RESUMO
BACKGROUND: Low-impact genetic variants identified in population-based genetic studies are not routinely measured as part of clinical genetic testing in familial breast cancer (BC). We studied the consequences of integrating an established Polygenic Risk Score (PRS) (BCAC 313, PRS313) into clinical sequencing of women with familial BC in Sweden. METHODS: We developed an add-on sequencing panel to capture 313 risk variants in addition to the clinical screening of hereditary BC genes. Index patients with no pathogenic variant from 87 families, and 1000 population controls, were included in comparative PRS calculations. Including detailed family history, sequencing results and tumour pathology information, we used BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) V.6 to estimate contralateral and lifetime risks without and with PRS313. RESULTS: Women with BC but no pathogenic variants in hereditary BC genes have a higher PRS313 compared with population controls (mean+0.78 SD, p<3e-9). Implementing PRS313 in the clinical risk estimation before their BC diagnosis would have changed the recommended follow-up in 24%-45% of women. CONCLUSIONS: Our results show the potential impact of incorporating PRS313 directly in the clinical genomic investigation of women with familial BC.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Predisposição Genética para Doença , Estratificação de Risco Genético , Testes Genéticos , Fatores de RiscoRESUMO
BACKGROUND: The neurodevelopmental prognosis of anomalies of the corpus callosum (ACC), one of the most frequent brain malformations, varies extremely, ranging from normal development to profound intellectual disability (ID). Numerous genes are known to cause syndromic ACC with ID, whereas the genetics of ACC without ID remains poorly deciphered. METHODS: Through a collaborative work, we describe here ZEB1, a gene previously involved in an ophthalmological condition called type 3 posterior polymorphous corneal dystrophy, as a new dominant gene of ACC. We report a series of nine individuals with ACC (including three fetuses terminated due to ACC) carrying a ZEB1 heterozygous loss-of-function (LoF) variant, identified by exome sequencing. RESULTS: In five cases, the variant was inherited from a parent with a normal corpus callosum, which illustrates the incomplete penetrance of ACC in individuals with an LoF in ZEB1. All patients reported normal schooling and none of them had ID. Neuropsychological assessment in six patients showed either normal functioning or heterogeneous cognition. Moreover, two patients had a bicornuate uterus, three had a cardiovascular anomaly and four had macrocephaly at birth, which suggests a larger spectrum of malformations related to ZEB1. CONCLUSION: This study shows ZEB1 LoF variants cause dominantly inherited ACC without ID and extends the extraocular phenotype related to this gene.
Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Recém-Nascido , Feminino , Humanos , Corpo Caloso , Agenesia do Corpo Caloso/genética , Malformações do Sistema Nervoso/genética , Deficiência Intelectual/genética , Cognição , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genéticaRESUMO
In children, 15% of nephrotic syndromes are steroid-resistant (SRNS); approximately 30% of early onset SRNS have a genetic origin, with more than 100 causal genes described so far. SRNS can be syndromic, if associated with signs and symptoms affecting other organs or systems, such as the central nervous system, the heart or the eyes. Patients with SRNS are at high risk of chronic kidney disease and progressive renal failure, and as such need multidisciplinary care, centred on renal protection. Recently, K acetyltransferase 2B (KAT2B) loss of function was identified as a risk factor for morphological and functional defects in Drosophila nephrocytes; in vitro knockdown of KAT2B also impaired the adhesion and migration ability of human podocytes.Here we provide the first clinical description of a family affected by a loss of function mutation of KAT2B Clinically, both siblings presented with early onset SRNS and bilateral cataract, without neurological or heart defects. Renal function was maintained in the teenage years; nephrotic-range proteinuria was insensitive to immunosuppressive therapies. Therefore, mutations of KAT2B should be sought in patients with unexplained syndromic SRNS affecting the eye.
RESUMO
All people with motor neuron disease (pwMND) in England are eligible for genome sequencing (GS), with panel-based testing. With the advent of genetically targeted MND treatments, and increasing demand for GS, it is important that clinicians have the knowledge and skills to support pwMND in making informed decisions around GS. We undertook an online survey of clinical genomic knowledge and genetic counselling skills in English clinicians who see pwMND. There were 245 respondents to the survey (160 neurology clinicians and 85 genetic clinicians). Neurology clinicians reported multiple, overlapping barriers to offering pwMND GS. Lack of time to discuss GS in clinic and lack of training in genetics were reported. Neurology clinicians scored significantly less well on self-rated genomic knowledge and genetic counselling skills than genetic clinicians. The majority of neurology clinicians reported that they do not have adequate educational or patient information resources to support GS discussions. We identify low levels of genomic knowledge and skills in the neurology workforce. This may impede access to GS and precision medicine for pwMND.
Assuntos
Doença dos Neurônios Motores , Humanos , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/epidemiologia , Inquéritos e Questionários , Inglaterra , Neurologia/educação , Sequenciamento Completo do Genoma , Aconselhamento Genético , Masculino , Medicina Estatal , Testes Genéticos , Feminino , Genômica/métodosRESUMO
BACKGROUND: Plexins are large transmembrane receptors for the semaphorin family of signalling proteins. Semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Nine plexin genes have been identified in humans, but despite the apparent importance of plexins in development, only biallelic PLXND1 and PLXNA1 variants have so far been associated with Mendelian genetic disease. METHODS: Eight individuals from six families presented with a recessively inherited variable clinical condition, with core features of amelogenesis imperfecta (AI) and sensorineural hearing loss (SNHL), with variable intellectual disability. Probands were investigated by exome or genome sequencing. Common variants and those unlikely to affect function were excluded. Variants consistent with autosomal recessive inheritance were prioritised. Variant segregation analysis was performed by Sanger sequencing. RNA expression analysis was conducted in C57Bl6 mice. RESULTS: Rare biallelic pathogenic variants in plexin B2 (PLXNB2), a large transmembrane semaphorin receptor protein, were found to segregate with disease in all six families. The variants identified include missense, nonsense, splicing changes and a multiexon deletion. Plxnb2 expression was detected in differentiating ameloblasts. CONCLUSION: We identify rare biallelic pathogenic variants in PLXNB2 as a cause of a new autosomal recessive, phenotypically diverse syndrome with AI and SNHL as core features. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. The variable syndromic human phenotype overlaps with that seen in Plxnb2 knockout mice, and, together with the rarity of human PLXNB2 variants, may explain why pathogenic variants in PLXNB2 have not been reported previously.
Assuntos
Amelogênese Imperfeita , Deficiência Intelectual , Linhagem , Humanos , Animais , Masculino , Feminino , Camundongos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Receptores de Superfície Celular/genética , Proteínas do Tecido Nervoso/genética , Alelos , Criança , Perda Auditiva/genética , Perda Auditiva/patologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Adulto , Mutação/genética , Adolescente , Pré-Escolar , FenótipoRESUMO
BACKGROUND: PHACTR1 (phosphatase and actin regulators) plays a key role in cortical migration and synaptic activity by binding and regulating G-actin and PPP1CA. This study aimed to expand the genotype and phenotype of patients with de novo variants in PHACTR1 and analyse the impact of variants on protein-protein interaction. METHODS: We identified seven patients with PHACTR1 variants by trio-based whole-exome sequencing. Additional two subjects were ascertained from two centres through GeneMatcher. The genotype-phenotype correlation was determined, and AlphaFold-Multimer was used to predict protein-protein interactions and interfaces. RESULTS: Eight individuals carried missense variants and one had CNV in the PHACTR1. Infantile epileptic spasms syndrome (IESS) was the unifying phenotype in eight patients with missense variants of PHACTR1. They could present with other types of seizures and often exhibit drug-resistant epilepsy with a poor prognosis. One patient with CNV displayed a developmental encephalopathy phenotype. Using AlphaFold-Multimer, our findings indicate that PHACTR1 and G-actin-binding sequences overlap with PPP1CA at the RPEL3 domain, which suggests possible competition between PPP1CA and G-actin for binding to PHACTR1 through a similar polymerisation interface. In addition, patients carrying missense variants located at the PHACTR1-PPP1CA or PHACTR1-G-actin interfaces consistently exhibit the IESS phenotype. These missense variants are mostly concentrated in the overlapping sequence (RPEL3 domain). CONCLUSIONS: Patients with variants in PHACTR1 can have a phenotype of developmental encephalopathy in addition to IESS. Moreover, our study confirmed that the variants affect the binding of PHACTR1 to G-actin or PPP1CA, resulting in neurological disorders in patients.
Assuntos
Sequenciamento do Exoma , Estudos de Associação Genética , Proteínas dos Microfilamentos , Mutação de Sentido Incorreto , Fenótipo , Espasmos Infantis , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Actinas/genética , Predisposição Genética para Doença , Genótipo , Proteínas dos Microfilamentos/genética , Mutação de Sentido Incorreto/genética , Doenças do Sistema Nervoso/genética , Proteína Fosfatase 1/genética , Espasmos Infantis/genéticaRESUMO
BACKGROUND: Weill-Marchesani syndrome (WMS) belongs to the group of acromelic dysplasias, defined by short stature, brachydactyly and joint limitations. WMS is characterised by specific ophthalmological abnormalities, although cardiovascular defects have also been reported. Monoallelic variations in FBN1 are associated with a dominant form of WMS, while biallelic variations in ADAMTS10, ADAMTS17 and LTBP2 are responsible for a recessive form of WMS. OBJECTIVE: Natural history description of WMS and genotype-phenotype correlation establishment. MATERIALS AND METHODS: Retrospective multicentre study and literature review. INCLUSION CRITERIA: clinical diagnosis of WMS with identified pathogenic variants. RESULTS: 61 patients were included: 18 individuals from our cohort and 43 patients from literature. 21 had variants in ADAMTS17, 19 in FBN1, 19 in ADAMTS10 and 2 in LTBP2. All individuals presented with eye anomalies, mainly spherophakia (42/61) and ectopia lentis (39/61). Short stature was present in 73% (from -2.2 to -5.5 SD), 10/61 individuals had valvulopathy. Regarding FBN1 variants, patients with a variant located in transforming growth factor (TGF)-ß-binding protein-like domain 5 (TB5) domain were significantly smaller than patients with FBN1 variant outside TB5 domain (p=0.0040). CONCLUSION: Apart from the ophthalmological findings, which are mandatory for the diagnosis, the phenotype of WMS seems to be more variable than initially described, partially explained by genotype-phenotype correlation.
Assuntos
Nanismo , Anormalidades do Olho , Síndrome de Weill-Marchesani , Humanos , Síndrome de Weill-Marchesani/genética , Síndrome de Weill-Marchesani/diagnóstico , Síndrome de Weill-Marchesani/patologia , Nanismo/genética , Fenótipo , Estudos de Associação Genética , Fibrilina-1/genética , Proteínas de Ligação a TGF-beta Latente/genética , Estudos Multicêntricos como AssuntoRESUMO
BACKGROUND: High myopia (HM) refers to an eye refractive error exceeding -5.00 D, significantly elevating blindness risk. The underlying mechanism of HM remains elusive. Given the extensive genetic heterogeneity and vast genetic base opacity, it is imperative to identify more causative genes and explore their pathogenic roles in HM. METHODS: We employed exome sequencing to pinpoint the causal gene in an HM family. Sanger sequencing was used to confirm and analyse the gene mutations in this family and 200 sporadic HM cases. Single-cell RNA sequencing was conducted to evaluate the gene's expression patterns in developing human and mouse retinas. The CRISPR/Cas9 system facilitated the gene knockout cells, aiding in the exploration of the gene's function and its mutations. Immunofluorescent staining and immunoblot techniques were applied to monitor the functional shifts of the gene mutations at the cellular level. RESULTS: A suspected nonsense mutation (c.C172T, p.Q58X) in CCDC66 was found to be co-segregated with the HM phenotype in the family. Additionally, six other rare variants were identified among the 200 sporadic patients. CCDC66 was consistently expressed in the embryonic retinas of both humans and mice. Notably, in CCDC66-deficient HEK293 cells, there was a decline in cell proliferation, microtube polymerisation rate and ace-tubulin level. Furthermore, the mutated CCDC66 failed to synchronise with the tubulin system during Hela cell mitosis, unlike its wild type counterpart. CONCLUSIONS: Our research indicates that the CCDC66 variant c.C172T is associated with HM. A deficiency in CCDC66 might disrupt cell proliferation by influencing the mitotic process during retinal growth, leading to HM.
Assuntos
Miopia , Tubulina (Proteína) , Humanos , Animais , Camundongos , Tubulina (Proteína)/genética , Células HeLa , Células HEK293 , Miopia/genética , Mutação , Mitose/genética , Proteínas do Olho/genéticaRESUMO
SATB2-associated syndrome (SAS) is caused by pathogenic variants in SATB2, which encodes an evolutionarily conserved transcription factor. Despite the broad range of phenotypic manifestations and variable severity related to this syndrome, haploinsufficiency has been assumed to be the primary molecular explanation.In this study, we describe eight individuals with SATB2 variants that affect p.Gly392 (four women, age range 2-16 years; p.Gly392Arg, p.Gly392Glu and p.Gly392Val). Of these, individuals with p.Gly392Arg substitutions were found to have more severe neurodevelopmental phenotypes based on an established rubric scoring system when compared with individuals with p.Gly392Glu, p.Gly392Val and other previously reported causative SATB2 missense variants. Consistent with the observations at the phenotypic level, using human cell-based and model organism functional data, we documented that while all three described p.Gly392 variants affect the same residue and seem to all have a partial loss-of-function effect, some effects on SATB2 protein function appear to be variant-specific. Our results indicate that genotype-phenotype correlations in SAS are more complex than originally thought, and variant-specific genotype-phenotype correlations are needed.
Assuntos
Estudos de Associação Genética , Proteínas de Ligação à Região de Interação com a Matriz , Mutação de Sentido Incorreto , Fenótipo , Fatores de Transcrição , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Mutação de Sentido Incorreto/genética , Feminino , Criança , Adolescente , Masculino , Fatores de Transcrição/genética , Pré-Escolar , Estudos de Associação Genética/métodos , Haploinsuficiência/genéticaRESUMO
BACKGROUND: PTEN hamartoma tumour syndrome (PHTS) encompasses distinct syndromes, including Cowden syndrome resulting from PTEN pathogenic variants. Missense variants account for 30% of PHTS cases, but their classification remains challenging. To address these difficulties, guidelines were published by the Clinical Genome Resource PTEN Variant Curation Expert Panel. METHODS: Between 2010 and 2020, the Bergonie Institute reference laboratory identified 76 different non-truncating PTEN variants in 166 patients, 17 of which have not previously been reported. Variants were initially classified following the current guidelines. Subsequently, a new classification method was developed based on four main criteria: functional exploration, phenotypic features and familial segregation, in silico modelling, and allelic frequency. RESULTS: This new method of classification is more discriminative and reclassifies 25 variants, including 8 variants of unknown significance. CONCLUSION: This report proposes a revision of the current PTEN variant classification criteria which at present rely on functional tests evaluating only the phosphatase activity of PTEN and apply a particularly stringent clinical PHTS score.The classification of non-truncating variants of PTEN is facilitated by taking into consideration protein stability for variants with intact phosphatase activity, clinical and segregation criteria adapted to the phenotypic variability of PHTS and by specifying the allelic frequency of variants in the general population. This novel method of classification remains to be validated in a prospective cohort.
RESUMO
Formin homology 2 domain-containing 3 (FHOD3) gene has emerged as one of the main non-sarcomeric genes associated with hypertrophic cardiomyopathy (HCM), but no cases of biallelic variants associated with disease have been described to date. From 2014 until 2021, FHOD3 was evaluated in our center by next-generation sequencing in 22 806 consecutive unrelated probands. The p.Arg637Gln variant in FHOD3 was enriched in our HCM cohort (284 of 9668 probands; 2.94%) compared with internal controls (64 of 11 480; 0.59%) and gnomAD controls (373 of 64 409; 0.58%), with ORs of 5.40 (95% CI: 4.11 to 7.09) and 5.19 (95% CI: 4.44 to 6.07). The variant affects a highly conserved residue localised in a supercoiled alpha helix considered a clustering site for HCM variants, and in heterozygosis can act as a predisposing factor (intermediate-effect variant) for HCM, with an estimated penetrance of around 1%. Additionally, seven homozygous carriers of p.Arg637Gln in FHOD3 were identified. All but one (unaffected) showed an early presentation and a severe HCM phenotype. All this information suggest that p.Arg637Gln variant in FHOD3 is a low-penetrant variant, with an intermediate effect, that contributes to the development of HCM in simple heterozygosis, being associated with a more severe phenotype in homozygous carriers.
Assuntos
Cardiomiopatia Hipertrófica , Humanos , Cardiomiopatia Hipertrófica/genética , Fenótipo , Homozigoto , Penetrância , Heterozigoto , Forminas/genéticaRESUMO
Rubinstein-Taybi syndrome (RTS) is an archetypical genetic syndrome that is characterised by intellectual disability, well-defined facial features, distal limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in either of two genes (CREBBP, EP300) which encode for the proteins CBP and p300, which both have a function in transcription regulation and histone acetylation. As a group of international experts and national support groups dedicated to the syndrome, we realised that marked heterogeneity currently exists in clinical and molecular diagnostic approaches and care practices in various parts of the world. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria for types of RTS (RTS1: CREBBP; RTS2: EP300), molecular investigations, long-term management of various particular physical and behavioural issues and care planning. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimisation of diagnostics and care.
Assuntos
Proteína de Ligação a CREB , Proteína p300 Associada a E1A , Síndrome de Rubinstein-Taybi , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/terapia , Humanos , Proteína de Ligação a CREB/genética , Proteína p300 Associada a E1A/genética , Consenso , Gerenciamento Clínico , MutaçãoRESUMO
BACKGROUND: The association between the TDRD6 variants and human infertility remains unclear, as only one homozygous missense variant of TDRD6 was found to be associated with oligoasthenoteratozoospermia (OAT). METHODS: Whole-exome sequencing and Sanger sequencing were employed to identify potential pathogenic variants of TDRD6 in infertile men. Histology, immunofluorescence, immunoblotting and ultrastructural analyses were conducted to clarify the structural and functional abnormalities of sperm in mutated patients. Tdrd6-knockout mice were generated using the CRISPR-Cas9 system. Total RNA-seq and single-cell RNA-seq (scRNA-seq) analyses were used to elucidate the underlying molecular mechanisms, followed by validation through quantitative RT-PCR and immunostaining. Intracytoplasmic sperm injection (ICSI) was also used to assess the efficacy of clinical treatment. RESULTS: Bi-allelic TDRD6 variants were identified in five unrelated Chinese individuals with OAT, including homozygous loss-of-function variants in two consanguineous families. Notably, besides reduced concentrations and impaired motility, a significant occurrence of acrosomal hypoplasia was detected in multiple spermatozoa among five patients. Using the Tdrd6-deficient mice, we further elucidate the pivotal role of TDRD6 in spermiogenesis and acrosome identified. In addition, the mislocalisation of crucial chromatoid body components DDX4 (MVH) and UPF1 was also observed in round spermatids from patients harbouring TDRD6 variants. ScRNA-seq analysis of germ cells from a patient with TDRD6 variants revealed that TDRD6 regulates mRNA metabolism processes involved in spermatid differentiation and cytoplasmic translation. CONCLUSION: Our findings strongly suggest that TDRD6 plays a conserved role in spermiogenesis and confirms the causal relationship between TDRD6 variants and human OAT. Additionally, this study highlights the unfavourable ICSI outcomes in individuals with bi-allelic TDRD6 variants, providing insights for potential clinical treatment strategies.
Assuntos
Alelos , Astenozoospermia , Sequenciamento do Exoma , Camundongos Knockout , Espermatogênese , Adulto , Animais , Humanos , Masculino , Camundongos , Acrossomo/patologia , Astenozoospermia/genética , Astenozoospermia/patologia , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Oligospermia/genética , Oligospermia/patologia , Linhagem , Injeções de Esperma Intracitoplásmicas , Espermatogênese/genética , Espermatozoides/patologia , Espermatozoides/metabolismoRESUMO
BACKGROUND: Complex regional pain syndrome type 1 (CRPS-1) is a rare, disabling and sometimes chronic disorder usually arising after a trauma. This exploratory study examined whether patients with chronic CRPS-1 have a different genetic profile compared with those who do not have the condition. METHODS: Exome sequencing was performed to seek altered non-synonymous SNP allele frequencies in a discovery cohort of well-characterised patients with chronic CRPS-1 (n=34) compared with population databases. Identified SNP alleles were confirmed by Sanger sequencing and sought in a replication cohort (n=50). Gene expression of peripheral blood macrophages was assessed. RESULTS: In the discovery cohort, the rare allele frequencies of four non-synonymous SNPs were statistically increased. The replication cohort confirmed this finding. In a chronic pain cohort, these alleles were not overexpressed. In total, 25 out of 84 (29.8%) patients with CRPS-1 expressed a rare allele. The SNPs were rs41289586 in ANO10, rs28360457 in P2RX7, rs1126930 in PRKAG1 and rs80308281 in SLC12A9. Males were more likely than females to have a rare SNP allele, 8 out of 14 (57.1%) vs 17 out of 70 (24.3%) (Fisher's p=0.023). ANO10, P2RX7, PRKAG1 and SLC12A9 were all expressed in macrophages from healthy human controls. CONCLUSION: A single SNP in each of the genes ANO10, P2RX7, PRKAG1 and SLC12A9 was associated with developing chronic CRPS-1, with more males than females expressing these rare alleles. Our work suggests the possibility that a permissive genetic background is an important factor in the development of CRPS-1.
Assuntos
Síndromes da Dor Regional Complexa , Masculino , Feminino , Humanos , Síndromes da Dor Regional Complexa/genética , Síndromes da Dor Regional Complexa/epidemiologia , Frequência do Gene , Polimorfismo de Nucleotídeo Único/genética , Alelos , Patrimônio GenéticoRESUMO
TBX20 encodes a cardiac transcription factor that is associated with atrial septal defects. Recent studies implicate loss-of-function TBX20 variants with left ventricular non-compaction cardiomyopathy (LVNC), although clinical and genetic data in families are limited. We report four families with TBX20 loss-of-function variants that segregate with LVNC. Genetic testing using genome or exome sequencing was performed in index cases, variants were validated with Sanger sequencing, and cascade genetic testing was performed in family members. A multi-exon deletion, small deletion, essential splice site variant and nonsense variant in TBX20 were found in four families. The index cases in two families were symptomatic children with identical congenital heart diseases and LVNC who developed different cardiomyopathy phenotypes with one developing heart failure requiring transplantation. In another family, the child index case had LVNC and congestive heart failure requiring heart transplantation. In the fourth family, the index case was a symptomatic adult with LVNC. In all families, the variants segregated in relatives with isolated LVNC, or with congenital heart disease or cardiomyopathy. Family members displayed a clinical spectrum from asymptomatic to severe presentations including heart failure. Our data strengthen TBX20 loss-of-function variants as a rare cause of LVNC and support TBX20 inclusion in genetic testing of LVNC.
Assuntos
Cardiomiopatias , Cardiopatias Congênitas , Insuficiência Cardíaca , Adulto , Criança , Humanos , Mutação , Cardiomiopatias/genética , Cardiopatias Congênitas/genética , Coração , Insuficiência Cardíaca/genética , Proteínas com Domínio T/genéticaRESUMO
BACKGROUND: Most schwannomas are isolated tumours occurring in otherwise healthy people. However, bilateral vestibular schwannomas (BVS) or multiple non-vestibular schwannomas indicate an underlying genetic predisposition. This is most commonly NF2-related schwannomatosis (SWN), but when BVS are absent, this can also indicate SMARCB1-related or LZTR1-related SWN. METHODS: We assessed the variant detection rates for the three major SWN genes (NF2, LZTR1 and SMARCB1) in 154 people, from 150 families, who had at least one non-vestibular schwannoma, but who did not meet clinical criteria for NF2-related SWN at the time of genetic testing. RESULTS: We found that 17 (11%) people from 13 families had a germline SMARCB1 variant and 19 (12%) unrelated individuals had a germline LZTR1 variant. 19 people had an NF2 variant, but 18 of these were mosaic and 17 were only detected when 2 tumours were available for testing. The overall detection rate was 25% using blood alone, but increased to 36% when tumour analysis was included. Another 12 people had a germline variant of uncertain significance (VUS). CONCLUSIONS: There were similar proportions of LZTR1, SMARCB1 or mosaic NF2. However, since an NF2 variant was detected in tumours from 103 people, it is likely that further cases of mosaicism would be detected if more people had additional tumours available for analysis. In addition, if further evidence becomes available to show that the VUSs are pathogenic, this would significantly increase the proportion of people with a genetic diagnosis. Our results indicate the importance of comprehensive genetic testing and improved variant classification.
Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Neurilemoma , Neurofibromatoses , Neurofibromina 2 , Proteína SMARCB1 , Neoplasias Cutâneas , Fatores de Transcrição , Humanos , Neurilemoma/genética , Neurilemoma/diagnóstico , Neurilemoma/patologia , Proteína SMARCB1/genética , Neurofibromatoses/genética , Neurofibromatoses/diagnóstico , Neurofibromatoses/patologia , Neurofibromina 2/genética , Feminino , Masculino , Fatores de Transcrição/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Mutação em Linhagem Germinativa/genética , Testes Genéticos , Adulto , Neurofibromatose 2/genética , Neurofibromatose 2/diagnóstico , Pessoa de Meia-IdadeRESUMO
BACKGROUND: It has long been observed that there are families in which non-medullary thyroid cancer (NMTC) occurs, but few syndromes and genes have been described to date. Proteins in the shelterin complex have been implied in cancer. Here, we have studied shelterin genes in families affected by NMTC (FNMTC). METHODS: We performed whole-exome sequencing (WES) in 10 affected individuals from four families with at least three affected members. Polymerase chain reaction (PCR) and Sanger sequencing were performed to search for variants in the TINF2 gene in 40 FNMTC families. TINF2 transcripts and loss of heterozygosity (LOH) were studied in several affected patients of one family. RESULTS: We found the c.507G>T variant in heterozygosis in the TINF2 gene in one family, co-segregating in all five affected members. This variant affects the normal splicing. LOH was not observed. CONCLUSIONS: Our results reinforce the TINF2 gene as a susceptibility cause of FNMTC suggesting the importance of location of frameshift variants in TINF2. According to our data and previous literature, TINF2 pathogenic variants appear to be a significant risk factor for the development of NMTC and/or melanoma.
Assuntos
Sequenciamento do Exoma , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Linhagem , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Feminino , Masculino , Mutação em Linhagem Germinativa/genética , Adulto , Pessoa de Meia-Idade , Proteínas de Ligação a Telômeros/genética , Perda de Heterozigosidade/genética , IdosoRESUMO
BACKGROUND: Dystonia is one of the most common movement disorders. To date, the genetic causes of dystonia in populations of European descent have been extensively studied. However, other populations, particularly those from the Middle East, have not been adequately studied. The purpose of this study is to discover the genetic basis of dystonia in a clinically and genetically well-characterised dystonia cohort from Turkey, which harbours poorly studied populations. METHODS: Exome sequencing analysis was performed in 42 Turkish dystonia families. Using co-expression network (CEN) analysis, identified candidate genes were interrogated for the networks including known dystonia-associated genes and genes further associated with the protein-protein interaction, animal model-based characteristics and clinical findings. RESULTS: We identified potentially disease-causing variants in the established dystonia genes (PRKRA, SGCE, KMT2B, SLC2A1, GCH1, THAP1, HPCA, TSPOAP1, AOPEP; n=11 families (26%)), in the uncommon forms of dystonia-associated genes (PCCB, CACNA1A, ALDH5A1, PRKN; n=4 families (10%)) and in the candidate genes prioritised based on the pathogenicity of the variants and CEN-based analyses (n=11 families (21%)). The diagnostic yield was found to be 36%. Several pathways and gene ontologies implicated in immune system, transcription, metabolic pathways, endosomal-lysosomal and neurodevelopmental mechanisms were over-represented in our CEN analysis. CONCLUSIONS: Here, using a structured approach, we have characterised a clinically and genetically well-defined dystonia cohort from Turkey, where dystonia has not been widely studied, and provided an uncovered genetic basis, which will facilitate diagnostic dystonia research.
Assuntos
Distonia , Distúrbios Distônicos , Animais , Humanos , Distonia/genética , Distonia/diagnóstico , Distúrbios Distônicos/genética , Distúrbios Distônicos/diagnóstico , Testes Genéticos , Turquia , Biologia Molecular , Mutação , Proteínas de Ligação a DNA/genética , Proteínas Reguladoras de Apoptose/genéticaRESUMO
Fetal hydrops as detected by prenatal ultrasound usually carries a poor prognosis depending on the underlying aetiology. We describe the prenatal and postnatal clinical course of two unrelated female probands in whom de novo heterozygous missense variants in the planar cell polarity gene CELSR1 were detected using exome sequencing. Using several in vitro assays, we show that the CELSR1 p.(Cys1318Tyr) variant disrupted the subcellular localisation, affected cell-cell junction, impaired planar cell polarity signalling and lowered proliferation rate. These observations suggest that deleterious rare CELSR1 variants could be a possible cause of fetal hydrops.
Assuntos
Heterozigoto , Hidropisia Fetal , Mutação de Sentido Incorreto , Humanos , Feminino , Mutação de Sentido Incorreto/genética , Hidropisia Fetal/genética , Hidropisia Fetal/patologia , Gravidez , Derrame Pleural/genética , Derrame Pleural/patologia , Caderinas/genética , Sequenciamento do Exoma , Polaridade Celular/genéticaRESUMO
OBJECTIVES: Mutations in the X-linked endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome (CS). Here, in the largest study to date, we examine genetic diversity and clinical progression in CS into adulthood. METHOD: Data were collected as part of the International Christianson Syndrome and NHE6 (SLC9A6) Gene Network Study. 44 individuals with 31 unique NHE6 mutations, age 2-32 years, were followed prospectively, herein reporting baseline, 1 year follow-up and retrospective natural history. RESULTS: We present data on the CS phenotype with regard to physical growth and adaptive and motor regression across the lifespan including information on mortality. Longitudinal data on body weight and height were examined using a linear mixed model. The rate of growth across development was slow and resulted in prominently decreased age-normed height and weight by adulthood. Adaptive functioning was longitudinally examined; a majority of adult participants (18+ years) lost gross and fine motor skills over a 1 year follow-up. Previously defined core diagnostic criteria for CS (present in>85%)-namely non-verbal status, intellectual disability, epilepsy, postnatal microcephaly, ataxia, hyperkinesia-were universally present in age 6-16; however, an additional core feature of high pain tolerance was added (present in 91%). While neurologic examinations were consistent with cerebellar dysfunction, importantly, a majority of individuals (>50% older than 10) also had corticospinal tract abnormalities. Three participants died during the period of the study. CONCLUSIONS: In this large and longitudinal study of CS, we begin to define the trajectory of symptoms and the adult phenotype thereby identifying critical targets for treatment.