Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biostatistics ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074174

RESUMO

Cancer is molecularly heterogeneous, with seemingly similar patients having different molecular landscapes and accordingly different clinical behaviors. In recent studies, gene expression networks have been shown as more effective/informative for cancer heterogeneity analysis than some simpler measures. Gene interconnections can be classified as "direct" and "indirect," where the latter can be caused by shared genomic regulators (such as transcription factors, microRNAs, and other regulatory molecules) and other mechanisms. It has been suggested that incorporating the regulators of gene expressions in network analysis and focusing on the direct interconnections can lead to a deeper understanding of the more essential gene interconnections. Such analysis can be seriously challenged by the large number of parameters (jointly caused by network analysis, incorporation of regulators, and heterogeneity) and often weak signals. To effectively tackle this problem, we propose incorporating prior information contained in the published literature. A key challenge is that such prior information can be partial or even wrong. We develop a two-step procedure that can flexibly accommodate different levels of prior information quality. Simulation demonstrates the effectiveness of the proposed approach and its superiority over relevant competitors. In the analysis of a breast cancer dataset, findings different from the alternatives are made, and the identified sample subgroups have important clinical differences.

2.
Biostatistics ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916966

RESUMO

Bayesian graphical models are powerful tools to infer complex relationships in high dimension, yet are often fraught with computational and statistical challenges. If exploited in a principled way, the increasing information collected alongside the data of primary interest constitutes an opportunity to mitigate these difficulties by guiding the detection of dependence structures. For instance, gene network inference may be informed by the use of publicly available summary statistics on the regulation of genes by genetic variants. Here we present a novel Gaussian graphical modeling framework to identify and leverage information on the centrality of nodes in conditional independence graphs. Specifically, we consider a fully joint hierarchical model to simultaneously infer (i) sparse precision matrices and (ii) the relevance of node-level information for uncovering the sought-after network structure. We encode such information as candidate auxiliary variables using a spike-and-slab submodel on the propensity of nodes to be hubs, which allows hypothesis-free selection and interpretation of a sparse subset of relevant variables. As efficient exploration of large posterior spaces is needed for real-world applications, we develop a variational expectation conditional maximization algorithm that scales inference to hundreds of samples, nodes and auxiliary variables. We illustrate and exploit the advantages of our approach in simulations and in a gene network study which identifies hub genes involved in biological pathways relevant to immune-mediated diseases.

3.
Arch Microbiol ; 206(3): 117, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393387

RESUMO

Campylobacter jejuni is a foodborne pathogen that causes gastroenteritis in humans and has developed resistance to various antibiotics. The primary objective of this research was to examine the network of antibiotic resistance in C. jejuni. The study involved the wild and antibiotic-resistant strains placed in the presence and absence of antibiotics to review their gene expression profiles in response to ciprofloxacin via microarray. Differentially expressed genes (DEGs) analysis and Protein-Protein Interaction (PPI) Network studies were performed for these genes. The results showed that the resistance network of C. jejuni is modular, with different genes involved in bacterial motility, capsule synthesis, efflux, and amino acid and sugar synthesis. Antibiotic treatment resulted in the down-regulation of cluster genes related to translation, flagellum formation, and chemotaxis. In contrast, cluster genes involved in homeostasis, capsule formation, and cation efflux were up-regulated. The study also found that macrolide antibiotics inhibit the progression of C. jejuni infection by inactivating topoisomerase enzymes and increasing the activity of epimerase enzymes, trying to compensate for the effect of DNA twisting. Then, the bacterium limits the movement to conserve energy. Identifying the antibiotic resistance network in C. jejuni can aid in developing drugs to combat these bacteria. Genes involved in cell division, capsule formation, and substance transport may be potential targets for inhibitory drugs. Future research must be directed toward comprehending the underlying mechanisms contributing to the modularity of antibiotic resistance and developing strategies to disrupt and mitigate the growing threat of antibiotic resistance effectively.


Assuntos
Campylobacter jejuni , Humanos , Campylobacter jejuni/genética , Transcriptoma , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Macrolídeos/farmacologia , Farmacorresistência Bacteriana/genética
4.
Microbiol Spectr ; 12(4): e0316523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441469

RESUMO

Trichoderma species are known for their mycoparasitic activity against phytopathogenic fungi that cause significant economic losses in agriculture. During mycoparasitism, Trichoderma spp. recognize molecules produced by the host fungus and release secondary metabolites and hydrolytic enzymes to kill and degrade the host's cell wall. Here, we explored the participation of the Trichoderma atroviride RNAi machinery in the interaction with six phytopathogenic fungi of economic importance. We determined that both Argonaute-3 and Dicer-2 play an essential role during mycoparasitism. Using an RNA-Seq approach, we identified that perception, detox, and cell wall degradation depend on the T. atroviride-RNAi when interacting with Alternaria alternata, Rhizoctonia solani AG2, and R. solani AG5. Furthermore, we constructed a gene co-expression network that provides evidence of two gene modules regulated by RNAi, which play crucial roles in essential processes during mycoparasitism. In addition, based on small RNA-seq, we conclude that siRNAs regulate amino acid and carbon metabolism and communication during the Trichoderma-host interaction. Interestingly, our data suggest that siRNAs might regulate allorecognition (het) and transport genes in a cross-species manner. Thus, these results reveal a fine-tuned regulation in T. atroviride dependent on siRNAs that is essential during the biocontrol of phytopathogenic fungi, showing a greater complexity of this process than previously established.IMPORTANCEThere is an increasing need for plant disease control without chemical pesticides to avoid environmental pollution and resistance, and the health risks associated with the application of pesticides are increasing. Employing Trichoderma species in agriculture to control fungal diseases is an alternative plant protection strategy that overcomes these issues without utilizing chemical fungicides. Therefore, understanding the biocontrol mechanisms used by Trichoderma species to antagonize other fungi is critical. Although there has been extensive research about the mechanisms involved in the mycoparasitic capability of Trichoderma species, there are still unsolved questions related to how Trichoderma regulates recognition, attack, and defense mechanisms during interaction with a fungal host. In this work, we report that the Argonaute and Dicer components of the RNAi machinery and the small RNAs they process are essential for gene regulation during mycoparasitism by Trichoderma atroviride.


Assuntos
Hypocreales , Praguicidas , Plantas , Comunicação , Regulação Fúngica da Expressão Gênica
5.
Adv Sci (Weinh) ; 11(11): e2304548, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38193201

RESUMO

Understanding the phenotypic heterogeneity of antibiotic-resistant bacteria following treatment and the transitions between different phenotypes is crucial for developing effective infection control strategies. The study expands upon previous work by explicating chloramphenicol-induced phenotypic heterogeneities in growth rate, gene expression, and morphology of resistant Escherichia coli using time-lapse microscopy. Correlating the bacterial growth rate and cspC expression, four interchangeable phenotypic subpopulations across varying antibiotic concentrations are identified, surpassing the previously described growth rate bistability. Notably, bacterial cells exhibiting either fast or slow growth rates can concurrently harbor subpopulations characterized by high and low gene expression levels, respectively. To elucidate the mechanisms behind this enhanced heterogeneity, a concise gene expression network model is proposed and the biological significance of the four phenotypes is further explored. Additionally, by employing Hidden Markov Model fitting and integrating the non-equilibrium landscape and flux theory, the real-time data encompassing diverse bacterial traits are analyzed. This approach reveals dynamic changes and switching kinetics in different cell fates, facilitating the quantification of observable behaviors and the non-equilibrium dynamics and thermodynamics at play. The results highlight the multi-dimensional heterogeneous behaviors of antibiotic-resistant bacteria under antibiotic stress, providing new insights into the compromised antibiotic efficacy, microbial response, and associated evolution processes.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Cloranfenicol/farmacologia , Bactérias , Fenótipo
6.
Prog Neurobiol ; 235: 102599, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522610

RESUMO

Gene regulation in the hippocampus is fundamental for its development, synaptic plasticity, memory formation, and adaptability. Comparisons of gene expression among different developmental stages, distinct cell types, and specific experimental conditions have identified differentially expressed genes contributing to the organization and functionality of hippocampal circuits. The NEIL3 DNA glycosylase, one of the DNA repair enzymes, plays an important role in hippocampal maturation and neuron functionality by shaping transcription. While differential gene expression (DGE) analysis has identified key genes involved, broader gene expression patterns crucial for high-order hippocampal functions remain uncharted. By utilizing the weighted gene co-expression network analysis (WGCNA), we mapped gene expression networks in immature (p8-neonatal) and mature (3 m-adult) hippocampal circuits in wild-type and NEIL3-deficient mice. Our study unveiled intricate gene network structures underlying hippocampal maturation, delineated modules of co-expressed genes, and pinpointed highly interconnected hub genes specific to the maturity of hippocampal subregions. We investigated variations within distinct gene network modules following NEIL3 depletion, uncovering NEIL3-targeted hub genes that influence module connectivity and specificity. By integrating WGCNA with DGE, we delve deeper into the NEIL3-dependent molecular intricacies of hippocampal maturation. This study provides a comprehensive systems-level analysis for assessing the potential correlation between gene connectivity and functional connectivity within the hippocampal network, thus shaping hippocampal function throughout development.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Animais , Camundongos , Expressão Gênica , Redes Reguladoras de Genes/genética , Hipocampo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA