RESUMO
Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.
Assuntos
Sistemas CRISPR-Cas , Perfilação da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Células Cultivadas , Exoma , Feminino , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Masculino , Rituximab/administração & dosagemRESUMO
Recent advances in genomics have revealed a wide spectrum of genetic variants associated with neurodevelopmental disorders at an unprecedented scale. An increasing number of studies have consistently identified mutations-both inherited and de novo-impacting the function of specific brain circuits. This suggests that, during brain development, alterations in distinct neural circuits, cell types, or broad regulatory pathways ultimately shaping synapses might be a dysfunctional process underlying these disorders. Here, we review findings from human studies and animal model research to provide a comprehensive description of synaptic and circuit mechanisms implicated in neurodevelopmental disorders. We discuss how specific synaptic connections might be commonly disrupted in different disorders and the alterations in cognition and behaviors emerging from imbalances in neuronal circuits. Moreover, we review new approaches that have been shown to restore or mitigate dysfunctional processes during specific critical windows of brain development. Considering the heterogeneity of neurodevelopmental disorders, we also highlight the recent progress in developing improved clinical biomarkers and strategies that will help to identify novel therapeutic compounds and opportunities for early intervention.
Assuntos
Transtornos do Neurodesenvolvimento , Animais , Humanos , Transtornos do Neurodesenvolvimento/genética , Modelos Animais de Doenças , Genômica , Mutação , Sinapses/genéticaRESUMO
Variants in RNA binding motif protein 20 (RBM20) are causative in a severe form of dilated cardiomyopathy referred to as RBM20 cardiomyopathy, yet the mechanisms are unclear. Moreover, the reason(s) for phenotypic heterogeneity in carriers with different pathogenic variants are similarly opaque. To gain insight, we carried out multi-omics analysis, including the first analysis of gene expression changes at the protein level, of mice carrying two different pathogenic variants in the RBM20 nuclear localization signal (NLS). Direct comparison of the phenotypes confirmed greater premature morality in S639G variant carrying mice compared to mice with the S637A variant despite similar cardiac remodeling and dysfunction. Analysis of differentially spliced genes uncovered alterations in the splicing of both RBM20 target genes and non-target genes, including several genes previously implicated in arrhythmia. Global proteomics analysis found that a greater number of proteins were differentially expressed in the hearts of Rbm20S639G mice relative to WT than in Rbm20S637A versus WT. Gene ontology analysis suggested greater mitochondrial dysfunction in Rbm20S639G mice, although direct comparison of protein expression in the hearts of Rbm20S639G versus Rbm20S637A mice failed to identify any significant differences. Similarly, few differences were found by direct comparison of gene expression at the transcript level in Rbm20S639G and Rbm20S637A despite greater coverage. Our data provide a comprehensive overview of gene splicing and expression differences associated with pathogenic variants in RBM20, as well as insights into the molecular underpinnings of phenotypic heterogeneity associated with different dilated cardiomyopathy-associated variants.
RESUMO
This study investigates genetic mutations and immune cell dynamics in stomach adenocarcinoma (STAD), focusing on identifying prognostic markers and therapeutic targets. Analysis of TCGA-STAD samples revealed C > A as the most common single nucleotide variant (SNV) in both high and low-risk groups. Key mutated driver genes included TTN, TP53 and MUC16, with frame-shift mutations more prevalent in the low-risk group and missense mutations in the high-risk group. Interaction analysis of hub genes such as C1QA and CD68 showed significant correlations, impacting immune cell infiltration patterns. Using ssGSEA, we found higher immune cell infiltration (B cells, CD4+ T cells, CD8+ T cells, DC cells, NK cells) in the high-risk group, correlated with increased risk scores. xCell algorithm results indicated distinct immune infiltration levels between the groups. The study's risk scoring model proved effective in prognosis prediction and immunotherapy efficacy assessment. Key molecules like CD28, CD27 and SLAMF7 correlated significantly with risk scores, suggesting potential targets for high-risk STAD patients. Drug sensitivity analysis showed a negative correlation between risk scores and sensitivity to certain treatments, indicating potential therapeutic options for high-risk STAD patients. We also validated the carcinogenic role of RPL14 in gastric cancer through phenotypic experiments, demonstrating its influence on cancer cell proliferation, invasion and migration. Overall, this research provides crucial insights into the genetic and immune aspects of STAD, highlighting the importance of a risk scoring model for personalized treatment strategies and clinical decision-making in gastric cancer management.
Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Linfócitos T CD8-Positivos , Imunoterapia , Mutação/genéticaRESUMO
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Assuntos
Edição de Genes , Neoplasias , Humanos , Mutação , Neoplasias/genética , Neoplasias/terapiaRESUMO
BACKGROUND: Treatment of brain metastases (BMs) in non-small cell lung cancer (NSCLC) patients, especially those with non-sensitive genetic mutations, is hindered by limited drug delivery through the blood-brain barrier (BBB). This retrospective study explores the efficacy of systemic treatments during brain metastasis to radiotherapy evaluation window in improving patient survival. METHODS: In this retrospective cohort study, we evaluated 209 NSCLC patients with non-sensitive mutations and BMs, treated between 2016 and 2023 at two tertiary medical centers (Chongqing University Cancer Hospital and Guangxi Medical University Cancer Hospital). The patients were divided into three groups, namely chemotherapy alone (C; n = 95), chemotherapy plus immune checkpoint inhibitors (ICIs) (C + I; n = 62), and chemotherapy with ICIs and antiangiogenic therapy (A) (C + I + A; n = 52). Statistical analyses were performed using R software, version 4.3.3. Categorical variables were compared using Fisher's exact test, and survival curves were estimated with the Kaplan-Meier method and compared via the log-rank test. Univariate and multivariate Cox regression models were used to assess factors associated with overall survival (OS). Bayesian model averaging (BMA) was employed to address model uncertainty and improve result robustness. Subgroup analyses evaluated treatment-related mortality risk. RESULTS: From an initial cohort of 658 NSCLC patients with BMs, 209 were analyzed with a median age of 59; the majority were male (80.9%) and diagnosed with adenocarcinoma (78.9%). Univariate analysis identified significant variables influencing outcomes, including BMs radiotherapy EQD2, BMs count, local thoracic treatment, BMs radiotherapy field, intracranial response, and systemic treatment post-BMs diagnosis. The C + I + A regimen significantly improved median OS to 23.6 months compared to 11.4 months with C and 16.2 months with C + I, with a hazard ratio (HR) of 0.60 (95% CI: 0.43-0.82; P < 0.0001). The two-year OS rate was highest in the C + I + A group at 38.5%, versus 10.5% in C and 20.4% in C + I (P < 0.001). Cox regression and BMA analyses confirmed the stability of BMA in providing HR estimates, yielding area under the curve (AUC) values of 0.785 for BMA and 0.793 for the Cox model, with no significant difference in predictive performance. Subgroup analysis revealed a 71% mortality risk reduction with C + I + A (HR: 0.29; 95% CI: 0.18-0.47; P < 0.0001), showing consistent benefits regardless of patient sex, BMs count, extracranial metastases presence, and local thoracic treatments. Treatment sequence analysis indicated a median OS of 33.4 months for patients starting with A, though not statistically significant (HR: 0.59; P = 0.36). The overall incidence of radiation-induced brain injury was low at 3.3%, with rates in the C, C + I, and C + I + A groups being 3.2%, 4.8%, and 1.9%, respectively (P = 0.683). CONCLUSION: Our study demonstrates the significant benefit of the C + I + A combination therapy in improving OS and reducing mortality risk in NSCLC patients with non-sensitive gene-mutated BMs. The sequential administration of A followed by ICIs shows a promising synergistic effect with cranial radiotherapy, highlighting the potential for optimized treatment sequencing. These findings emphasize the efficacy of tailored combination therapies in complex oncological care and suggest that our approach could lead to meaningful improvements in clinical outcomes for this challenging patient population.
Assuntos
Inibidores da Angiogênese , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos Retrospectivos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/tratamento farmacológico , Masculino , Feminino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Inibidores da Angiogênese/uso terapêutico , Idoso , Inibidores de Checkpoint Imunológico/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , AdultoRESUMO
Developmental dysplasia of the hip (DDH) is one of the most prevalent skeletal deformities, primarily due to the incompatibility between the acetabulum and femoral head. It includes complete dislocation, partial dislocation, instability with femoral head subluxation, and a range of imaging abnormalities that reflect inadequate acetabular formation. Known risk factors for DDH include positive family history, sex, premature birth, non-cephalic delivery, oligohydramnios, gestational diabetes mellitus, maternal hypertension, associated anomalies, swaddling clothes, intrauterine space restriction, and post-term pregnancy. Various research designs have been employed in DDH studies to identify relevant genes, including candidate gene association studies (CGAS), genome-wide association studies (GWAS), restriction fragment length polymorphism (RFLP), and whole exome sequencing (WES). To date, multiple DDH-associated genes have been identified in various populations. Despite extensive research into the epidemiology, risk factors, and genes associated with DDH, its pathogenesis remains unclear. This study provides a comprehensive summary of DDH research designs and evidence for relevant gene mutations through a PubMed search.
RESUMO
INTRODUCTION: The prognosis of acute lymphoblastic leukemia (ALL) in adolescents and adults is poor, and recurrence is an important cause of their death. Changes of genetic information play a vital role in the pathogenesis and recurrence of ALL; however, the impact of molecular genetic mutations on disease diagnosis and prognosis remains unexplored. This study aimed to explore the frequency spectrum of gene mutations and their prognostic significance, along with the minimal residual disease (MRD) level and hematopoietic stem cell transplantation (HSCT), in adolescent and adult patients aged ≥15 years with ALL. METHODS: The basic characteristics, cytogenetics, molecular genetics, MRD level, treatment regimen, and survival outcome of patients with untreated ALL (≥15 years) were collected, and the correlation and survival analysis were performed using the SPSS 25.0 and R software. RESULTS: This study included 404 patients, of which 147 were selected for next-generation sequencing (NGS). NGS results revealed that 91.2% of the patients had at least one mutation, and 67.35% had multiple (≥2) mutations. NOTCH1, PHF6, RUNX1, PTEN, JAK3, TET2, and JAK1 were the most common mutations in T-ALL, whereas FAT1, TET2, NARS, KMT2D, FLT3, and RELN were the most common mutations in B-ALL. Correlation analysis revealed the mutation patterns, which were significantly different between T-ALL and B-ALL. In the prognostic analysis of 107 patients with B-ALL, multivariate analysis showed that the number of mutations ≥5 was an independent risk factor for overall survival and the RELN mutation was an independent poor prognostic factor for event-free survival. DISCUSSION: The distribution of gene mutations and the co-occurrence and repulsion of mutant genes in patients with ALL were closely related to the immunophenotype of the patients. The number of mutations ≥5 and the RELN mutation were significantly associated with poor prognosis in adolescent and adult patients with ALL.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Humanos , Adolescente , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Prognóstico , Mutação , Neoplasia Residual/patologia , Biologia MolecularRESUMO
Diffuse large B-cell lymphoma (DLBCL) demonstrates significant heterogeneity, investigations into the distinctions in clinical and molecular characteristics between Chinese Uygur and Han DLBCL patients remain unexplored. We retrospectively reviewed 279 DLBCL patients (105 Uygur and 174 Han patients), of which 155 patients underwent genetic profiling by NGS. Compared with Han patient, Uygur patients have better clinical prognostic indicators, including a higher proportion of patients with 0-1 extranodal involvement and I/II Ann Arbor staging. Consistently, Uygur patients were significantly associated with lower risk of relapse (P = 0.06), with a one-year relapse rate of 5% vs 17% and two-year relapse rate of 19% vs 36% compared to Han patients. At the molecular level, TP53 (21.3%) was among the top frequently altered gene in the cohort. Notably, the Uygur patients exhibited a significantly lower frequency of TP53 alterations and higher frequency of ASXL3 alterations. Logistic regression analysis showed that the lowered frequency of TP53 and enrichment of ASXL3 in the Uygur patients were independent of other factors. However, only patients with TP53 mutations had higher relapse rate than those with wild type TP53 (one-year, 20% vs 10%; two-year, 51% vs 21%). Our findings highlight the notable contribution of a low TP53 mutation frequency in Uygur patients as a pivotal factor associated with the favorable prognosis of this population.
RESUMO
Cervical cancer is the fourth most common cancer in women. Advanced stage and metastatic disease are often associated with poor clinical outcomes. This substantiates the absolute necessity for high-throughput diagnostic and treatment platforms that are patient and tumour specific. Cervical cancer treatment constitutes multimodal intervention. Systemic treatments such as chemotherapy and/or focal radiotherapy are typically applied as neoadjuvant and/or adjuvant strategies. Cisplatin constitutes an integral part of standard cervical cancer treatment approaches. However, despite initial patient response, de novo or delayed/acquired treatment resistance is often reported, and toxicity is of concern. Chemotherapy resistance is associated with major alterations in genomic, metabolomic, epigenetic and proteomic landscapes. This results in imbalanced homeostasis associated with pro-oncogenic and proliferative survival, anti-apoptotic benefits, and enhanced DNA damage repair processes. Although significant developments in cancer diagnoses and treatment have been made over the last two decades, drug resistance remains a major obstacle to overcome.
Despite advances in treatment, the disease's advanced stages and spread to other parts of the body often lead to poor outcomes. This highlights the urgent need for better diagnostic and treatment methods tailored to each patient and their specific tumour. Treatment for cervical cancer usually involves a combination of therapies. Chemotherapy and focused radiation therapy are commonly used before or after surgery to improve outcomes. However, some patients develop resistance to these treatments, either from the start or after initially responding to therapy. This resistance can make treatment less effective and increase the risk of side effects. Chemotherapy resistance is often linked to changes in the genes and proteins of cancer cells. These changes disrupt the normal balance within the cells, making them more prone to grow and survive, resist cell death, and repair DNA damage caused by treatment. Despite progress in cancer research and treatment, drug resistance remains a significant challenge. This review aims to explore how acquired genetic mutations contribute to drug resistance in cervical cancer. By understanding these mutations better, researchers and clinicians in low- to middle-income countries can develop more effective treatment strategies to improve outcomes for patients.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Mutação , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologiaRESUMO
Melanoma affects over one million people in the United States. This review explores genetic mutations and markers of all seven subtypes. Current treatment options and prognosis of each subtype are also discussed. For lentigo maligna, spitzoid, and nodular subtypes, BRAF was the most common mutation reported. For superficial spreading, TP53 was the most common. Acral lentiginous demonstrated CCDN1 and desmoplastic NF1 most frequently. No mutations have been identified in the nevoid subtype. Nodular melanoma is the deadliest subtype. Evidence suggests that the subtypes differ in regard to genetic markers/mutations, treatment and prognosis. Therefore, subtype should be considered when treating a melanoma patient.
RESUMO
BACKGROUND: Autosomal recessive deficiency in the caspase recruitment domain-containing protein 9 (CARD9) is a congenital immunological condition that leads to susceptibility to mucocutaneous and invasive fungal infections. There is growing incidence of fungal infections in patients with CARD9 deficiency, a phenomenon that is increasingly recognised. OBJECTIVES: This study aimed to assess the frequency, geographic distribution and nature of mutations in patients with CARD9 deficiency, based on published papers in the literature until March 2023. METHODS: We swiftly conducted a study to pinpoint every documented instance of fungal infections arising from CARD9 deficiency. We selected case reports from the databases of PubMed, Embase, Scopus and Google Scholar spanning the period from October 2009 to March 2023. RESULTS: We analysed 90 cases of fungal infections and identified 32 mutations in the CARD9 gene. Notably, the homozygous (HMZ) p.Q295X (c.883C > T) mutation was associated with an increased risk of candidiasis. In contrast, the HMZ p.Q289X (c.865C > T) mutation is linked to a higher risk of dermatophytosis. We observed differences in the geographical distribution of these mutations. The primary mutations found in African patients differ from those in Asian patients. Specifically, Asian patients exhibit a broader spectrum of CARD9 mutations than African patients. CONCLUSIONS: The diversity of mutations observed in the 90 cases revealed 32 distinct variations, emphasising the unique genetic alterations in the CARD9 gene associated with specific geographical areas and the corresponding prevalence of fungal infections.
Assuntos
Candidíase Mucocutânea Crônica , Candidíase , Infecções Fúngicas Invasivas , Humanos , Mutação , Infecções Fúngicas Invasivas/epidemiologia , Proteínas Adaptadoras de Sinalização CARD/genéticaRESUMO
AIM: Endometriosis is a complex, multifactorial disease. Recent advances in molecular biology underscore that somatic mutations within the epithelial component of the normal endometrium, alongside aberrant epigenetic alterations within endometrial stromal cells, may serve as stimulators for the proliferation of endometriotic tissue within the peritoneal cavity. Nevertheless, pivotal inquiries persist: the deterministic factors driving endometriosis development in certain women while sparing others, notwithstanding comparable experiences of retrograde menstruation. Within this review, we endeavor to synopsize the current understanding of diverse pathophysiologic mechanisms underlying the initiation and progression of endometriosis and delineate avenues for future research. METHODS: A literature search without time restriction was conducted utilizing PubMed and Google Scholar. RESULTS: Given that aberrant clonal expansion stemming from cancer-associated mutations is common in normal endometrial tissue, only endometrial cells harboring mutations imparting proliferative advantages may be selected for survival outside the uterus. Endometriotic cells capable of engendering metabolic plasticity and modulating mitochondrial dynamics, thereby orchestrating responses to hypoxia, oxidative stress, inflammation, hormonal stimuli, and immune surveillance, and adeptly acclimating to their harsh surroundings, stand a chance at viability. CONCLUSION: The genesis of endometriosis appears to reflect the evolutionary principles of mutation, selection, clonal expansion, and adaptation to the environment.
Assuntos
Endometriose , Epigênese Genética , Endometriose/genética , Endometriose/metabolismo , Humanos , Feminino , Interação Gene-AmbienteRESUMO
The Bonin Archipelago is a United Nations Educational, Scientific and Cultural Organization's World Natural Heritage Site in Japan with a unique ecosystem; however, the invasive rodents preying on endemic species have been a significant concern. The anticoagulant rodenticide, diphacinone, sprayed by the Ministry of the Environment, has succeeded; however, its repeated use leads to rodenticide resistance. This study evaluated the sensitivity by in vivo pharmacokinetics/pharmacodynamics (PK/PD) analysis and physiologically-based pharmacokinetic modeling to diphacinone in black rats (Rattus rattus) captured on the Bonin Archipelago in February 2022. The Bonin rats exhibited prolonged coagulation time after diphacinone administration. They recovered earlier than susceptible black rats, indicating that Bonin rats were less susceptible, though there were no genetic mutations in Vkorc1, the target enzyme of diphacinone. After the administration of diphacinone, hepatic expression levels of Fsp1, identified as the vitamin K reductase, was decreased, however, the Bonin rats exhibited the most minor suppression. The PK analysis showed that the excretion capacity of the Bonin rats was lower than that of the resistant black rats. In the PBPK modeling, the resistant black rats showed higher clearance than the Bonin and susceptible black rats due to high hepatic metabolic capacity. The Bonin rats demonstrated slow absorption and relatively low clearance. This study highlighted the reduced rodenticide-sensitive tendency of wild black rats in the Bonin Archipelago at an in vivo phenotype level. At the same time, they do not have known rodenticide resistance mechanisms, such as hepatic metabolic enhancement or Vkorc1 mutations. It is crucial to monitor the biological levels to evaluate rodenticide sensitivity accurately.
Assuntos
Fenindiona/análogos & derivados , Rodenticidas , Ratos , Animais , Rodenticidas/farmacologia , Japão , EcossistemaRESUMO
Cardiac tumours can occur in association with genetic syndromes. Rhabdomyomas have been reported in association with tuberous sclerosis, myxomas with Carney's complex, cardiac fibromas with Gorlin syndrome, and paragangliomas with multiple endocrine neoplasm syndrome. The presentation and prognosis of cardiac tumours associated with genetic syndromes differ compared with sporadic cases. Knowledge about the associated syndromes' genetic features and extracardiac manifestations is essential for the diagnosis, prognosis, and management of cardiac neoplasms. Moreover, identifying genetic mutations in benign and malignant cardiac tumours is needed to personalise management and improve treatment outcomes. Thus, this review discusses the genetic abnormalities associated with cardiac tumours, the current genetic screening recommendations, and the effect of those genetic mutations on the outcomes.
Assuntos
Neoplasias Cardíacas , Humanos , Neoplasias Cardíacas/genética , Neoplasias Cardíacas/diagnóstico , Mutação , Testes Genéticos/métodos , Rabdomioma/genética , Rabdomioma/diagnósticoRESUMO
Fetal microcephaly is a small head with various losses of cerebral cortical volume. The affected cases may suffer from a wide range in severity of impaired cerebral development from slight to severe mental retardation. It can be an isolated finding or with other anomalies depending on the heterogeneous causes including genetic mutations, chromosomal abnormalities, congenital infectious diseases, maternal alcohol consumption, and metabolic disorders during pregnancy. It is often a lifelong and incurable condition. Thus, early detection of fetal microcephaly and identification of the underlying causes are important for clinical staff to provide appropriate genetic counseling to the parents and accurate management.
RESUMO
Brain iron accumulation disorders (BIADs) are a group of diseases characterized by iron overload in deep gray matter nuclei, which is a common feature of neurodegenerative diseases. Although genetic factors have been reported to be one of the etiologies, much more details about the genetic background and molecular mechanism of BIADs remain unclear. This study aimed to illustrate the genetic characteristics of BIADs and clarify their molecular mechanisms. A total of 84 patients with BIADs were recruited from April 2018 to October 2022 at Xuanwu Hospital. Clinical characteristics including family history, consanguineous marriage history, and age at onset (AAO) were collected and assessed by two senior neurologists. Neuroimaging data were conducted for all the patients, including cranial magnetic resonance imaging (MRI) and susceptibility-weighted imaging (SWI). Whole-exome sequencing (WES) and capillary electrophoresis for detecting sequence mutation and trinucleotide repeat expansion, respectively, were conducted on all patients and part of their parents (whose samples were available). Variant pathogenicity was assessed according to the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP). The NBIA and NBIA-like genes with mutations were included for bioinformatic analysis, using Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genome (KEGG). GO annotation and KEGG pathway analysis were performed on Metascape platform. In the 84 patients, 30 (35.7%) were found to carry mutations, among which 20 carried non-dynamic mutations (missense, stop-gained, frameshift, inframe, and exonic deletion) and 10 carried repeat expansion mutations. Compared with sporadic cases, familial cases had more genetic variants (non-dynamic mutation: P=0.025, dynamic mutation: P=0.003). AAO was 27.85±10.42 years in cases with non-dynamic mutations, which was significantly younger than those without mutations (43.13±17.17, t=3.724, P<0.001) and those with repeated expansions (45.40±8.90, t=4.550, P<0.001). Bioinformatic analysis suggested that genes in lipid metabolism, autophagy, mitochondria regulation, and ferroptosis pathways are more likely to be involved in the pathogenesis of BIADs. This study broadens the genetic spectrum of BIADs and has important implications in genetic counselling and clinical diagnosis. Patients diagnosed as BIADs with early AAO and family history are more likely to carry mutations. Bioinformatic analysis provides new insights into the molecular pathogenesis of BIADs, which may shed lights on the therapeutic strategy for neurodegenerative diseases.
Assuntos
Encéfalo , Doenças Neurodegenerativas , Humanos , Encéfalo/patologia , Mutação , Mutação da Fase de Leitura , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Ferro/metabolismoRESUMO
Acute myeloid leukemia is the most common acute leukemia in adults and up to 20% of patients present with hyperleukocytosis at the onset of the disease. The therapeutic approach involves medical support, cytoreductive treatment, and/or leukapheresis. Despite WBC count greater than 100.000/µL, not all patients develop symptoms. To clarify the role of leukapheresis in the setting of hyperleukocytotic AML, we aimed to find associations between AML morphologic subtypes and molecular alterations on presence or absence of leukostasis symptoms (and hence therapeutic vs prophylactic leukapheresis) and clinical outcomes in the cohort of 41 patients at our single center who underwent leukapheresis for hyperleukocytotic AML. There was a trend for increased WBC count, 30-day mortality, M4-M5 AML subtypes, and number of leukapheresis procedures performed in symptomatic hyperleukocytotic pts. No molecular marker was significantly associated with presence or absence of leukostasis symptoms due to small sample size, though there was a trend for increased NPM1-mutated and NPM1 + FLT3-mutated AML in asymptomatic patients and a greater proportion of symptomatic patients who were negative for all assessed molecular alterations. In conclusion, leukapheresis combined with cytoreductive treatment represents a synergic and efficient approach in the management of hyperleukocytosis especially in symptomatic patients considering the higher mortality independently from the presence of specific clonal markers whose distribution among the two groups may result more considerable with a higher number of patients.
Assuntos
Leucemia Mieloide Aguda , Leucostasia , Adulto , Humanos , Leucaférese , Leucostasia/terapia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutação , Proteínas NuclearesRESUMO
Gene mutation has been a concern for researchers because it results in genetic variations with base changes in molecular structure. Researchers continue to explore methods to detect gene mutations, which may help in disease diagnosis, medication guidance, and so on. Currently, the detection methods, such as whole-genome sequencing and polymerase chain reaction, have some limitations in terms of cost and sensitivity. Ligase (an enzyme) can recognize base mismatch as a commonly used tool in genetic engineering. Therefore, the ligase-related nucleic acid amplification technology for detecting gene mutations has become a research hotspot. In this study, the main techniques explored for detecting gene mutations included the ligase detection reaction, ligase chain reaction, rolling circle amplification reaction, enzyme-assisted polymerase chain reaction, and loop-mediated isothermal amplification reaction. This review aimed to analyze the aforementioned techniques and mainly present their advantages and disadvantages, sensitivity, specificity, cost, detection time, applications, and so on. The findings may help develop sufficient grounds for further studies on detecting gene mutations.
Assuntos
Ligases , Ácidos Nucleicos , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Mutação , TecnologiaRESUMO
OPINION STATEMENT: Myeloid sarcoma, a rare malignant tumor characterized by the invasion of extramedullary tissue by immature myeloid cells, commonly occurs concomitantly with acute myeloid leukemia, myelodysplastic syndromes, or myeloproliferative neoplasms. The rarity of myeloid sarcoma poses challenges for diagnosis and treatment. Currently, treatments for myeloid sarcoma remain controversial and primarily follow protocols for acute myeloid leukemia, such as chemotherapy utilizing multi-agent regimens, in addition to radiation therapy and/or surgery. The advancements in next-generation sequencing technology have led to significant progress in the field of molecular genetics, resulting in the identification of both diagnostic and therapeutic targets. The application of targeted therapeutics, such as FMS-like tyrosine kinase 3(FLT3) inhibitors, isocitrate dehydrogenases(IDH) inhibitors, and the B cell lymphoma 2(BCL2) inhibitors, has facilitated the gradual transformation of traditional chemotherapy into targeted precision therapy for acute myeloid leukemia. However, the field of targeted therapy for myeloid sarcoma is relatively under-investigated and not well-described. In this review, we comprehensively summarize the molecular genetic characteristics of myeloid sarcoma and the current application of targeted therapeutics.