Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Microbiol ; 122(2): 201-212, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38922722

RESUMO

An arsenate reductase (Car1) from the Bacteroidetes species Rufibacter tibetensis 1351T was isolated from the Tibetan Plateau. The strain exhibits resistance to arsenite [As(III)] and arsenate [As(V)] and reduces As(V) to As(III). Here we shed light on the mechanism of enzymatic reduction by Car1. AlphaFold2 structure prediction, active site energy minimization, and steady-state kinetics of wild-type and mutant enzymes give insight into the catalytic mechanism. Car1 is structurally related to calcineurin-like metallophosphoesterases (MPPs). It functions as a binuclear metal hydrolase with limited phosphatase activity, particularly relying on the divalent metal Ni2+. As an As(V) reductase, it displays metal promiscuity and is coupled to the thioredoxin redox cycle, requiring the participation of two cysteine residues, Cys74 and Cys76. These findings suggest that Car1 evolved from a common ancestor of extant phosphatases by incorporating a redox function into an existing MPP catalytic site. Its proposed mechanism of arsenate reduction involves Cys74 initiating a nucleophilic attack on arsenate, leading to the formation of a covalent intermediate. Next, a nucleophilic attack of Cys76 leads to the release of As(III) and the formation of a surface-exposed Cys74-Cys76 disulfide, ready for reduction by thioredoxin.


Assuntos
Arseniato Redutases , Bacteroidetes , Domínio Catalítico , Oxirredução , Arseniato Redutases/metabolismo , Arseniato Redutases/genética , Arseniato Redutases/química , Bacteroidetes/enzimologia , Bacteroidetes/genética , Arseniatos/metabolismo , Cinética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/química , Catálise , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Arsenitos/metabolismo
2.
Annu Rev Genomics Hum Genet ; 23: 1-27, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35567277

RESUMO

Although my engagement with human genetics emerged gradually, and sometimes serendipitously, it has held me spellbound for decades. Without my teachers, students, postdocs, colleagues, and collaborators, I would not be writing this review of my scientific adventures. Early gene and disease mapping was a satisfying puzzle-solving exercise, but building biological insight was my main goal. The project trajectory was hugely influenced by the evolutionarily conserved nature of the implicated genes and by the pace of progress in genetic technologies. The rich detail of clinical observations, particularly in eye disease, makes humans an excellent model, especially when complemented by the use of multiple other animal species for experimental validation. The contributions of collaborators and rivals also influenced our approach. We are very fortunate to work in this era of unprecedented progress in genetics and genomics.


Assuntos
Genômica , Animais , Humanos
3.
Genesis ; 62(3): e23602, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38721990

RESUMO

Cilia play a key role in the regulation of signaling pathways required for embryonic development, including the proper formation of the neural tube, the precursor to the brain and spinal cord. Forward genetic screens were used to generate mouse lines that display neural tube defects (NTD) and secondary phenotypes useful in interrogating function. We describe here the L3P mutant line that displays phenotypes of disrupted Sonic hedgehog signaling and affects the initiation of cilia formation. A point mutation was mapped in the L3P line to the gene Rsg1, which encodes a GTPase-like protein. The mutation lies within the GTP-binding pocket and disrupts the highly conserved G1 domain. The mutant protein and other centrosomal and IFT proteins still localize appropriately to the basal body of cilia, suggesting that RSG1 GTPase activity is not required for basal body maturation but is needed for a downstream step in axonemal elongation.


Assuntos
Cílios , Tubo Neural , Animais , Camundongos , Cílios/metabolismo , Cílios/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Tubo Neural/embriologia , Tubo Neural/metabolismo , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Mutação Puntual , Transdução de Sinais
4.
Diabetologia ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240351

RESUMO

AIMS/HYPOTHESIS: Genome-wide association studies (GWAS) have identified hundreds of type 2 diabetes loci, with the vast majority of signals located in non-coding regions; as a consequence, it remains largely unclear which 'effector' genes these variants influence. Determining these effector genes has been hampered by the relatively challenging cellular settings in which they are hypothesised to confer their effects. METHODS: To implicate such effector genes, we elected to generate and integrate high-resolution promoter-focused Capture-C, assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-seq datasets to characterise chromatin and expression profiles in multiple cell lines relevant to type 2 diabetes for subsequent functional follow-up analyses: EndoC-BH1 (pancreatic beta cell), HepG2 (hepatocyte) and Simpson-Golabi-Behmel syndrome (SGBS; adipocyte). RESULTS: The subsequent variant-to-gene analysis implicated 810 candidate effector genes at 370 type 2 diabetes risk loci. Using partitioned linkage disequilibrium score regression, we observed enrichment for type 2 diabetes and fasting glucose GWAS loci in promoter-connected putative cis-regulatory elements in EndoC-BH1 cells as well as fasting insulin GWAS loci in SGBS cells. Moreover, as a proof of principle, when we knocked down expression of the SMCO4 gene in EndoC-BH1 cells, we observed a statistically significant increase in insulin secretion. CONCLUSIONS/INTERPRETATION: These results provide a resource for comparing tissue-specific data in tractable cellular models as opposed to relatively challenging primary cell settings. DATA AVAILABILITY: Raw and processed next-generation sequencing data for EndoC-BH1, HepG2, SGBS_undiff and SGBS_diff cells are deposited in GEO under the Superseries accession GSE262484. Promoter-focused Capture-C data are deposited under accession GSE262496. Hi-C data are deposited under accession GSE262481. Bulk ATAC-seq data are deposited under accession GSE262479. Bulk RNA-seq data are deposited under accession GSE262480.

5.
J Biol Chem ; 299(9): 105132, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544648

RESUMO

Voltage-gated sodium (NaV) channels drive the upstroke of the action potential and are comprised of a pore-forming α-subunit and regulatory ß-subunits. The ß-subunits modulate the gating, trafficking, and pharmacology of the α-subunit. These functions are routinely assessed by ectopic expression in heterologous cells. However, currently available expression systems may not capture the full range of these effects since they contain endogenous ß-subunits. To better reveal ß-subunit functions, we engineered a human cell line devoid of endogenous NaV ß-subunits and their immediate phylogenetic relatives. This new cell line, ß-subunit-eliminated eHAP expression (BeHAPe) cells, were derived from haploid eHAP cells by engineering inactivating mutations in the ß-subunits SCN1B, SCN2B, SCN3B, and SCN4B, and other subfamily members MPZ (myelin protein zero(P0)), MPZL1, MPZL2, MPZL3, and JAML. In diploid BeHAPe cells, the cardiac NaV α-subunit, NaV1.5, was highly sensitive to ß-subunit modulation and revealed that each ß-subunit and even MPZ imparted unique gating properties. Furthermore, combining ß1 and ß2 with NaV1.5 generated a sodium channel with hybrid properties, distinct from the effects of the individual subunits. Thus, this approach revealed an expanded ability of ß-subunits to regulate NaV1.5 activity and can be used to improve the characterization of other α/ß NaV complexes.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5 , Subunidades Proteicas , Subunidades beta do Canal de Sódio Disparado por Voltagem , Humanos , Potenciais de Ação , Linhagem Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Fosfoproteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades beta do Canal de Sódio Disparado por Voltagem/química , Subunidades beta do Canal de Sódio Disparado por Voltagem/deficiência , Subunidades beta do Canal de Sódio Disparado por Voltagem/genética , Subunidades beta do Canal de Sódio Disparado por Voltagem/metabolismo , Mutação
6.
Plant Dis ; 108(8): 2550-2557, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38587804

RESUMO

'Lantian 26', a leading elite winter wheat cultivar in Gansu Province since its release in 2010, exhibits high resistance or immunization to stripe rust in the adult-plant stage under a high disease pressure in Longnan (southeastern Gansu). Identifying the resistance genes in 'Lantian 26' could provide a basis for enhanced durability and high levels of resistance in wheat cultivars. Here, a segregating population was developed from a cross between a highly susceptible wheat cultivar Mingxian 169 and the highly stripe rust-resistant 'Lantian 26'. The F2 and F2:3 progenies of the cross were inoculated with multiple prevalent virulent races of stripe rust for adult-plant-stage-resistance evaluation in two different environments. Exon sequence alignment analysis revealed that a stripe rust resistance gene on the 718.4- to 721.2-Mb region of chromosome 7BL, tentatively named as YrLT26, and a cosegregation sequence-tagged site (STS) marker GY17 was developed and validated using the F2:3 population and 103 wheat cultivars. The other two resistance genes, Yr9 and Yr30, were also identified in 'Lantian 26' using molecular markers. Therefore, the key to high and durable resistance to stripe rust at the adult stage is the combination of Yr9, Yr30, and YrLT26 genes in 'Lantian 26'. This could be a considerable strategy for improving the wheat cultivars with effective and durable resistance in the high-pressure region for stripe rust.


Assuntos
Basidiomycota , Resistência à Doença , Genes de Plantas , Doenças das Plantas , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Basidiomycota/fisiologia , Genes de Plantas/genética
7.
Alzheimers Dement ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946675

RESUMO

INTRODUCTION: We conducted admixture mapping and fine-mapping analyses to identify ancestry-of-origin loci influencing cognitive abilities. METHODS: We estimated the association of local ancestry intervals across the genome with five neurocognitive measures in 7140 diverse Hispanic and Latino adults (mean age 55 years). We prioritized genetic variants in associated loci and tested them for replication in four independent cohorts. RESULTS: We identified nine local ancestry-associated regions for the five neurocognitive measures. There was strong biological support for the observed associations to cognitive function at all loci and there was statistical evidence of independent replication at 4q12, 9p22.1, and 13q12.13. DISCUSSION: Our study identified multiple novel loci harboring genes implicated in cognitive functioning and dementia, and uncovered ancestry-relevant genetic variants. It adds to our understanding of the genetic architecture of cognitive function in Hispanic and Latino adults and demonstrates the power of admixture mapping to discover unique haplotypes influencing cognitive function, complementing genome-wide association studies. HIGHLIGHTS: We identified nine ancestry-of-origin chromosomal regions associated with five neurocognitive traits. In each associated region, we identified single nucleotide polymorphisms (SNPs) that explained, at least in part, the admixture signal and were tested for replication in independent samples of Black, non-Hispanic White, and Hispanic/Latino adults with the same or similar neurocognitive tests. Statistical evidence of independent replication of the prioritized SNPs was observed for three of the nine associations, at chr4q12, chr9p22.1, and chr13q12.13. At all loci, there was strong biological support for the observed associations to cognitive function and dementia, prioritizing genes such as KIT, implicated in autophagic clearance of neurotoxic proteins and on mast cell and microglial-mediated inflammation; SLC24A2, implicated in synaptic plasticity associated with learning and memory; and MTMR6, implicated in phosphoinositide lipids metabolism.

8.
Br Poult Sci ; 65(2): 111-118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38230423

RESUMO

1. 'Congenital loco' is a disorder in birds expressed at hatching, and the primary symptom is dorsal backward bending of the neck. It is a recessive disease caused by a mutation in a specific genetic locus. The following study identified a novel locus associated with congenital loco in Silkie Fowl chickens.2. Normal and congenital loco-affected Silkie Fowl chicks exhibited no differences in the frequencies of markers on chromosome 12 adjacent to the congenital loco locus reported in a previous study in Rhode Island Red chickens. Sex determination of congenital loco-affected chicks revealed that they were female only.3. Bulked segregant analyses using next-generation sequencing narrowed the causative region of congenital loco to approximately 3.3 Mb between bases 9,569,012 and 12,863,792 on chromosome Z.


Assuntos
Galinhas , Cromossomos , Animais , Feminino , Masculino , Galinhas/genética , Mapeamento Cromossômico/veterinária
9.
Planta ; 259(1): 5, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37994951

RESUMO

MAIN CONCLUSION: Characterization of the early leaf senescence mutant els3 and identification of its causal gene ELS3, which encodes an LRR-RLK protein in wheat. Leaf senescence is an important agronomic trait that affects both crop yield and quality. However, few senescence-related genes in wheat have been cloned and functionally analyzed. Here, we report the characterization of the early leaf senescence mutant els3 and fine mapping of its causal gene ELS3 in wheat. Compared with wild-type Yanzhan4110 (YZ4110), the els3 mutant had a decreased chlorophyll content and a degraded chloroplast structure after the flowering stage. Further biochemical assays in flag leaves showed that the superoxide anion and hydrogen peroxide contents increased, while the activities of antioxidant enzymes, including catalase, superoxide dismutase and glutathione reductase, decreased gradually after the flowering stage in the els3 mutant. To clone the causal gene underlying the phenotype of leaf senescence, a genetic map was constructed using 10,133 individuals of F2:3 populations, and ELS3 was located in a 2.52 Mb region on chromosome 2DL containing 16 putative genes. Subsequent sequence analysis and gene annotation identified only one SNP (C to T) in the first exon of TraesCS2D02G332700, resulting in an amino acid substitution (Pro329Ser), and TraesCS2D02G332700 was preliminarily considered as the candidate gene of ELS3. ELS3 encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) protein that is localized on the cell membrane. We also found that the transient expression of mutant TraesCS2D02G332700 can induce leaf senescence in N. benthamiana. Taken together, TraesCS2D02G332700 is likely to be the candidate gene of ELS3 and may have a function in regulating leaf senescence.


Assuntos
Pão , Triticum , Humanos , Triticum/genética , Senescência Vegetal , Éxons , Agricultura
10.
Mol Breed ; 43(5): 37, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37312749

RESUMO

The genetic base of soybean cultivars (Glycine max (L.) Merr.) has been narrowed through selective domestication and specific breeding improvement, similar to other crops. This presents challenges in breeding new cultivars with improved yield and quality, reduced adaptability to climate change, and increased susceptibility to diseases. On the other hand, the vast collection of soybean germplasms offers a potential source of genetic variations to address those challenges, but it has yet to be fully leveraged. In recent decades, rapidly improved high-throughput genotyping technologies have accelerated the harness of elite variations in soybean germplasm and provided the important information for solving the problem of a narrowed genetic base in breeding. In this review, we will overview the situation of maintenance and utilization of soybean germplasms, various solutions provided for different needs in terms of the number of molecular markers, and the omics-based high-throughput strategies that have been used or can be used to identify elite alleles. We will also provide an overall genetic information generated from soybean germplasms in yield, quality traits, and pest resistance for molecular breeding.

11.
Mol Breed ; 43(3): 17, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37313295

RESUMO

Mushroom leaves (MLs) are malformed leaves that develop from the leaf veins in some of Chinese kale genotypes. To study the genetic model and molecular mechanism of ML development in Chinese kale, the F2 segregation population was constructed by two inbred lines, genotype Boc52 with ML and genotype Boc55 with normal leaves (NL). In the present study, we have identified for the first time that the development of mushroom leaves may be affected by the change of adaxial-abaxial polarity of leaves. Examination of the phenotypes of F1 and F2 segregation populations suggested that ML development is controlled by two dominant major genes inherited independently. BSA-seq analysis showed that a major quantitative trait locus (QTL) qML4.1 that controls ML development is located within 7.4 Mb on chromosome kC4. The candidate region was further narrowed to 255 kb by linkage analysis combined with insertion/deletion (InDel) markers, and 37 genes were predicted in this region. According to the expression and annotation analysis, a B3 domain-containing transcription factor NGA1-like gene, BocNGA1, was identified as a key candidate gene for controlling ML development in Chinese kale. Fifteen single nucleotide polymorphisms (SNPs) were found in coding sequences and 21 SNPs and 3 InDels found in the promoter sequences of BocNGA1 from the genotype Boc52 with ML. The expression levels of BocNGA1 in ML genotypes are significantly lower than in the NL genotypes, which suggests that BocNGA1 may act as a negative regulator for ML genesis in Chinese kale. This study provides a new foundation for Chinese kale breeding and for the study of the molecular mechanism of plant leaf differentiation. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01364-6.

12.
Phytopathology ; 113(5): 858-865, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35906768

RESUMO

Gummy stem blight (GSB), caused by Didymella bryoniae, is a devastating fungal disease of melon worldwide. Breeding GSB-resistant cultivars with host resistance genes is considered the most economic and effective strategy to control this disease. In this study, 260 melon germplasm resources were screened for resistance to GSB, and an inbred line, H55R, that exhibited immunity to GSB was identified. To further understand the resistance mechanism of H55R against GSB, an F2 population was obtained from a cross between the GSB-susceptible line A15 and H55R, and genetic analysis indicated that the GSB resistance in H55R was controlled by a single dominant gene, tentatively named Gsb-7(t). The Gsb-7(t) gene was finally delimited to a 140-kb interval on chromosome 7 using bulked segregant analysis and chromosome walking strategies. Ten putative genes were annotated in this region that contains a wall-associated receptor kinase (WAK) gene MELO3C010403. The MELO3C010403 gene contains two alternative transcripts, MELO3C010403-T1 and MELO3C010403-T2, with five and seven nonsynonymous mutation sites, respectively. Gene expression analysis showed that expression of MELO3C010403-T2 but not MELO3C010403-T1 was significantly induced by D. bryoniae at 24 h postinoculation, indicating that the MELO3C010403-T2 transcript of MELO3C010403 was the most likely candidate gene of Gsb-7(t). Our results offer new genetic resources and will be helpful for the development of GSB-resistant melon cultivars in the future.


Assuntos
Cucurbitaceae , Cucurbitaceae/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Resistência à Doença/genética
13.
J Dairy Sci ; 106(8): 5218-5241, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37349208

RESUMO

Genotype data from dairy cattle selection programs have greatly facilitated GWAS to identify variants related to economic traits. Results can enhance the accuracy of genomic prediction, analyze more complex models that go beyond additive effects, elucidate the genetic architecture of a trait, and finally, decipher the underlying biology of traits. The entire process, comprising data generation, quality control, statistical analyses, interpretation of association results, and linking results to biology should be designed and executed to minimize the generation of false-positive and false-negative associations and misleading links to biological processes. This review aims to provide general guidelines for data analysis that address data quality control, association tests, adjustment for population stratification, and significance evaluation to improve the reliability of conclusions. We also provide guidance on post-GWAS strategy and the interpretation of results. These guidelines are tailored to dairy cattle, which are characterized by long-range linkage disequilibrium, large half-sib families, and routinely collected phenotypes, requiring different approaches than those applied in human GWAS. We discuss common limitations and challenges that have been overlooked in the analysis and interpretation of GWAS to identify candidate sequence variants in dairy cattle.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Bovinos/genética , Humanos , Animais , Estudo de Associação Genômica Ampla/veterinária , Estudo de Associação Genômica Ampla/métodos , Reprodutibilidade dos Testes , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
Plant Dis ; 107(8): 2446-2452, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36724097

RESUMO

Sharp eyespot, a soil-borne disease of wheat (Triticum aestivum L.), is one of the most devastating diseases and severely affects grain production. The most efficient and economical method of controlling the disease is the utilization of genetic resistance. In this study, the wheat-Psathyrostachys huashanica introgression line H83 processed the enhanced resistance to Rhizoctonia cerealis isolate R0301 than its wheat parent 7182. A resistance locus in the 600 to 800 Mb interval of chromosome 2BL was screened using 244 segregation population F2 plants of H83×Huixianhong with bulked segregant analysis and wheat axiom 660K genotyping array. Furthermore, by using 12 kompetitive allele-specific PCR markers, a major resistance gene, designated as Qse.xn-2BL, was identified in a secondary segregating population with 138 F3:4 lines and initially mapped to a 765.6 to 775.5 Mb interval on chromosome 2BL. Molecular cytology analysis revealed that H83 probably has an alien introgression at the distal of chromosome 2BL, where it overlapped with the mapping target gene. Above all, H83 showed great potential to improve wheat resistance to sharp eyespot and can be expected to improve resistance in wheat breeding.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Resistência à Doença/genética , Poaceae/genética , Alelos
15.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629026

RESUMO

Lodging is one of the most important factors affecting the high and stable yield of wheat worldwide. Solid-stemmed wheat has higher stem strength and lodging resistance than hollow-stemmed wheat does. There are many solid-stemmed varieties, landraces, and old varieties of durum wheat. However, the transfer of solid stem genes from durum wheat is suppressed by a suppressor gene located on chromosome 3D in common wheat, and only hollow-stemmed lines have been created. However, synthetic hexaploid wheat can serve as a bridge for transferring solid stem genes from tetraploid wheat to common wheat. In this study, the F1, F2, and F2:3 generations of a cross between solid-stemmed Syn-SAU-119 and semisolid-stemmed Syn-SAU-117 were developed. A single dominant gene, which was tentatively designated Su-TdDof and suppresses stem solidity, was identified in synthetic hexaploid wheat Syn-SAU-117 by using genetic analysis. By using bulked segregant RNA-seq (BSR-seq) analysis, Su-TdDof was mapped to chromosome 7DS and flanked by markers KASP-669 and KASP-1055 within a 4.53 cM genetic interval corresponding to 3.86 Mb and 2.29 Mb physical regions in the Chinese Spring (IWGSC RefSeq v1.1) and Ae. tauschii (AL8/78 v4.0) genomes, respectively, in which three genes related to solid stem development were annotated. Su-TdDof differed from a previously reported solid stem suppressor gene based on its origin and position. Su-TdDof would provide a valuable example for research on the suppression phenomenon. The flanking markers developed in this study might be useful for screening Ae. tauschii accessions with no suppressor gene (Su-TdDof) to develop more synthetic hexaploid wheat lines for the breeding of lodging resistance in wheat and further cloning the suppressor gene Su-TdDof.


Assuntos
Melhoramento Vegetal , Triticum , Genes Dominantes , Poaceae , Triticum/genética , China
16.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834480

RESUMO

Leaves and siliques are important organs associated with dry matter biosynthesis and vegetable oil accumulation in plants. We identified and characterized a novel locus controlling leaf and silique development using the Brassica napus mutant Bnud1, which has downward-pointing siliques and up-curling leaves. The inheritance analysis showed that the up-curling leaf and downward-pointing silique traits are controlled by one dominant locus (BnUD1) in populations derived from NJAU5773 and Zhongshuang 11. The BnUD1 locus was initially mapped to a 3.99 Mb interval on the A05 chromosome with a BC6F2 population by a bulked segregant analysis-sequencing approach. To more precisely map BnUD1, 103 InDel primer pairs uniformly covering the mapping interval and the BC5F3 and BC6F2 populations consisting of 1042 individuals were used to narrow the mapping interval to a 54.84 kb region. The mapping interval included 11 annotated genes. The bioinformatic analysis and gene sequencing data suggested that BnaA05G0157900ZS and BnaA05G0158100ZS may be responsible for the mutant traits. Protein sequence analyses showed that the mutations in the candidate gene BnaA05G0157900ZS altered the encoded PME in the trans-membrane region (G45A), the PMEI domain (G122S), and the pectinesterase domain (G394D). In addition, a 573 bp insertion was detected in the pectinesterase domain of the BnaA05G0157900ZS gene in the Bnud1 mutant. Other primary experiments indicated that the locus responsible for the downward-pointing siliques and up-curling leaves negatively affected the plant height and 1000-seed weight, but it significantly increased the seeds per silique and positively affected photosynthetic efficiency to some extent. Furthermore, plants carrying the BnUD1 locus were compact, implying they may be useful for increasing B. napus planting density. The findings of this study provide an important foundation for future research on the genetic mechanism regulating the dicotyledonous plant growth status, and the Bnud1 plants can be used directly in breeding.


Assuntos
Brassica napus , Locos de Características Quantitativas , Brassica napus/genética , Mapeamento Cromossômico , Melhoramento Vegetal , Folhas de Planta , Sementes/genética
17.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36768894

RESUMO

Skeletal deformities and malocclusions being heterogeneous traits, affect populations worldwide, resulting in compromised esthetics and function and reduced quality of life. Skeletal Class III prevalence is the least common of all angle malocclusion classes, with a frequency of 7.2%, while Class II prevalence is approximately 27% on average, varying in different countries and between ethnic groups. Orthodontic malocclusions and skeletal deformities have multiple etiologies, often affected and underlined by environmental, genetic and social aspects. Here, we have conducted a comprehensive search throughout the published data until the time of writing this review for already reported quantitative trait loci (QTL) and genes associated with the development of skeletal deformation-associated phenotypes in different mouse models. Our search has found 72 significant QTL associated with the size of the mandible, the character, shape, centroid size and facial shape in mouse models. We propose that using the collaborative cross (CC), a highly diverse mouse reference genetic population, may offer a novel venue for identifying genetic factors as a cause for skeletal deformations, which may help to better understand Class III malocclusion-associated phenotype development in mice, which can be subsequently translated to humans. We suggest that by performing a genome-wide association study (GWAS), an epigenetics-wide association study (EWAS), RNAseq analysis, integrating GWAS and expression quantitative trait loci (eQTL), micro and small RNA, and long noncoding RNA analysis in tissues associated with skeletal deformation and Class III malocclusion characterization/phenotypes, including mandibular basic bone, gum, and jaw, in the CC mouse population, we expect to better identify genetic factors and better understand the development of this disease.


Assuntos
Má Oclusão Classe III de Angle , Má Oclusão , Humanos , Animais , Camundongos , Estudo de Associação Genômica Ampla , Qualidade de Vida , Cefalometria/métodos , Má Oclusão/genética , Má Oclusão Classe III de Angle/genética , Mandíbula , Fenótipo
18.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674482

RESUMO

Ratooning ability is a key factor that influences the ratoon rice yield in areas where light and temperature are not sufficient for second-season rice. Near-isogenic lines (NILs) are the most powerful tools for the detection and precise mapping of quantitative trait loci (QTLs). In this study, using 176 NILs, we identified a novel QTL for ratooning ability in NIL128. First, we mapped the QTL between the markers Indel12-29 and Indel12-31, which encompass a region of 233 kb. The rice genome annotation indicated the existence of three candidate genes in this region that may be related to ratooning ability. Through gene prediction and cDNA sequencing, we speculated that the target gene of ratooning ability is LOC_Os02g51930 which encodes cytokinin glucosyl transferases (CGTs), hereafter named qRA2. Further analysis showed that qra2 was a 1-bp substitution in the first exon in NIL128, which resulted in the premature termination of qRA2. The results of the knockdown experiment showed that the Jiafuzhan knockdown mutants exhibited the ratooning ability phenotype of NIL128. Interestingly, the qRA2 gene was found to improve ratooning ability without affecting major agronomic traits. These results will help us better understand the genetic basis of rice ratooning ability and provide a valuable gene resource for breeding strong ratoon rice varieties.


Assuntos
Oryza , Mapeamento Cromossômico , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Fenótipo , Clonagem Molecular
19.
Mol Biol Evol ; 38(12): 5588-5609, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519828

RESUMO

The sterility or inviability of hybrid offspring produced from an interspecific mating result from incompatibilities between parental genotypes that are thought to result from divergence of loci involved in epistatic interactions. However, attributes contributing to the rapid evolution of these regions also complicates their assembly, thus discovery of candidate hybrid sterility loci is difficult and has been restricted to a small number of model systems. Here we reported rapid interspecific divergence at the DXZ4 macrosatellite locus in an interspecific cross between two closely related mammalian species: the domestic cat (Felis silvestris catus) and the Jungle cat (Felis chaus). DXZ4 is an interesting candidate due to its structural complexity, copy number variability, and described role in the critical yet complex biological process of X-chromosome inactivation. However, the full structure of DXZ4 was absent or incomplete in nearly every available mammalian genome assembly given its repetitive complexity. We compared highly continuous genomes for three cat species, each containing a complete DXZ4 locus, and discovered that the felid DXZ4 locus differs substantially from the human ortholog, and that it varies in copy number between cat species. Additionally, we reported expression, methylation, and structural conformation profiles of DXZ4 and the X chromosome during stages of spermatogenesis that have been previously associated with hybrid male sterility. Collectively, these findings suggest a new role for DXZ4 in male meiosis and a mechanism for feline interspecific incompatibility through rapid satellite divergence.


Assuntos
Felidae , Infertilidade Masculina , Animais , Gatos/genética , Felidae/genética , Genoma , Infertilidade Masculina/genética , Masculino , Cromossomo X/genética , Inativação do Cromossomo X
20.
Am J Hum Genet ; 105(2): 258-266, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31230719

RESUMO

The transcriptome-wide association studies (TWASs) that test for association between the study trait and the imputed gene expression levels from cis-acting expression quantitative trait loci (cis-eQTL) genotypes have successfully enhanced the discovery of genetic risk loci for complex traits. By using the gene expression imputation models fitted from reference datasets that have both genetic and transcriptomic data, TWASs facilitate gene-based tests with GWAS data while accounting for the reference transcriptomic data. The existing TWAS tools like PrediXcan and FUSION use parametric imputation models that have limitations for modeling the complex genetic architecture of transcriptomic data. Therefore, to improve on this, we employ a nonparametric Bayesian method that was originally proposed for genetic prediction of complex traits, which assumes a data-driven nonparametric prior for cis-eQTL effect sizes. The nonparametric Bayesian method is flexible and general because it includes both of the parametric imputation models used by PrediXcan and FUSION as special cases. Our simulation studies showed that the nonparametric Bayesian model improved both imputation R2 for transcriptomic data and the TWAS power over PrediXcan when ≥1% cis-SNPs co-regulate gene expression and gene expression heritability ≤0.2. In real applications, the nonparametric Bayesian method fitted transcriptomic imputation models for 57.8% more genes over PrediXcan, thus improving the power of follow-up TWASs. We implement both parametric PrediXcan and nonparametric Bayesian methods in a convenient software tool "TIGAR" (Transcriptome-Integrated Genetic Association Resource), which imputes transcriptomic data and performs subsequent TWASs using individual-level or summary-level GWAS data.


Assuntos
Envelhecimento/genética , Teorema de Bayes , Mapeamento Cromossômico/métodos , Demência/genética , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Estudos Prospectivos , Locos de Características Quantitativas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA