Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 297(4): 101206, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34543623

RESUMO

Adipose triglyceride lipase (ATGL) plays a key role in intracellular lipolysis, the mobilization of stored triacylglycerol. This work provides an important basis for generating reproducible and detailed data on the hydrolytic and transacylation activities of ATGL. We generated full-length and C-terminally truncated ATGL variants fused with various affinity tags and analyzed their expression in different hosts, namely E.coli, the insect cell line Sf9, and the mammalian cell line human embryonic kidney 293T. Based on this screen, we expressed a fusion protein of ATGL covering residues M1-D288 flanked with N-terminal and C-terminal purification tags. Using these fusions, we identified key steps in expression and purification protocols, including production in the E. coli strain ArcticExpress (DE3) and removal of copurified chaperones. The resulting purified ATGL variant demonstrated improved lipolytic activity compared with previously published data, and it could be stimulated by the coactivator protein comparative gene identification-58 and inhibited by the protein G0/G1 switch protein 2. Shock freezing and storage did not affect the basal activity but reduced coactivation of ATGL by comparative gene identification 58. In vitro, the truncated ATGL variant demonstrated acyl-CoA-independent transacylation activity when diacylglycerol was offered as substrate, resulting in the formation of fatty acid as well as triacylglycerol and monoacylglycerol. However, the ATGL variant showed neither hydrolytic activity nor transacylation activity upon offering of monoacylglycerol as substrate. To understand the role of ATGL in different physiological contexts, it is critical for future studies to identify all its different functions and to determine under what conditions these activities occur.


Assuntos
Expressão Gênica , Lipase , Acilação , Animais , Células HEK293 , Humanos , Hidrólise , Lipase/biossíntese , Lipase/química , Lipase/genética , Lipase/isolamento & purificação , Camundongos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Células Sf9 , Spodoptera
2.
J Pineal Res ; 70(3): e12725, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33621367

RESUMO

Obesity is a global epidemic health disorder and associated with several diseases. Body weight-reducing effects of melatonin have been reported; however, no investigation toward examining whether the beneficial effects of melatonin are associated with preadipocyte heterogeneity has been reported. In this study, we profiled 25 071 transcriptomes of normal and melatonin-treated preadipocytes using scRNA-seq. By tSNE analysis, we present a cellular-state landscape for melatonin-treated preadipocytes that covers multiple-cell subpopulations, defined as cluster 0 to cluster 13. Cluster 0 and cluster 1 were the largest components of normal and melatonin-treated preadipocytes, respectively. G0S2, an inhibitor of adipose triglyceride lipase (ATGL), was significantly upregulated in cluster 0 and downregulated in cluster 1. We redefined cluster 0 as the G0S2-positive cluster (G0S2+ ) and cluster 1 as the G0S2-negative cluster (G0S2- ). Through pseudotime analysis, the G0S2- cluster cell differentiation trajectory was divided into three major structures, that is, the prebranch, the lipid catabolism branch, and the cell fate 2 branch. In vitro, G0S2 knockdown enhanced the expression levels of ATGL, BAT markers and fatty acid oxidation-related genes, but inhibited C/EBPα and PPARγ expression. In vivo, knockdown of G0S2 reduced the body weight gain in high-fat-fed mice. The beneficial effects of the G0S2- cell cluster in promoting lipolysis and inhibiting adipogenesis are dependent on two major aspects: first, downregulation of the G0S2 gene in the G0S2- cluster, resulting in activation of ATGL, which is responsible for the bulk of triacylglycerol hydrolase activity; and second, upregulation of FABP4 in the G0S2- cluster, resulting in inhibition of PPARγ and further reducing adipogenesis.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Perfilação da Expressão Gênica , Melatonina/farmacologia , RNA-Seq , Análise de Célula Única , Transcriptoma , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem da Célula , Galinhas , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Lipase/genética , Lipase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , PPAR gama/metabolismo
3.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842516

RESUMO

Cancer complexity relies on the intracellular pleiotropy of oncogenes/tumor suppressors and in the strong interplay between tumors and micro- and macro-environments. Here we followed a reductionist approach, by analyzing the transcriptional adaptations induced by three oncogenes (RAS, MYC, and HDAC4) in an isogenic transformation process. Common pathways, in place of common genes became dysregulated. From our analysis it emerges that, during the process of transformation, tumor cells cultured in vitro prime some signaling pathways suitable for coping with the blood supply restriction, metabolic adaptations, infiltration of immune cells, and for acquiring the morphological plasticity needed during the metastatic phase. Finally, we identified two signatures of genes commonly regulated by the three oncogenes that successfully predict the outcome of patients affected by different cancer types. These results emphasize that, in spite of the heterogeneous mutational burden among different cancers and even within the same tumor, some common hubs do exist. Their location, at the intersection of the various signaling pathways, makes a therapeutic approach exploitable.


Assuntos
Transformação Celular Neoplásica/genética , Predisposição Genética para Doença , Oncogenes , Animais , Biomarcadores , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas In Vitro , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Prognóstico , Transdução de Sinais
4.
Int J Mol Sci ; 20(10)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137663

RESUMO

The aim of the present study was to investigate the time and intensity dependent effects of exercise on the heart components of the lipolytic complex. Wistar rats ran on a treadmill with the speed of 18 m/min for 30 min (M30) or 120 min (M120) or with the speed of 28 m/min for 30 min (F30). The mRNA and protein expressions of the compounds adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58), G0/G1 switch gene 2 (G0S2), hormone sensitive lipase (HSL) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) were examined by real-time PCR and Western blot, respectively. Lipid content of free fatty acids (FFA), diacylglycerols (DG) and triacylglycerols (TG) were estimated by gas liquid chromatography. We observed virtually no changes in the left ventricle lipid contents and only minor fluctuations in its ATGL mRNA levels. This was in contrast with its right counterpart i.e., the content of TG and DG decreased in response to both increased duration and intensity of a run. This occurred in tandem with increased mRNA expression for ATGL, CGI-58 and decreased expression of G0S2. It is concluded that exercise affects behavior of the components of the lipolytic system and the lipid content in the heart ventricles. However, changes observed in the left ventricle did not mirror those in the right one.


Assuntos
Ventrículos do Coração/metabolismo , Lipólise , Esforço Físico , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Ácidos Graxos não Esterificados/metabolismo , Lipase/genética , Lipase/metabolismo , Masculino , Especificidade de Órgãos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Wistar , Esterol Esterase/genética , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt B): 1146-1154, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28645852

RESUMO

The discovery of adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) provided a major paradigm shift in the understanding of intracellular lipolysis in both adipocytes and nonadipocyte cells. The subsequent discovery of G0/G1 switch gene 2 (G0S2) as a potent endogenous inhibitor of ATGL revealed a unique mechanism governing lipolysis and fatty acid (FA) availability. G0S2 is highly conserved in vertebrates, and exhibits cyclical expression pattern between adipose tissue and liver that is critical to lipid flux and energy homeostasis in these two tissues. Biochemical and cell biological studies have demonstrated that a direct interaction with ATGL mediates G0S2's inhibitory effects on lipolysis and lipid droplet degradation. In this review we examine evidence obtained from recent in vitro and in vivo studies that lends support to the proof-of-principle concept that G0S2 functions as a master regulator of tissue-specific balance of TG storage vs. mobilization, partitioning of metabolic fuels between adipose and liver, and the whole-body adaptive energy response. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.


Assuntos
Tecido Adiposo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Lipólise/fisiologia , Fígado/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Ácidos Graxos/genética , Humanos , Lipase/genética , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Especificidade de Órgãos/fisiologia , Triglicerídeos/genética , Triglicerídeos/metabolismo
6.
J Biol Chem ; 290(43): 26141-50, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26350455

RESUMO

The anabolism and catabolism of myocardial triacylglycerol (TAG) stores are important processes for normal cardiac function. TAG synthesis detoxifies and stockpiles fatty acids to prevent lipotoxicity, whereas TAG hydrolysis (lipolysis) remobilizes fatty acids from endogenous storage pools as energy substrates, signaling molecules, or precursors for complex lipids. This study focused on the role of G0/G1 switch 2 (G0S2) protein, which was previously shown to inhibit the principal TAG hydrolase adipose triglyceride lipase (ATGL), in the regulation of cardiac lipolysis. Using wild-type and mutant mice, we show the following: (i) G0S2 is expressed in the heart and regulated by the nutritional status with highest expression levels after re-feeding. (ii) Cardiac-specific overexpression of G0S2 inhibits cardiac lipolysis by direct protein-protein interaction with ATGL. This leads to severe cardiac steatosis. The steatotic hearts caused by G0S2 overexpression are less prone to fibrotic remodeling or cardiac dysfunction than hearts with a lipolytic defect due to ATGL deficiency. (iii) Conversely to the phenotype of transgenic mice, G0S2 deficiency results in a de-repression of cardiac lipolysis and decreased cardiac TAG content. We conclude that G0S2 acts as a potent ATGL inhibitor in the heart modulating cardiac substrate utilization by regulating cardiac lipolysis.


Assuntos
Proteínas de Ciclo Celular/genética , Fase G1/genética , Lipólise/genética , Miocárdio/metabolismo , Fase de Repouso do Ciclo Celular/genética , Triglicerídeos/metabolismo , Animais , Linhagem Celular , Testes de Função Cardíaca , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Am J Physiol Regul Integr Comp Physiol ; 310(2): R125-33, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26511521

RESUMO

Adipose triglyceride lipase (ATGL) catalyzes the rate-limiting removal of the first fatty acid from a triglyceride. ATGL is activated by comparative gene identification-58 and inhibited by G(0)/G(1) switch gene-2 protein (G0S2). Research in other tissues and cell culture indicates that inhibition is dependent on relative G0S2-to-ATGL protein content. G0S2 may also have several roles within mitochondria; however, this has yet to be observed in skeletal muscle. The purpose of this study was to determine if muscle G0S2 relative to ATGL content would decrease to facilitate intramuscular lipolysis following endurance training. Male Sprague-Dawley rats (n = 10; age 51-53 days old) were progressively treadmill trained at a 10% incline for 8 wk ending with 25 m/min for 1 h compared with control. Sciatic nerve stimulation for hind-limb muscle contraction (and lipolysis) was administered for 30 min to one leg, leaving the opposing leg as a resting control. Soleus (SOL), red gastrocnemius (RG), and white gastrocnemius were excised from both legs following stimulation or control. ATGL protein increased in all trained muscles. Unexpectedly, G0S2 protein was greater in the trained SOL and RG. In RG-isolated mitochondria, G0S2 also increased with training, yet mitochondrial G0S2 content was unaltered with acute contraction; therefore, any role of G0S2 in the mitochondria does not appear to be acutely mediated by content alone. In summary, G0S2 increased with training in oxidative muscles and mitochondria but not following acute contraction, suggesting that inhibition is not through relative G0S2-to-ATGL content but through more complicated intracellular mechanisms.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Lipase/metabolismo , Contração Muscular , Músculo Esquelético/enzimologia , Condicionamento Físico Animal , Resistência Física , Animais , Estimulação Elétrica , Lipólise , Masculino , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/inervação , Oxirredução , Ratos Sprague-Dawley , Nervo Isquiático/fisiologia , Fatores de Tempo , Triglicerídeos/metabolismo , Regulação para Cima
8.
Mol Cell Biochem ; 422(1-2): 21-29, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27590244

RESUMO

Elevated concentrations of circulating non-esterified fatty acids (NEFA) were reported in (a) humans with lipodystrophy, (b) humans following bariatric surgery, and (c) transgenic mice with reduced amounts of adipose tissue. Paradoxically, these findings suggest that the reduction of adipose tissue mass is associated with elevated circulating NEFA concentrations. To explain a molecular background of this phenomenon, we analyzed the effects of surgical removal of inguinal, epididymal, and retroperitoneal white adipose tissue (WAT) on (a) circulating NEFA concentrations, (b) expression of Pnpla2, a gene that encodes adipose triglyceride lipase (ATGL), genes encoding abhydrolase domain containing 5 (ABHD5) and G0/G1 switch 2 (G0S2), i.e., a coactivator and inhibitor of ATGL, respectively, and (c) expression of Lipe gene coding hormone-sensitive lipase (HSL) in mesenteric WAT. Reduction of adipose tissue mass resulted in an increase in circulating NEFA concentration, which was associated with (a) an increase in the expressions of Pnpla2 and Abhd5, (b) decrease in G0s2 expression, and (c) upregulation of Lipe expression, all measured on both mRNA and protein levels in mesenteric WAT of male rats. The rate of lipolysis in mesenteric WAT explants and isolated adipocytes from lipectomized rats was significantly higher than that from the controls. In conclusion, upregulation of Pnpla2 expression and activation of ATGL (due to an increase in ABHD5 and decrease in G0S2 levels), as well as a coordinated interplay of these genes with Lipe in mesenteric WAT, contribute, at least in part, to an increase in the concentration of circulating NEFA in rats with reduced fat mass.


Assuntos
Aciltransferases/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Lipase/metabolismo , Mesentério/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Epididimo/metabolismo , Epididimo/cirurgia , Masculino , Camundongos , Nucleobindinas , Ratos , Ratos Wistar
9.
Am J Physiol Cell Physiol ; 308(6): C496-504, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25588877

RESUMO

G0/G1 switch gene 2 (G0S2), a novel target gene of peroxisome proliferator-activated receptor, is highly expressed in fat tissues. G0S2 acts as proapoptotic factor toward human cancer cells. Endothelial cell (EC) apoptosis may be an initiating event in the development of atherosclerosis. However, the expression and function of G0S2 in vascular ECs remain unknown. Here, we reported for the first time that G0S2 is expressed in arterial ECs. Ectopic expression of G0S2 increased neutral lipid accumulation in cultured ECs. However, G0S2 prevented ECs from serum-free starvation stress- and hydrogen peroxide (H2O2)-induced apoptosis. G0S2 blocked the H2O2-induced dissipation of mitochondrial membrane potential. G0S2 decreased the release of cytochrome c from mitochondria into the cytosol, followed by activation of caspase-9 and caspase-3. The anti-apoptotic effect of G0S2 was Bcl-2 and adipose triglyceride lipase independent. In contrast, gene silence of G0S2 increased serum-free starvation stress-induced EC apoptosis and decreased the formation of capillary-like structures. We further found that G0S2 couples with the F0F1-ATP synthase in ECs. Levels of ATP were elevated, whereas reactive oxygen species levels were reduced in G0S2-expressing ECs. G0S2 can inhibit endothelial denudation secondary to H2O2-induced injury to ECs in vivo. These results indicate that G0S2 acts as a prosurvival molecule in ECs. Taken together, our results indicate that G0S2 has a protective function in ECs and may be a potential target for the treatment of cardiovascular diseases associated with reactive oxygen species-induced EC injury, such as atherosclerosis and restenosis.


Assuntos
Apoptose , Proteínas de Ciclo Celular/metabolismo , Células Endoteliais/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Sobrevivência Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Transfecção
10.
J Biol Chem ; 289(4): 1905-16, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24302733

RESUMO

Biochemical and cell-based studies have identified the G0S2 (G0/G1 switch gene 2) as a selective inhibitor of the key intracellular triacylglycerol hydrolase, adipose triglyceride lipase. To better understand the physiological role of G0S2, we constructed an adipose tissue-specific G0S2 transgenic mouse model. In comparison with wild type animals, the transgenic mice exhibited a significant increase in overall fat mass and a decrease in peripheral triglyceride accumulation. Basal and adrenergically stimulated lipolysis was attenuated in adipose explants isolated from the transgenic mice. Following fasting or injection of a ß3-adrenergic agonist, in vivo lipolysis and ketogenesis were decreased in G0S2 transgenic mice when compared with wild type animals. Consequently, adipose overexpression of G0S2 prevented the "switch" of energy substrate from carbohydrates to fatty acids during fasting. Moreover, G0S2 overexpression promoted accumulation of more and larger lipid droplets in brown adipocytes without impacting either mitochondrial morphology or expression of oxidative genes. This phenotypic change was accompanied by defective cold adaptation. Furthermore, feeding with a high fat diet caused a greater gain of both body weight and adiposity in the transgenic mice. The transgenic mice also displayed a decrease in fasting plasma levels of free fatty acid, triglyceride, and insulin as well as improved glucose and insulin tolerance. Cumulatively, these results indicate that fat-specific G0S2 overexpression uncouples adiposity from insulin sensitivity and overall metabolic health through inhibiting adipose lipolysis and decreasing circulating fatty acids.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo/metabolismo , Metabolismo dos Carboidratos , Proteínas de Ciclo Celular/biossíntese , Metabolismo Energético , Ácidos Graxos/metabolismo , Lipólise , Adaptação Fisiológica/genética , Adiposidade/genética , Animais , Proteínas de Ciclo Celular/genética , Temperatura Baixa , Jejum/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Glucose/genética , Glucose/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Transgênicos , Triglicerídeos/genética , Triglicerídeos/metabolismo
11.
J Biol Chem ; 289(47): 32559-70, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25258314

RESUMO

The protein G0/G1 switch gene 2 (G0S2) is a small basic protein that functions as an endogenous inhibitor of adipose triglyceride lipase (ATGL), a key enzyme in intracellular lipolysis. In this study, we identified a short sequence covering residues Lys-20 to Ala-52 in G0S2 that is still fully capable of inhibiting mouse and human ATGL. We found that a synthetic peptide corresponding to this region inhibits ATGL in a noncompetitive manner in the nanomolar range. This peptide is highly selective for ATGL and does not inhibit other lipases, including hormone-sensitive lipase, monoacylglycerol lipase, lipoprotein lipase, and patatin domain-containing phospholipases 6 and 7. Because increased lipolysis is linked to the development of metabolic disorders, the inhibition of ATGL by G0S2-derived peptides may represent a novel therapeutic tool to modulate lipolysis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Lipase/antagonistas & inibidores , Peptídeos/farmacologia , Proteínas Recombinantes/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/antagonistas & inibidores , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Lipase/genética , Lipase/metabolismo , Camundongos Knockout , Dados de Sequência Molecular , Peptídeos/genética , Proteínas Recombinantes/química
12.
Cytokine ; 69(2): 196-205, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24993166

RESUMO

Tumor necrosis factor-α (TNF-α) is a multifunctional cytokine that acts as a mediator of obesity-linked insulin resistance (IR). It is commonly accepted that macrophage-derived TNF-α acts in a paracrine manner on adjacent adipocytes, induces lipolysis, which contributes to obesity-linked hyperglycemia. Several studies suggested that G0/G1 switch gene 2 (g0s2) was up-regulated during adipogenesis, and its protein could be degraded in response to TNF-α stimulation. The aim of the present work was to investigate the transcriptional regulation of g0s2 by TNF-α stimulation. In this study, 3T3-L1 pre-adipocytes were differentiated, and treated with TNF-α for 24h. The effects of TNF-α on lipolysis and lipase expression were then examined. Our results revealed that TNF-α exerted dose- and time-dependent lipolytic effects, which could be partially reversed by overexpression of g0s2 and peroxisome proliferator-activated receptor-γ (ppar-γ). In addition, TNF-α treatment significantly reduced the expression of adiponectin, ppar-γ, hormone-sensitive Lipase (hsl), adipose triglyceride lipase (atgl) as well as ATGL co-factors. Interestingly, TNF-α significantly decreased adiponectin and PPAR-γ protein levels, while treatment with the proteasomal inhibitor MG-132 maintained PPAR-γ levels. Degradation of PPAR-γ almost completely abolished the binding of PPAR-γ to the g0s2 promoter in adipocytes treated with TNF-α. We propose that proteasomal degradation of PPAR-γ and the reduction of g0s2 content are permissive for prolonged TNF-α induced lipolysis.


Assuntos
Adipócitos/metabolismo , Proteínas de Ciclo Celular/genética , Lipólise/efeitos dos fármacos , PPAR gama/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adiponectina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Forma Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Glicerol/metabolismo , Lipase/metabolismo , Lipólise/genética , Camundongos , PPAR gama/metabolismo , Regiões Promotoras Genéticas/genética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo
13.
Transl Oncol ; 33: 101676, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37086619

RESUMO

G0/G1 switch gene 2 (G0S2) is known to inhibit lipolysis by inhibiting adipose triglyceride lipase (ATGL). In this report, we dissect the role of G0S2 in ER+ versus ER- breast cancer. Overexpression of G0S2 in ER- cells increased cell proliferation, while G0S2 overexpression in ER+ cells decreased cell proliferation. Transcriptome analysis revealed that G0S2 mediated distinct but overlapping transcriptional responses in ER- and ER+ cells. G0S2 reduced genes associated with an epithelial phenotype, especially in ER- cells, including CDH1, ELF3, STEAP4 and TACSTD2, suggesting promotion of the epithelial-mesenchymal transition (EMT). G0S2 also repressed estrogen signaling and estrogen receptor target gene signatures, especially in ER+ cells, including TFF1 and TFF3. In addition, G0S2 overexpression increased cell migration in ER- cells and increased estrogen deprivation sensitivity in ER+ cells. Interestingly, two genes downstream of ATGL in fat utilization and very important in steroid hormone biosynthesis, HMGCS1 and HMGCS2, were downregulated in G0S2 overexpressing ER+ cells. In addition, HSD17B11, a gene that converts estradiol to its less estrogenic derivative, estrone, was highly upregulated in G0S2 overexpressing ER+ cells, suggesting G0S2 overexpression has a negative effect on estradiol production and maintenance. High expression of G0S2 and HSD17B11 was associated with improved relapse-free survival in breast cancer patients while high expression of HMGSC1 was associated with poor survival. Finally, we deleted G0S2 in breast cancer-prone MMTV-PyMT mice. Our data indicates a complex role for G0S2 in breast cancer, dependent on ER status, that may be partially mediated by suppression of the estrogen signaling pathway.

14.
Comb Chem High Throughput Screen ; 26(11): 1990-2002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36366842

RESUMO

BACKGROUND: Gastric cancer (GC) is the third most common cause of cancer-related death worldwide. Increasing studies have indicated that circular RNAs (circRNAs) play critical roles in cancer progression. However, the precise mechanism and functions of most circRNAs are still unknown in gastric cancer. METHODS: In the present study, we aim to uncover the mechanism by which circRNAs regulate gastric cancer tumorigenesis. By analyzing the microarray data, we screened differential expressed circRNAs in the gastric cancer group and identified a down-regulated circRNA, hsa_circ_0040039 (circSNTB2). Mechanically, circSNTB2 served as a sponge for the miR-6938-5p and up-regulated its expression. RESULTS: Meanwhile, G0/G1 switch gene 2 (G0S2) and programmed cell death gene 4 (PDCD4) were identified to be the aim genes of miR-6938-5p, constructing circSNTB2/miR-6938-5p/G0S2 and PDCD4 pathways. CONCLUSION: Taken together, our findings demonstrated that circSNTB2 plays an essential role in gastric cancer by regulating miR-6938-5p through G0S2 and PDCD4 genes. CircSNTB2 could be a promising biomarker for GC diagnosis and targeted therapy.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a RNA/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/metabolismo
15.
Front Endocrinol (Lausanne) ; 14: 1130350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033250

RESUMO

Background: Previous research has shown a tight relationship between the G0/G1 switch gene 2 (G0S2) and metabolic diseases such as non-alcoholic fatty liver disease (NAFLD) and obesity and diabetes, and insulin resistance has been shown as the major risk factor for both NAFLD and T2DM. However, the mechanisms underlying the relationship between G0S2 and insulin resistance remain incompletely understood. Our study aimed to confirm the effect of G0S2 on insulin resistance, and determine whether the insulin resistance in mice fed a high-fat diet (HFD) results from G0S2 elevation. Methods: In this study, we extracted livers from mice that consumed HFD and received tail vein injections of AD-G0S2/Ad-LacZ, and performed a proteomics analysis. Results: Proteomic analysis revealed that there was a total of 125 differentially expressed proteins (DEPs) (56 increased and 69 decreased proteins) among the identified 3583 proteins. Functional enrichment analysis revealed that four insulin signaling pathway-associated proteins were significantly upregulated and five insulin signaling pathway -associated proteins were significantly downregulated. Conclusion: These findings show that the DEPs, which were associated with insulin resistance, are generally consistent with enhanced insulin resistance in G0S2 overexpression mice. Collectively, this study demonstrates that G0S2 may be a potential target gene for the treatment of obesity, NAFLD, and diabetes.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Proteínas de Ciclo Celular/genética , Dieta Hiperlipídica/efeitos adversos , Insulina , Resistência à Insulina/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Proteômica
16.
Cancer Lett ; 569: 216306, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442366

RESUMO

Bidirectional interactions between cancer cells and their microenvironment govern tumor progression. Among the stromal cells in this microenvironment, adipocytes have been reported to upregulate cancer cell migration and invasion by producing fatty acids. Conversely, cancer cells alter adipocyte phenotype notably via increased lipolysis. We aimed to identify the mechanisms through which cancer cells trigger adipocyte lipolysis and evaluate the functional consequences on cancer progression. Here, we show that cancer cell-induced acidification of the extracellular medium strongly promotes preadipocyte lipolysis through a mechanism that does not involve lipophagy but requires adipose triglyceride lipase (ATGL) activity. This increased lipolysis is triggered mainly by attenuation of the G0/G1 switch gene 2 (G0S2)-induced inhibition of ATGL. G0S2-mediated regulation in preadipocytes affects their communication with breast cancer cells, modifying the phenotype of the cancer cells and increasing their resistance to chemotherapeutic agents in vitro. Furthermore, we demonstrate that the adipocyte-specific overexpression of G0S2 impairs mammary tumor growth and lung metastasis formation in vivo. Our results highlight the importance of acidosis in cancer cell-adipocyte crosstalk and identify G0S2 as the main regulator of cancer-induced lipolysis, regulating tumor establishment and spreading.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Proteínas de Ciclo Celular/metabolismo , Lipase/genética , Lipase/metabolismo , Adipócitos/metabolismo , Lipólise , Fenômenos Fisiológicos Celulares
17.
Artigo em Inglês | MEDLINE | ID: mdl-35026402

RESUMO

The protein encoded by the G0/G1 switch gene 2 (G0S2) is a potent inhibitor of adipose triglyceride lipase (ATGL) and thus an important regulator of intracellular lipolysis. Since dysfunction of lipolysis is associated with metabolic diseases including diabetes and obesity, inhibition of ATGL is considered a therapeutic strategy. G0S2 interacts with ATGL's patatin-domain to mediate non-competitive inhibition, however atomic details of the inhibition mechanism are incompletely understood. Sequences of G0S2 from higher organisms show a highly conserved N-terminal part, including a hydrophobic region covering amino acids 27 to 42. We show that predicted G0S2 orthologs from platypus, chicken and Japanese rice-fish are able to inhibit human and mouse ATGL, emphasizing the contribution of conserved amino acid to ATGL inhibition. Our site directed mutagenesis and truncation studies give insights in the protein-protein interaction on a per-residue level. We determine that the minimal sequence required for ATGL inhibition ranges from amino acids 20 to 44. Residues Y27, V28, G30, A34 G37, V39 or L42 within this sequence play a substantial role in ATGL inhibition. Furthermore, we show that unspecific interactions of the N-terminal part (amino acids 20-27) of the minimal sequence facilitate the interaction to ATGL. Our studies also demonstrate that full-length G0S2 shows higher tolerance to specific single amino acid exchanges in the hydrophobic region due to the stronger contributions of unspecific interactions. However, exchanges of more than one amino-acid in the hydrophobic region also result in the loss of function as ATGL inhibitor even in the full-length protein.


Assuntos
Lipólise
18.
Animals (Basel) ; 12(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35405904

RESUMO

Gene single nucleotide polymorphisms can be used as auxiliary markers in molecular breeding and are an effective method to improve production performance. G0S2 is a key gene involved in regulating fat metabolism, but little research has been conducted on this gene regarding its role in poultry. In this study, the specialized commercial partridge chicken strain G0S2 gene was cloned and sequenced, and the relationship between the SNP sites on G0S2 and the carcass traits of chickens was investigated. The results showed that a total of seven SNPs were detected on G0S2 (g.102G > A, g.255G > A, g.349C > T, g.384A > G, g.386G > A, g.444G > A, g.556G > A). Two sites are located in the coding region and five sites are located in the 3'-UTR. SNPs located in the coding region are synonymous mutations. g.444G > A has a significant correlation with abdominal fat weight. The chickens with AG and GG genotypes have the highest abdominal fat weight, while the AA genotype is lower. The g.102G > A genotype has a significant correlation with live and abdominal fat weight. The live weight and abdominal fat weight of the chickens with AA and AG genotypes are at a higher level and have a larger gap than the GG genotype. Chickens with the AA genotype in g.556G > A had the lowest fat weight. The results of present study can provide practical information for molecular marker-assisted breeding of chicken carcass traits.

19.
Ann Transl Med ; 10(24): 1383, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36660674

RESUMO

Background: Oxidative low-density lipoprotein (ox-LDL)-induced endothelial cell damage is a major risk factor for atherosclerosis and its related cardiovascular diseases. The G0/G1 switch gene 2 (G0S2) is a multifunctional protein which has been poorly studied in atherosclerosis. Methods: In this study, ox-LDL was utilized to construct a human aortic endothelial cell (HAEC) injury model. Results: It was found that ox-LDL impaired cell viability, augmented lactate dehydrogenase (LDH) release, and reduced G0S2 levels in HAECs in a dose-dependent manner. Further, G0S2 overexpression improved the viability and restrained apoptosis of HAECs treated by ox-LDL. Conversely, G0S2 depletion decreased the viability and aggravated apoptosis of HAECs treated by ox-LDL. At the molecular level, G0S2 overexpression significantly increased the secretion of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPH-Px), promoted intracellular reactive oxygen species (ROS) production and malondialdehyde (MDA) content in HAECs under either normal or ox-LDL conditions. Meanwhile, the ox-LDL-induced mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential, translocation of mitochondrial cytochrome c (Cyt-c) to the cytoplasm, and activation of caspase-3 and caspase-9, was significantly reversed by G0S2 overexpression. In addition, G0S2 overexpression promoted the activation of AMP-activated protein kinase (AMPK) and increased the expression of nuclear factor erythroid-2-related factor-2 (Nrf2), sirtuin 1 (SIRT1) and heme oxygenase 1 (HO-1) under normal and ox-LDL conditions. Conclusions: This study demonstrated that G0S2 protects against ox-LDL-induced vascular endothelial cell injury by regulating oxidative damage and mitochondrial homeostasis and may be a promising target for the treatment of atherosclerosis.

20.
Clin Transl Med ; 12(12): e1146, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36536477

RESUMO

Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 have turned chronic myeloid leukaemia (CML) from a fatal disease into a manageable condition for most patients. Despite improved survival, targeting drug-resistant leukaemia stem cells (LSCs) remains a challenge for curative CML therapy. Aberrant lipid metabolism can have a large impact on membrane dynamics, cell survival and therapeutic responses in cancer. While ceramide and sphingolipid levels were previously correlated with TKI response in CML, the role of lipid metabolism in TKI resistance is not well understood. We have identified downregulation of a critical regulator of lipid metabolism, G0/G1 switch gene 2 (G0S2), in multiple scenarios of TKI resistance, including (1) BCR::ABL1 kinase-independent TKI resistance, (2) progression of CML from the chronic to the blast phase of the disease, and (3) in CML versus normal myeloid progenitors. Accordingly, CML patients with low G0S2 expression levels had a worse overall survival. G0S2 downregulation in CML was not a result of promoter hypermethylation or BCR::ABL1 kinase activity, but was rather due to transcriptional repression by MYC. Using CML cell lines, patient samples and G0s2 knockout (G0s2-/- ) mice, we demonstrate a tumour suppressor role for G0S2 in CML and TKI resistance. Our data suggest that reduced G0S2 protein expression in CML disrupts glycerophospholipid metabolism, correlating with a block of differentiation that renders CML cells resistant to therapy. Altogether, our data unravel a new role for G0S2 in regulating myeloid differentiation and TKI response in CML, and suggest that restoring G0S2 may have clinical utility.


Assuntos
Proteínas de Ciclo Celular , Resistencia a Medicamentos Antineoplásicos , Glicerofosfolipídeos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Animais , Camundongos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Genes de Troca , Glicerofosfolipídeos/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/uso terapêutico , Humanos , Proteínas de Ciclo Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA