of patients with higher FZD2 levels was shown to be significantly shorter compared with those with lower FZD2 levels. The upregulation of FZD2 in clinical tongue cancer tissues was validated by real-time PCR. Knockdown of FZD2 inhibited the proliferation, migration and invasion of CAL-27 and TCA-8113 cells, whereas overexpression of FZD2 led to the opposite results. Further analysis revealed that FZD2 is positively correlated with WNT3A, WNT5B, WNT7A and WNT2 and is negatively correlated with WNT4. These results indicated that FZD2 may act as an oncogene in tongue squamous cell carcinoma. Therefore, FZD2 may be a target for the diagnosis, prognosis and gene therapy of tongue cancer.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Receptores Frizzled/fisiologia , Neoplasias da Língua/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Movimento Celular , Proliferação de Células , Feminino , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias da Língua/genética , Neoplasias da Língua/mortalidade , Neoplasias da Língua/patologia , Proteínas Wnt/metabolismo
11.
Mol Syndromol ; 8(6): 318-324, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29230162

RESUMO

We described a heterozygous de novo mutation (G434V) in the frizzled class receptor 2 (FZD2) gene in a patient with distinct facial features including hypertelorism, bilateral cleft lip/palate, short nose with a broad nasal bridge, microretrognathia, and bilateral shortness of the upper limbs, first metacarpal bones, and middle phalanges of the 5th digits. The findings of our patient were compared to an autosomal dominant omodysplasia (OMOD2) family with FZD2 mutation reported in the literature. OMOD2 is a rare skeletal dysplasia and characterized by facial dysmorphism and shortness of the upper extremities and first metacarpal bones. This is the second report which supports the findings of the first family described and points out that heterozygous FZD2 mutations may be disease-causing for OMOD2.

12.
World J Gastroenterol ; 23(45): 7965-7977, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29259372

RESUMO

AIM: To investigate the potential role of microRNA-30a (miR-30a) in esophageal squamous cell carcinoma (ESCC). METHODS: Expression of miR-30a-3p/5p was analyzed using microarray data and fresh ESCC tissue samples. Both in vitro and in vivo assays were used to investigate the effects of miR-30a-3p/5p on ESCC cell proliferation. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis was performed to explore underlying mechanisms involved in ESCC, and then, assays were carried out to verify the potential molecular mechanism of miR-30a in ESCC. RESULTS: Low expression of miR-30a-3p/5p was closely associated with advanced ESCC progression and poor prognosis of patients with ESCC. Knock-down of miR-30a-3p/5p promoted ESCC cell proliferation. Increased miR-30a-3p/5p expression inhibited the Wnt signaling pathway by targeting Wnt2 and Fzd2. CONCLUSION: Down-regulation of miR-30a-3p/5p promotes ESCC cell proliferation by activating the Wnt signaling pathway through inhibition of Wnt2 and Fzd2.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Receptores Frizzled/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt/genética , Proteína Wnt2/genética , Regiões 3' não Traduzidas/genética , Animais , Biópsia , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Linhagem Celular Tumoral , Proliferação de Células/genética , Conjuntos de Dados como Assunto , Progressão da Doença , Regulação para Baixo , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Carcinoma de Células Escamosas do Esôfago , Esôfago/cirurgia , Receptores Frizzled/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Análise em Microsséries , Prognóstico , Proteína Wnt2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Int J Clin Exp Pathol ; 6(7): 1245-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826406

RESUMO

Wnt5a, a member of the Wnt gene family, encodes a cysteine-rich growth factor involved in signal transduction during growth and differentiation. The Fzd2 gene codes for a cell membrane receptor called Frizzled-2 have a structure similar to G protein coupled receptors. The extracellular N-terminal of the Fzd2 receptor has a cysteine-rich domain (CRD) that binds Wnt ligands and thus primes the Wnt signal pathway. Downregulation of the Wnt signal pathway occurs in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). However, little is known about Wnt5a/Fzd2 signaling in mammalian nerve cells, and it is not clear whether Wnt5a or Fzd2 functioning are changed in ALS. The influence of Wnt5a and Fzd2 signal transduction pathway on ALS was investigated in adult SOD1(G93A) transgenic mice. Changes in Wnt5a and Fzd2 expression in the spinal cord of SOD1(G93A) transgenic mice (ALS), SOD1(G93A) transfected NSC-34 cells, and primary cultures of astrocytes from SOD1(G93A) transgenic mice were detected by immunofluorescent staining, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. The results provide further insight into the role of Wnt5a and Fzd2 in the pathogenesis of ALS transgenic mice, which provides evidence that should help in the search for treatments of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Receptores Frizzled/metabolismo , Medula Espinal/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Esclerose Lateral Amiotrófica/genética , Animais , Astrócitos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Receptores Frizzled/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fatores de Tempo , Transfecção , Proteínas Wnt/genética , Proteína Wnt-5a
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA