Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(13): e33847, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027606

RESUMO

Significant attention has been devoted to bioactive implants for bone tissue applications, particularly composite scaffolds based on hydroxyapatite (HaP). This study explores the effects of Magnesium and Titanium oxides on the characteristics of HaP-based composite (HMT) scaffolds. The ceramic nanopowders were synthesized using in situ sol-gel, and then the scaffolds were fabricated by gel-casting technique, followed by heat treatment at 1200 °C. The thermal, microstructural, and structural properties of the samples were investigated by different characterization techniques. It was observed that the formation of the MgTiO3 phase in the composite scaffold was likely the key factor contributing to the improved mechanical properties. Finally, to evaluate bioactivity and biodegradability, scaffolds were immersed in simulated body fluid (SBF) buffer and analyzed by Field Emission Scanning Electron Microscopy (FESEM), and the viability of human fibroblast cells was assessed using the MTT assay. The composite scaffolds containing the MgTiO3 phase showed greater HaP layer formation on the scaffold surface, indicating enhanced biocompatibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA