Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 354
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38864340

RESUMO

G-protein coupled receptors (GPCRs), crucial in various diseases, are targeted of over 40% of approved drugs. However, the reliable acquisition of experimental GPCRs structures is hindered by their lipid-embedded conformations. Traditional protein-ligand interaction models falter in GPCR-drug interactions, caused by limited and low-quality structures. Generalized models, trained on soluble protein-ligand pairs, are also inadequate. To address these issues, we developed two models, DeepGPCR_BC for binary classification and DeepGPCR_RG for affinity prediction. These models use non-structural GPCR-ligand interaction data, leveraging graph convolutional networks and mol2vec techniques to represent binding pockets and ligands as graphs. This approach significantly speeds up predictions while preserving critical physical-chemical and spatial information. In independent tests, DeepGPCR_BC surpassed Autodock Vina and Schrödinger Dock with an area under the curve of 0.72, accuracy of 0.68 and true positive rate of 0.73, whereas DeepGPCR_RG demonstrated a Pearson correlation of 0.39 and root mean squared error of 1.34. We applied these models to screen drug candidates for GPR35 (Q9HC97), yielding promising results with three (F545-1970, K297-0698, S948-0241) out of eight candidates. Furthermore, we also successfully obtained six active inhibitors for GLP-1R. Our GPCR-specific models pave the way for efficient and accurate large-scale virtual screening, potentially revolutionizing drug discovery in the GPCR field.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Descoberta de Drogas/métodos , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Sítios de Ligação
2.
Genet Epidemiol ; 48(4): 151-163, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38379245

RESUMO

Phenotypic heterogeneity at genomic loci encoding drug targets can be exploited by multivariable Mendelian randomization to provide insight into the pathways by which pharmacological interventions may affect disease risk. However, statistical inference in such investigations may be poor if overdispersion heterogeneity in measured genetic associations is unaccounted for. In this work, we first develop conditional F statistics for dimension-reduced genetic associations that enable more accurate measurement of phenotypic heterogeneity. We then develop a novel extension for two-sample multivariable Mendelian randomization that accounts for overdispersion heterogeneity in dimension-reduced genetic associations. Our empirical focus is to use genetic variants in the GLP1R gene region to understand the mechanism by which GLP1R agonism affects coronary artery disease (CAD) risk. Colocalization analyses indicate that distinct variants in the GLP1R gene region are associated with body mass index and type 2 diabetes (T2D). Multivariable Mendelian randomization analyses that were corrected for overdispersion heterogeneity suggest that bodyweight lowering rather than T2D liability lowering effects of GLP1R agonism are more likely contributing to reduced CAD risk. Tissue-specific analyses prioritized brain tissue as the most likely to be relevant for CAD risk, of the tissues considered. We hope the multivariable Mendelian randomization approach illustrated here is widely applicable to better understand mechanisms linking drug targets to diseases outcomes, and hence to guide drug development efforts.


Assuntos
Índice de Massa Corporal , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Análise da Randomização Mendeliana , Fenótipo , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
3.
Arterioscler Thromb Vasc Biol ; 44(6): 1225-1245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511325

RESUMO

BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glicólise , Membro Posterior , Isquemia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Transdução de Sinais , Animais , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Isquemia/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Neovascularização Fisiológica/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glicólise/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Membro Posterior/irrigação sanguínea , Masculino , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/etiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Células Cultivadas , Indutores da Angiogênese/farmacologia , Fragmentos de Peptídeos/farmacologia , Camundongos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Modelos Animais de Doenças , Incretinas/farmacologia , Angiogênese
4.
Am J Physiol Cell Physiol ; 327(1): C74-C96, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738303

RESUMO

Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic ß cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Incretinas , Camundongos Endogâmicos C57BL , Obesidade , Animais , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Camundongos , Masculino , Incretinas/farmacologia , Incretinas/metabolismo , Transporte Proteico/efeitos dos fármacos , Controle Glicêmico/métodos , Camundongos Obesos , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Humanos , Dieta Hiperlipídica/efeitos adversos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Insulina/metabolismo , Exenatida/farmacologia , Transdução de Sinais/efeitos dos fármacos , AMP Cíclico/metabolismo
5.
Diabetologia ; 67(3): 528-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127123

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. METHODS: We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). RESULTS: GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by ß-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. CONCLUSIONS/INTERPRETATION: We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Ilhotas Pancreáticas , Fragmentos de Peptídeos , Humanos , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Hipoglicemia/metabolismo , Insulina/metabolismo
6.
Small ; 20(20): e2308680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225709

RESUMO

Gut microbiota function has numerous effects on humans and the diet humans consume has emerged as a pivotal determinant of gut microbiota function. Here, a new concept that gut microbiota can be trained by diet-derived exosome-like nanoparticles (ELNs) to release healthy outer membrane vesicles (OMVs) is introduced. Specifically, OMVs released from garlic ELN (GaELNs) trained human gut Akkermansia muciniphila (A. muciniphila) can reverse high-fat diet-induced type 2 diabetes (T2DM) in mice. Oral administration of OMVs released from GaELNs trained A. muciniphila can traffick to the brain where they are taken up by microglial cells, resulting in inhibition of high-fat diet-induced brain inflammation. GaELNs treatment increases the levels of OMV Amuc-1100, P9, and phosphatidylcholines. Increasing the levels of Amuc-1100 and P9 leads to increasing the GLP-1 plasma level. Increasing the levels of phosphatidylcholines is required for inhibition of cGas and STING-mediated inflammation and GLP-1R crosstalk with the insulin pathway that leads to increasing expression of Insulin Receptor Substrate (IRS1 and IRS2) on OMV targeted cells. These findings reveal a molecular mechanism whereby OMVs from plant nanoparticle-trained gut bacteria regulate genes expressed in the brain, and have implications for the treatment of brain dysfunction caused by a metabolic syndrome.


Assuntos
Eixo Encéfalo-Intestino , Diabetes Mellitus Tipo 2 , Exossomos , Alho , Microbioma Gastrointestinal , Nanopartículas , Diabetes Mellitus Tipo 2/metabolismo , Alho/química , Animais , Nanopartículas/química , Exossomos/metabolismo , Camundongos , Akkermansia , Humanos , Masculino , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/patologia
7.
Endocr J ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839345

RESUMO

Insulinomas are the most common functional pancreatic neuroendocrine neoplasm; when treatment is delayed, they induce hyperinsulinemic hypoglycemia, which is life-threatening. As surgical resection is the only curative treatment for insulinoma, preoperative localization is crucial; however, localization based on conventional imaging modalities such as computed tomography (CT) and magnetic resonance imaging is often inconclusive. Somatostatin receptor-targeted imaging is another option for detecting pancreatic neuroendocrine neoplasms but has low sensitivity and is not specific for insulinoma. The clinical application of other localizing approaches such as selective arterial calcium stimulation and endoscopic ultrasonography-guided fine needle aspiration (EUS-FNA) is limited by their being invasive and/or technically complex. Moreover, an EUS-FNA specimen of an insulinoma may be negative on insulin immunostaining. Thus, a noninvasive and clinically practical insulinoma-specific diagnostic tool to discriminate insulinomas with high accuracy is anticipated. Glucagon-like peptide-1 receptor (GLP-1R)-targeted imaging has emerged in the effort to fulfill this need. We recently developed the novel fluorine-18-labeled exendin-4-based probe conjugated with polyethylene glycol, [18F]FB(ePEG12)12-exendin-4 (18F-exendin-4) for positron emission tomography (PET) imaging and reported its clinical benefit in a case of insulinoma in the pancreatic tail. We report here a case of insulinoma in the pancreatic head in which an EUS-FNA specimen was negative on insulin immunostaining while precise preoperative localization and conclusive evidence for curative enucleation was provided by 18F-exendin-4 PET/CT (Japan Registry of Clinical Trials; jRCTs051200156).

8.
BMC Musculoskelet Disord ; 25(1): 601, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080620

RESUMO

BACKGROUND: This study aimed to investigate functions of GLP-1R agonist by liraglutide (LIRA) and revealing the mechanism related to AGEs/RAGE in chondrocytes. METHODS: To illustrate potential effect of GLP-1R agonist on AGEs induced chondrocytes, chondrocytes were administrated by AGEs with LIRA and GLP-1R inhibitor exendin. Inflammatory factors were assessed using ELISA. Real-time PCR was used to evaluate the catabolic activity MMPs and ADAMTS mRNA level, as well as anabolic activity (aggrecan and collagen II). RAGE expression was investigated by Western blotting. TUNEL, caspase3 activity and immunofluorescence were performed to test the apoptotic activity. RESULTS: Our results showed that treatment with LIRA at > 100 nM attenuated the AGE-induced chondrocyte viability. Western bolt demonstrated that GLP-1R activation by LIRA treatment reduced RAGE protein expression compared with the AGEs groups. ELISA showed that LIRA hindered the AGEs-induced production of inflammatory cytokines (IL-6, IL-12 and TNF-α) in primary chondrocytes. AGEs induced catabolism levels (MMP-1, -3, -13 and ADAMTS-4, 5) are also attenuated by LIRA, causing the retention of more extracellular matrix (Aggrecan and Collagen II). TUNEL, caspase3 activity and immunofluorescence results indicated that LIRA inhibited the AGEs-induced production of inflammatory cytokines in primary chondrocytes and attenuated the caspase 3 level, leading to the reduced apoptotic activity. All the protective effects are reversed by exendin (GLP-1R blockers). CONCLUSIONS: The present study demonstrates for the first time that LIRA, an agonist for GLP-1R which is commonly used in type 2 diabetes reverses AGEs induced chondrocyte inflammation and apoptosis through suppressing RAGE signaling, contributing to reduced catabolism and retention of more extracellular matrix. The above results indicate the possible effect of GLP-1R agonist on treating OA.


Assuntos
Apoptose , Condrócitos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Produtos Finais de Glicação Avançada , Inflamação , Liraglutida , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Liraglutida/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Apoptose/efeitos dos fármacos , Animais , Transdução de Sinais/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Células Cultivadas
9.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037429

RESUMO

In our study, a method based on affinity ultrafiltration screening coupled with UPLC-ESI-Orbitrap-MS technology was established to select Glucagon-like peptide-1 receptor (GLP-1R) agonists from natural products, and as an example, the GLP-1R agonists from Panax ginseng was selected using our established method. As a result, total five GLP-1R agonists were selected from Panax ginseng for the first time. Our results indicated that activating GLP-1R to promote insulin secretion probably was another important hypoglycemia mechanism for ginsenosides in Panax ginseng, which had great influence on the study of the anti-diabetes effect of ginsenosides.

10.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928038

RESUMO

Despite the availability of different treatments for type 2 diabetes (T2D), post-diagnosis complications remain prevalent; therefore, more effective treatments are desired. Glucagon-like peptide (GLP)-1-based drugs are currently used for T2D treatment. They act as orthosteric agonists for the GLP-1 receptor (GLP-1R). In this study, we analyzed in vitro how the GLP-1R orthosteric and allosteric agonists augment glucose-stimulated insulin secretion (GSIS) and intracellular cAMP production (GSICP) in INS-1E pancreatic beta cells under healthy, diabetic, and recovered states. The findings from this study suggest that allosteric agonists have a longer duration of action than orthosteric agonists. They also suggest that the GLP-1R agonists do not deplete intracellular insulin, indicating they can be a sustainable and safe treatment option for T2D. Importantly, this study demonstrates that the GLP-1R agonists variably augment GSIS through GSICP in healthy, diabetic, and recovered INS-1E cells. Furthermore, we find that INS-1E cells respond differentially to the GLP-1R agonists depending on both glucose concentration during and before treatment and/or whether the cells have been previously exposed to these drugs. In conclusion, the findings described in this manuscript will be useful in determining in vitro how pancreatic beta cells respond to T2D drug treatments in healthy, diabetic, and recovered states.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Secreção de Insulina , Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Secreção de Insulina/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Animais , Regulação Alostérica/efeitos dos fármacos , Ratos , Humanos , Insulina/metabolismo , Glucose/metabolismo , AMP Cíclico/metabolismo , Linhagem Celular , Hipoglicemiantes/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo
11.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612620

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent data highlight similarities between neurodegenerative diseases, including PD and type 2 diabetes mellitus (T2DM), suggesting a crucial interplay between the gut-brain axis. Glucagon-like peptide-1 receptor (GLP-1R) agonists, known for their use in T2DM treatment, are currently extensively studied as novel PD modifying agents. For this narrative review article, we searched PubMed and Scopus databases for peer-reviewed research, review articles and clinical trials regarding GLP-1R agonists and PD published in the English language with no time restrictions. We also screened the references of the selected articles for possible additional articles in order to include most of the key recent evidence. Many data on animal models and preclinical studies show that GLP1-R agonists can restore dopamine levels, inhibit dopaminergic loss, attenuate neuronal degeneration and alleviate motor and non-motor features of PD. Evidence from clinical studies is also very promising, enhancing the possibility of adding GLP1-R agonists to the current armamentarium of drugs available for PD treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Doença de Parkinson , Animais , Doença de Parkinson/tratamento farmacológico , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Diabetes Mellitus Tipo 2/tratamento farmacológico , Eixo Encéfalo-Intestino , Bases de Dados Factuais , Dopamina
12.
J Obstet Gynaecol ; 44(1): 2301324, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38269495

RESUMO

BACKGROUND: Despite the strong evidence concerning carcinogenic roles of glucagon-like peptide 1 receptor (GLP1R), the role of this gene in endometrial cancer (EC) remains elusive. This study investigated the properties of GLP1R on EC in vitro. METHODS: The expression of GLP1R in EC was detected by RT-qPCR, immunohistochemistry, and western blotting. Cell viability, cell cycle, apoptosis, migration, invasion and ferroptosis were assessed through CCK-8, flow cytometry, wound healing, transwell, DCFH-DA and western blotting, respectively. RESULTS: We found that GLP1R was up-regulated in EC than normal specimens. It had the highest expression in AN3CA cells. Cell viability, migration and invasion were significantly reduced, while cell cycle arrest and apoptosis were induced following GLP1R knockdown. The malignant biological behaviours of AN3CA cells were investigated when treated with exendin-4 (GLP1R agonist). Moreover, GLP1R lowered intracellular ROS level and expression of SLC7A11, and FTH1, but mitigated GPX4 expression in AN3CA cells. CONCLUSION: In a word, GLP1R was up-regulated in EC and its up-regulation facilitated the proliferative and metastatic potentials, and protected cells from ferroptosis, thereby accelerating EC progression. These data emphasised the potency of GLP1R as a therapeutic agent against EC.


Endometrial cancer (EC) is the second most common form of gynaecologic malignancy, with over 189,000 new cases and about 45,000 deaths worldwide per annum. The effects of glucagon-like peptide 1 receptor (GLP1R) in cancers such as colon and pancreatic cancers have been uncovered. However, whether GLP1R affects EC progression especially ferroptosis process remains elusive. In this study, up-regulation of GLP1R promotes the proliferative and metastatic potentials of EC cells, and protects EC cells from ferroptosis. The opposite results are observed in GLP1R knocking-down. Our study found that GLP1R may exert an oncogene function in EC cells, which can affect proliferative, migrated as well as invasive capacities of EC cells. Moreover, it protected EC cells from ferroptosis. Thus, our results expanded the understanding of the function of GLP1R protein and offered insights into the targeted treatment strategies against EC.


Assuntos
Neoplasias do Endométrio , Humanos , Feminino , Neoplasias do Endométrio/genética , Morte Celular , Apoptose , Sobrevivência Celular , Suplementos Nutricionais
13.
Diabetologia ; 66(7): 1306-1321, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36995380

RESUMO

AIMS/HYPOTHESIS: Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons. METHODS: The effect of the GLP-1R agonists dulaglutide and exenatide was examined in Wfs1 knockout mice and in an array of human preclinical models of Wolfram syndrome, including WFS1-deficient human beta cells, human induced pluripotent stem cell (iPSC)-derived beta-like cells and neurons from control individuals and individuals affected by Wolfram syndrome, and humanised mice. RESULTS: Our study shows that the long-lasting GLP-1R agonist dulaglutide reverses impaired glucose tolerance in WFS1-deficient mice, and that exenatide and dulaglutide improve beta cell function and prevent apoptosis in different human WFS1-deficient models including iPSC-derived beta cells from people with Wolfram syndrome. Exenatide improved mitochondrial function, reduced oxidative stress and prevented apoptosis in Wolfram syndrome iPSC-derived neural precursors and cerebellar neurons. CONCLUSIONS/INTERPRETATION: Our study provides novel evidence for the beneficial effect of GLP-1R agonists on WFS1-deficient human pancreatic beta cells and neurons, suggesting that these drugs may be considered as a treatment for individuals with Wolfram syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Atrofia Óptica , Síndrome de Wolfram , Humanos , Animais , Camundongos , Síndrome de Wolfram/tratamento farmacológico , Síndrome de Wolfram/genética , Exenatida/uso terapêutico , Atrofia Óptica/patologia , Células Secretoras de Insulina/patologia , Camundongos Knockout
14.
Diabetologia ; 66(8): 1481-1500, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37171501

RESUMO

AIMS/HYPOTHESIS: Epidemiological studies have generated conflicting findings on the relationship between glucose-lowering medication use and cancer risk. Naturally occurring variation in genes encoding glucose-lowering drug targets can be used to investigate the effect of their pharmacological perturbation on cancer risk. METHODS: We developed genetic instruments for three glucose-lowering drug targets (peroxisome proliferator activated receptor γ [PPARG]; sulfonylurea receptor 1 [ATP binding cassette subfamily C member 8 (ABCC8)]; glucagon-like peptide 1 receptor [GLP1R]) using summary genetic association data from a genome-wide association study of type 2 diabetes in 148,726 cases and 965,732 controls in the Million Veteran Program. Genetic instruments were constructed using cis-acting genome-wide significant (p<5×10-8) SNPs permitted to be in weak linkage disequilibrium (r2<0.20). Summary genetic association estimates for these SNPs were obtained from genome-wide association study (GWAS) consortia for the following cancers: breast (122,977 cases, 105,974 controls); colorectal (58,221 cases, 67,694 controls); prostate (79,148 cases, 61,106 controls); and overall (i.e. site-combined) cancer (27,483 cases, 372,016 controls). Inverse-variance weighted random-effects models adjusting for linkage disequilibrium were employed to estimate causal associations between genetically proxied drug target perturbation and cancer risk. Co-localisation analysis was employed to examine robustness of findings to violations of Mendelian randomisation (MR) assumptions. A Bonferroni correction was employed as a heuristic to define associations from MR analyses as 'strong' and 'weak' evidence. RESULTS: In MR analysis, genetically proxied PPARG perturbation was weakly associated with higher risk of prostate cancer (for PPARG perturbation equivalent to a 1 unit decrease in inverse rank normal transformed HbA1c: OR 1.75 [95% CI 1.07, 2.85], p=0.02). In histological subtype-stratified analyses, genetically proxied PPARG perturbation was weakly associated with lower risk of oestrogen receptor-positive breast cancer (OR 0.57 [95% CI 0.38, 0.85], p=6.45×10-3). In co-localisation analysis, however, there was little evidence of shared causal variants for type 2 diabetes liability and cancer endpoints in the PPARG locus, although these analyses were likely underpowered. There was little evidence to support associations between genetically proxied PPARG perturbation and colorectal or overall cancer risk or between genetically proxied ABCC8 or GLP1R perturbation with risk across cancer endpoints. CONCLUSIONS/INTERPRETATION: Our drug target MR analyses did not find consistent evidence to support an association of genetically proxied PPARG, ABCC8 or GLP1R perturbation with breast, colorectal, prostate or overall cancer risk. Further evaluation of these drug targets using alternative molecular epidemiological approaches may help to further corroborate the findings presented in this analysis. DATA AVAILABILITY: Summary genetic association data for select cancer endpoints were obtained from the public domain: breast cancer ( https://bcac.ccge.medschl.cam.ac.uk/bcacdata/ ); and overall prostate cancer ( http://practical.icr.ac.uk/blog/ ). Summary genetic association data for colorectal cancer can be accessed by contacting GECCO (kafdem at fredhutch.org). Summary genetic association data on advanced prostate cancer can be accessed by contacting PRACTICAL (practical at icr.ac.uk). Summary genetic association data on type 2 diabetes from Vujkovic et al (Nat Genet, 2020) can be accessed through dbGAP under accession number phs001672.v3.p1 (pha004945.1 refers to the European-specific summary statistics). UK Biobank data can be accessed by registering with UK Biobank and completing the registration form in the Access Management System (AMS) ( https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access ).


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , Neoplasias da Próstata , Masculino , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Fatores de Risco , Glucose , Estudo de Associação Genômica Ampla , PPAR gama/genética , Neoplasias da Mama/genética , Neoplasias da Próstata/complicações , Neoplasias Colorretais/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética
15.
J Biol Chem ; 298(5): 101889, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378127

RESUMO

An absolute or relative deficiency of pancreatic ß-cells mass and functionality is a crucial pathological feature common to type 1 diabetes mellitus and type 2 diabetes mellitus. Glucagon-like-peptide-1 receptor (GLP1R) agonists have been the focus of considerable research attention for their ability to protect ß-cell mass and augment insulin secretion with no risk of hypoglycemia. Presently commercially available GLP1R agonists are peptides that limit their use due to cost, stability, and mode of administration. To address this drawback, strategically designed distinct sets of small molecules were docked on GLP1R ectodomain and compared with previously known small molecule GLP1R agonists. One of the small molecule PK2 (6-((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-6H-indolo[2,3-b]quinoxaline) displays stable binding with GLP1R ectodomain and induces GLP1R internalization and increasing cAMP levels. PK2 also increases insulin secretion in the INS-1 cells. The oral administration of PK2 protects against diabetes induced by multiple low-dose streptozotocin administration by lowering high blood glucose levels. Similar to GLP1R peptidic agonists, treatment of PK2 induces ß-cell replication and attenuate ß-cell apoptosis in STZ-treated mice. Mechanistically, this protection was associated with decreased thioredoxin-interacting protein expression, a potent inducer of diabetic ß-cell apoptosis and dysfunction. Together, this report describes a small molecule, PK2, as an orally active nonpeptidic GLP1R agonist that has efficacy to preserve or restore functional ß-cell mass.


Assuntos
Diabetes Mellitus Tipo 2 , Desenho de Fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Células Secretoras de Insulina , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Estreptozocina
16.
Biochem Biophys Res Commun ; 647: 1-8, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36706596

RESUMO

Apoptosis is a major pathophysiological change following myocardial ischemia/reperfusion (I/R) injury. Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are widely expressed in the cardiovascular system and GLP-1/GLP-1R activates the protein kinase G (PKG)-related signaling pathway. Therefore, this study tested whether semaglutide, a new GLP-1 analog, inhibits I/R injury-induced cardiomyocyte apoptosis by activating the PKG/PKCε/ERK1/2 pathway. We induced myocardial I/R injury in rats and hypoxia/reoxygenation (H/R) injury in H9C2 cells and detected the effects of semaglutide, a PKG analog (8-Br-cGMP), and a PKG inhibitor (KT-5823) on the PKG/PKCε/ERK1/2 pathway and cardiomyocyte apoptosis. We found that semaglutide upregulated GLP-1R levels, and both semaglutide and 8-Br-cGMP activated the PKG/PKCε/ERK1/2 pathway, inhibited myocardial infarction (MI), decreased hs-cTNT levels, increased NT-proBNP levels, and suppressed cardiomyocyte apoptosis in I/R rats and H/R H9C2 cells. However, KT-5823 exerted contrasting effects with semaglutide and 8-Br-cGMP, and KT-5823 weakened the cardioprotective effects of semaglutide. In conclusion, semaglutide inhibits I/R injury-induced cardiomyocyte apoptosis by activating the PKG/PKCε/ERK1/2 pathway. The beneficial effect of GLP-1/GLP-1R, involved in the activation of the PKG/PKCε/ERK1/2 pathway, may provide a novel treatment method for myocardial I/R injury.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Sistema de Sinalização das MAP Quinases , Miócitos Cardíacos/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Proteína Quinase C-épsilon/metabolismo , Apoptose , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Reperfusão
17.
Pharmacol Res ; 189: 106680, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746359

RESUMO

Acute kidney injury (AKI) is a common clinical complication. Cisplatin (Cis) is an effective chemotherapeutic drug; however, its acute nephrotoxicity often limits its application. The role of liraglutide (Lir), an agonist of the glucagon-like peptide-1 receptor (GLP-1R), has recently attracted increasing attention beyond glycemic regulation. This study showed that Lir significantly ameliorated Cis-induced kidney dysfunction and renal damage. However, this renoprotective effect was partially abolished in GLP-1R knockout (GLP-1R-/-) mice. Furthermore, we synthesized Lir metabolites, GLP-1 (9-37) and GLP-1 (28-37), and found that they also exerted reno-protective effects that were not impaired in GLP-1R-/- mice. We also demonstrated that Lir and its metabolites reduced cisplatin-induced apoptosis in human renal tubular epithelial cells (HK-2). After silencing GLP-1R expression in HK-2 cells with small interfering ribose nucleic acid (siRNA), the protective effect of Lir on HK-2 cells was inhibited, while the protective effects of GLP-1 (9-37) and GLP-1 (28-37) were not affected. Additionally, we demonstrated that Lir and its metabolites inhibited Cis-induced high-mobility group box 1 (HMGB1) nuclear-cytoplasmic translocation and release, and reduced inflammatory cytokines and HMGB1 receptor expression. The exogenous use of recombinant HMGB1 (rHMGB1) dramatically weakened the protective effects of Lir and its metabolites. In conclusion, our study shows that Lir significantly attenuated Cis-induced AKI through GLP-1R dependent and independent pathways, mediated by inhibiting nuclear-cytoplasmic translocation and release of HMGB1. Lir and its metabolites may be effective drugs for treating cisplatin-induced nephrotoxicity.


Assuntos
Injúria Renal Aguda , Proteína HMGB1 , Camundongos , Humanos , Animais , Liraglutida/farmacologia , Cisplatino , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Injúria Renal Aguda/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
18.
Nutr Neurosci ; 26(10): 997-1010, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36039913

RESUMO

OBJECTIVE: Depression is one of the most common complications in patients with diabetes. Our previous study demonstrated puerarin, a dietary isoflavone, improved glucose homeostasis and ß-cell regeneration in high-fat diet (HFD)-induced diabetic mice. Here, we aim to evaluate the potential effect of puerarin on diabetes-induced depression. METHODS: The co-occurrence of diabetes and depression with related biochemical alterations were confirmed in HFD mice and db/db mice, respectively using behavioral analysis, ELISA and western blotting assay. Furthermore, impacts of puerarin on depression-related symptoms and pathological changes were investigated in HFD mice. RESULTS: The results showed that puerarin effectively alleviated the depression-like behaviors of HFD mice, down-regulated serum levels of corticosterone and IL-1ß, while up-regulated the content of 5-hydroxytryptamine. Simultaneously, puerarin increased the number of hippocampal neurons in HFD mice, and suppressed the apoptosis of neurons to protect the hippocampal neuroplasticity. GLP-1R expression in hippocampus of HFD mice was enhanced by puerarin, which subsequently activated AMPK, CREB and BDNF/TrkB signaling to improve neuroplasticity. Importantly, our data indicated that puerarin had an advantage over fluoxetine or metformin in treating diabetes-induced depression. CONCLUSION: Taken together, puerarin exerts anti-depressant-like effects on HFD diabetic mice, specifically by improving hippocampal neuroplasticity via GLP-1R/BDNF/TrkB signaling. Puerarin as a dietary supplement might be a potential candidate in intervention of diabetes with comorbid depression.


Assuntos
Diabetes Mellitus Experimental , Isoflavonas , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Depressão/etiologia , Depressão/induzido quimicamente , Isoflavonas/farmacologia , Hipocampo/metabolismo
19.
J Endocrinol Invest ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924474

RESUMO

OBJECTIVE: N-acylethanolamines (NAEs) include endocannabinoid (EC) and EC-related molecules that impact the anti-obesity and anti-diabetic efficacy of glucagon-like peptide-1 receptor agonists (GLP-1RA) in animal studies. However, the clinical relevance of these findings remains to be determined. Here, we tested whether GLP-1RA treatment affects circulating NAE levels and whether NAEs may predict the efficacy of GLP-1RA treatment in humans with obesity undergoing weight loss maintenance. MATERIALS AND METHODS: We profiled plasma levels of NAEs in participants with obesity undergoing weight loss maintenance with (n = 23)/or without (n = 20) treatment with the GLP-1RA liraglutide. NAE levels were measured at three different time points: before the start of the study, at the end of the diet-induced weight loss, and after 52-weeks treatment. Linear regression analyses were used to investigate whether pharmacological responses could be predicted by NAEs levels. RESULTS: Liraglutide treatment reduced plasma concentrations of the NAE and oleoyl-ethanolamide (OEA), without altering arachidonoyl-ethanolamide (AEA) levels and palmitoyl-ethanolamide (PEA) levels. High pre-treatment levels of OEA were predictive of superior compound-mediated effects on fasting insulin and triglyceride levels. High pre-treatment PEA and AEA levels were also predictive of superior Liraglutide-mediated effects on triglyceride levels. CONCLUSIONS: Our data suggests that specific NAEs such as OEA and AEA are promising biomarkers of GLP-1RA metabolic efficacy in humans with obesity during weight loss maintenance. Plasma profiling of EC-related molecules may be a promising strategy to tailor GLP-1R-based therapies to individual needs in obesity and diabetes management.

20.
J Endocrinol Invest ; 46(11): 2213-2236, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37378828

RESUMO

BACKGROUND: Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE: This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. ß3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA