Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(7): 1842-1857.e21, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31155235

RESUMO

Mutational processes giving rise to lung adenocarcinomas (LADCs) in non-smokers remain elusive. We analyzed 138 LADC whole genomes, including 83 cases with minimal contribution of smoking-associated mutational signature. Genomic rearrangements were not correlated with smoking-associated mutations and frequently served as driver events of smoking-signature-low LADCs. Complex genomic rearrangements, including chromothripsis and chromoplexy, generated 74% of known fusion oncogenes, including EML4-ALK, CD74-ROS1, and KIF5B-RET. Unlike other collateral rearrangements, these fusion-oncogene-associated rearrangements were frequently copy-number-balanced, representing a genomic signature of early oncogenesis. Analysis of mutation timing revealed that fusions and point mutations of canonical oncogenes were often acquired in the early decades of life. During a long latency, cancer-related genes were disrupted or amplified by complex rearrangements. The genomic landscape was different between subgroups-EGFR-mutant LADCs had frequent whole-genome duplications with p53 mutations, whereas fusion-oncogene-driven LADCs had frequent SETD2 mutations. Our study highlights LADC oncogenesis driven by endogenous mutational processes.


Assuntos
Adenocarcinoma de Pulmão , Rearranjo Gênico , Neoplasias Pulmonares , Mutação , Proteínas de Fusão Oncogênica , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
2.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35948005

RESUMO

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Assuntos
Mioquimia , Proteínas do Tecido Nervoso , Animais , Autoanticorpos , Axônios , Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mamíferos/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Fenótipo , Genética Reversa
3.
BMC Genomics ; 25(1): 922, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363260

RESUMO

The Microcystis mobilome is a well-known but understudied component of this bloom-forming cyanobacterium. Through genomic and transcriptomic comparisons, we found five families of transposases that altered the expression of genes in the well-studied toxigenic type-strain, Microcystis aeruginosa PCC 7086, and a non-toxigenic genetic mutant, Microcystis aeruginosa PCC 7806 ΔmcyB. Since its creation in 1997, the ΔmcyB strain has been used in comparative physiology studies against the wildtype strain by research labs throughout the world. Some differences in gene expression between what were thought to be otherwise genetically identical strains have appeared due to insertion events in both intra- and intergenic regions. In our ΔmcyB isolate, a sulfate transporter gene cluster (sbp-cysTWA) showed differential expression from the wildtype, which may have been caused by the insertion of a miniature inverted repeat transposable element (MITE) in the sulfate-binding protein gene (sbp). Differences in growth in sulfate-limited media also were also observed between the two isolates. This paper highlights how Microcystis strains continue to "evolve" in lab conditions and illustrates the importance of insertion sequences / transposable elements in shaping genomic and physiological differences between Microcystis strains thought otherwise identical. This study forces the necessity of knowing the complete genetic background of isolates in comparative physiological experiments, to facilitate the correct conclusions (and caveats) from experiments.


Assuntos
Microcystis , Mutação , Microcystis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Genoma Bacteriano
4.
Am J Med Genet A ; : e63830, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095963

RESUMO

Tuberous sclerosis complex (TSC) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct disorders typically associated with pathogenic variants in TSC1 and TSC2 for the former and PKD1 and PKD2 for the latter. TSC2 and PKD1 lie adjacent to each other, and large deletions comprising both genes lead to TSC2/PKD1 contiguous gene deletion syndrome (CGS). In this study, we describe a young female patient exhibiting symptoms of TSC2/PKD1 CGS in which genetic analysis disclosed two noncontiguous partial gene deletions in TSC2 and PKD1 that putatively are responsible for the manifestations of the syndrome. Further analysis revealed that both deletions appear to be de novo on the maternal chromosome, presumably with a germline origin. Despite extensive analysis, no maternal chromosomal rearrangement triggering these pathogenic variants was detected. This case elucidates a unique pathogenesis for TSC2/PKD1 CGS, diverging from the common contiguous deletions typically observed, marking the first reported instance of TSC2/PKD1 CGS caused by independent, functionally significant partial gene deletions.

5.
J Biol Chem ; 296: 100548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33741344

RESUMO

The genome of trypanosomatids rearranges by using repeated sequences as platforms for amplification or deletion of genomic segments. These stochastic recombination events have a direct impact on gene dosage and foster the selection of adaptive traits in response to environmental pressure. We provide here such an example by showing that the phosphoenolpyruvate carboxykinase (PEPCK) gene knockout (Δpepck) leads to the selection of a deletion event between two tandemly arranged fumarate reductase (FRDg and FRDm2) genes to produce a chimeric FRDg-m2 gene in the Δpepck∗ cell line. FRDg is expressed in peroxisome-related organelles, named glycosomes, expression of FRDm2 has not been detected to date, and FRDg-m2 is nonfunctional and cytosolic. Re-expression of FRDg significantly impaired growth of the Δpepck∗ cells, but FRD enzyme activity was not required for this negative effect. Instead, glycosomal localization as well as the covalent flavinylation motif of FRD is required to confer growth retardation and intracellular accumulation of reactive oxygen species (ROS). The data suggest that FRDg, similar to Escherichia coli FRD, can generate ROS in a flavin-dependent process by transfer of electrons from NADH to molecular oxygen instead of fumarate when the latter is unavailable, as in the Δpepck background. Hence, growth retardation is interpreted as a consequence of increased production of ROS, and rearrangement of the FRD locus liberates Δpepck∗ cells from this obstacle. Interestingly, intracellular production of ROS has been shown to be required to complete the parasitic cycle in the insect vector, suggesting that FRDg may play a role in this process.


Assuntos
Glucose/metabolismo , Recombinação Homóloga , Microcorpos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Trypanosoma brucei brucei/metabolismo , Células Cultivadas , Flavinas/metabolismo , Succinato Desidrogenase/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
6.
Cytogenet Genome Res ; 162(11-12): 617-624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37231804

RESUMO

We performed optical genome mapping (OGM), a newly developed cytogenetic technique, for a patient with a disorder of sex development (DSD) and a 46,XX,t(9;11)(p22;p13) karyotype. The results of OGM were validated using other methods. OGM detected a 9;11 reciprocal translocation and successfully mapped its breakpoints to small regions of 0.9-12.3 kb. OGM identified 46 additional small structural variants, only three of which were detected by array-based comparative genomic hybridization. OGM suggested the presence of complex rearrangements on chromosome 10; however, these variants appeared to be artifacts. The 9;11 translocation was unlikely to be associated with DSD, while the pathogenicity of the other structural variants remained unknown. These results indicate that OGM is a powerful tool for detecting and characterizing chromosomal structural variations, although the current methods of OGM data analyses need to be improved.

7.
Cancer Cell Int ; 22(1): 306, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209207

RESUMO

BACKGROUND: Prostate cancer (PCa) is characterized by complex genomic rearrangements such as the ETS oncogene family fusions, yet the clinical relevance is not well established. While paneled genetic tests of DNA repair genes are recommended in advanced PCa, conventional genomic or cytogenetic tools are not ideal for genome-wide screening of structural variations (SVs) such as balanced translocation due to cost and/or resolution issues. METHODS: In this study, we tested the feasibility of whole-genome optical genomic mapping (OGM), a newly developed platform for genome-wide SV analysis to detect complex genomic rearrangements in consecutive unselected PCa samples from MRI/US-fusion targeted biopsy. RESULTS: We tested ten samples, and nine (90%) passed quality check. Average mapping rate and coverage depth were 58.1 ± 23.7% and 157.3 ± 97.7×, respectively (mean ± SD). OGM detected copy number alterations such as chr6q13 loss and chr8q12-24 gain. Two adjacent tumor samples were distinguished by inter/intra-chromosomal translocations, revealing that they're from the same ancestor. Furthermore, OGM detected large deletion of chr13q13.1 accompanied by inter-chromosomal translocation t(13;20)(q13.1;p13) occurring within BRCA2 gene, suggesting complete loss of function. CONCLUSION: In conclusion, clinically relevant genomic SVs were successfully detected in PCa samples by OGM. We suggest that OGM can complement panel sequencing of DNA repair genes BRCA1/2 or ATM in high-risk PCa.

8.
BMC Bioinformatics ; 22(1): 135, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33743584

RESUMO

BACKGROUND: Combined whole-genome sequencing (WGS) and RNA sequencing of cancers offer the opportunity to identify genes with altered expression due to genomic rearrangements. Somatic structural variants (SVs), as identified by WGS, can involve altered gene cis-regulation, gene fusions, copy number alterations, or gene disruption. The absence of computational tools to streamline integrative analysis steps may represent a barrier in identifying genes recurrently altered by genomic rearrangement. RESULTS: Here, we introduce SVExpress, a set of tools for carrying out integrative analysis of SV and gene expression data. SVExpress enables systematic cataloging of genes that consistently show increased or decreased expression in conjunction with the presence of nearby SV breakpoints. SVExpress can evaluate breakpoints in proximity to genes for potential enhancer translocation events or disruption of topologically associated domains, two mechanisms by which SVs may deregulate genes. The output from any commonly used SV calling algorithm may be easily adapted for use with SVExpress. SVExpress can readily analyze genomic datasets involving hundreds of cancer sample profiles. Here, we used SVExpress to analyze SV and expression data across 327 cancer cell lines with combined SV and expression data in the Cancer Cell Line Encyclopedia (CCLE). In the CCLE dataset, hundreds of genes showed altered gene expression in relation to nearby SV breakpoints. Altered genes involved TAD disruption, enhancer hijacking, and gene fusions. When comparing the top set of SV-altered genes from cancer cell lines with the top SV-altered genes previously reported for human tumors from The Cancer Genome Atlas and the Pan-Cancer Analysis of Whole Genomes datasets, a significant number of genes overlapped in the same direction for both cell lines and tumors, while some genes were significant for cell lines but not for human tumors and vice versa. CONCLUSION: Our SVExpress tools allow computational biologists with a working knowledge of R to integrate gene expression with SV breakpoint data to identify recurrently altered genes. SVExpress is freely available for academic or commercial use at https://github.com/chadcreighton/SVExpress . SVExpress is implemented as a set of Excel macros and R code. All source code (R and Visual Basic for Applications) is available.


Assuntos
Variações do Número de Cópias de DNA , Variação Estrutural do Genoma , Sequenciamento Completo do Genoma , Genoma , Genoma Humano , Genômica , Humanos
9.
Hum Mutat ; 42(5): 520-529, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675279

RESUMO

Von Hippel-Lindau (VHL) is a hereditary multisystem disorder caused by germline alterations in the VHL gene. VHL patients are at risk for benign as well as malignant lesions in multiple organs including kidney, adrenal, pancreas, the central nervous system, retina, endolymphatic sac of the ear, epididymis, and broad ligament. An estimated 30%-35% of all families with VHL inherit a germline deletion of one, two, or all three exons. In this study, we have extensively characterized germline deletions identified in patients from 71 VHL families managed at the National Cancer Institute, including 59 partial (PD) and 12 complete VHL deletions (CD). Deletions that ranged in size from 1.09 to 355 kb. Fifty-eight deletions (55 PD and 3 CD) have been mapped to the exact breakpoints. Ninety-five percent (55 of 58) of mapped deletions involve Alu repeats at both breakpoints. Several novel classes of deletions were identified in this cohort, including two cases that have complex rearrangements involving both deletion and inversion, two cases with inserted extra Alu-like sequences, six cases that involve breakpoints in Alu repeats situated in opposite orientations, and a "hotspot" PD of Exon 3 observed in 12 families that involves the same pair of Alu repeats.


Assuntos
Doença de von Hippel-Lindau , Feminino , Deleção de Genes , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Masculino , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Doença de von Hippel-Lindau/genética
10.
Plant J ; 103(6): 2139-2150, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32579240

RESUMO

We previously developed a large-scale genome restructuring technology called the TAQing system. It can induce genomic rearrangements by introducing transient and conditional formation of DNA double-strand breaks (DSBs) via heat activation of a restriction enzyme TaqI, which can cleave DNA at 5'-TCGA-3' sequences in the genome at higher temperatures (37-42°C). Such heat treatment sometimes confers lethal damage in certain plant species and TaqI cannot induce rearrangements in AT-rich regions. To overcome such problems we developed an extended TAQing (Ex-TAQing) system, which enables the use of a wider range of restriction enzymes active at standard plant-growing temperatures. We established the Ex-TAQing system using MseI that can efficiently cleave DNA at room temperature (at temperatures ranging from 22 to 25°C) and the 5'-TTAA-3' sequence which is highly abundant in the Arabidopsis genome. A synthetic intron-spanning MseI gene, which was placed downstream of a heat-shock-inducible promoter, was conditionally expressed upon milder heat treatment (33°C) to generate DSBs in Arabidopsis chromosomes. Genome resequencing revealed various types of genomic rearrangements, including copy number variations, translocation and direct end-joining at MseI cleavage sites. The Ex-TAQing system could induce large-scale rearrangements in diploids more frequently (17.4%, n = 23) than the standard TAQing system. The application of this system to tetraploids generated several strains with chromosomal rearrangements associated with beneficial phenotypes, such as high salinity stress tolerance and hypersensitivity to abscisic acid. We have developed the Ex-TAQing system, allowing more diverse patterns of genomic rearrangements, by employing various types of endonucleases and have opened a way to expand the capacity for artificial genome reorganization.


Assuntos
Edição de Genes/métodos , Genoma de Planta/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Plantas/genética , DNA de Plantas/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Rearranjo Gênico/genética , Temperatura Alta , Íntrons/genética , Ploidias , Tetraploidia
11.
Clin Infect Dis ; 73(9): 1696-1699, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33675655

RESUMO

Throughout the coronavirus disease 2019 (COVID-19) pandemic, divergent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages have emerged continuously, mostly through the genomic accumulation of substitutions. We report the discovery of a SARS-CoV-2 variant with a novel genomic architecture characterized by absent ORF7a, ORF7b, and ORF8, and a C-terminally modified ORF6 product resulting from partial 5'-untranslated region (UTR) duplication and transposition.


Assuntos
COVID-19 , SARS-CoV-2 , Genômica , Hong Kong/epidemiologia , Humanos
12.
BMC Plant Biol ; 21(1): 421, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521343

RESUMO

BACKGROUND: Although plastomes are highly conserved with respect to gene content and order in most photosynthetic angiosperms, extensive genomic rearrangements have been reported in Fabaceae, particularly within the inverted repeat lacking clade (IRLC) of Papilionoideae. Two hypotheses, i.e., the absence of the IR and the increased repeat content, have been proposed to affect the stability of plastomes. However, this is still unclear for the IRLC species. Here, we aimed to investigate the relationships between repeat content and the degree of genomic rearrangements in plastomes of Medicago and its relatives Trigonella and Melilotus, which are nested firmly within the IRLC. RESULTS: We detected abundant repetitive elements and extensive genomic rearrangements in the 75 newly assembled plastomes of 20 species, including gene loss, intron loss and gain, pseudogenization, tRNA duplication, inversion, and a second independent IR gain (IR ~ 15 kb in Melilotus dentata) in addition to the previous first reported cases in Medicago minima. We also conducted comparative genomic analysis to evaluate plastome evolution. Our results indicated that the overall repeat content is positively correlated with the degree of genomic rearrangements. Some of the genomic rearrangements were found to be directly linked with repetitive sequences. Tandem repeated sequences have been detected in the three genes with accelerated substitution rates (i.e., accD, clpP, and ycf1) and their length variation could be explained by the insertions of tandem repeats. The repeat contents of the three localized hypermutation regions around these three genes with accelerated substitution rates are also significantly higher than that of the remaining plastome sequences. CONCLUSIONS: Our results suggest that IR reemergence in the IRLC species does not ensure their plastome stability. Instead, repeat-mediated illegitimate recombination is the major mechanism leading to genome instability, a pattern in agreement with recent findings in other angiosperm lineages. The plastome data generated herein provide valuable genomic resources for further investigating the plastome evolution in legumes.


Assuntos
Rearranjo Gênico/genética , Genomas de Plastídeos/genética , Medicago/genética , Sequências Repetitivas de Ácido Nucleico/genética , Genes de Plantas/genética , Melilotus/genética , Filogenia , Plastídeos/genética
13.
Genes Dev ; 27(13): 1462-72, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23796897

RESUMO

With the advent of high-throughput sequencing technologies, much progress has been made in the identification of somatic structural rearrangements in cancer genomes. However, characterization of the complex alterations and their associated mechanisms remains inadequate. Here, we report a comprehensive analysis of whole-genome sequencing and DNA copy number data sets from The Cancer Genome Atlas to relate chromosomal alterations to imbalances in DNA dosage and describe the landscape of intragenic breakpoints in glioblastoma multiforme (GBM). Gene length, guanine-cytosine (GC) content, and local presence of a copy number alteration were closely associated with breakpoint susceptibility. A dense pattern of repeated focal amplifications involving the murine double minute 2 (MDM2)/cyclin-dependent kinase 4 (CDK4) oncogenes and associated with poor survival was identified in 5% of GBMs. Gene fusions and rearrangements were detected concomitant within the breakpoint-enriched region. At the gene level, we noted recurrent breakpoints in genes such as apoptosis regulator FAF1. Structural alterations of the FAF1 gene disrupted expression and led to protein depletion. Restoration of the FAF1 protein in glioma cell lines significantly increased the FAS-mediated apoptosis response. Our study uncovered a previously underappreciated genomic mechanism of gene deregulation that can confer growth advantages on tumor cells and may generate cancer-specific vulnerabilities in subsets of GBM.


Assuntos
Quebra Cromossômica , Glioblastoma/genética , Glioblastoma/mortalidade , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Variações do Número de Cópias de DNA/genética , Fusão Gênica/genética , Rearranjo Gênico/genética , Instabilidade Genômica/genética , Glioblastoma/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Análise de Sobrevida
14.
BMC Plant Biol ; 20(1): 159, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293284

RESUMO

BACKGROUND: In most angiosperms, the inheritance of the mitochondria takes place in a typical maternal manner. However, very less information is available about if the existence of structural variations or not in mitochondrial genomes (mitogenomes) between maternal parents and their progenies. RESULTS: In order to find the answer, a stable rice backcross inbred line (BIL) population was derived from the crosses of Oryza glaberrima/Oryza sativa//Oryza sativa. The current study presents a comparative analysis of the mitogenomes between maternal parents and five BILs. There were recorded universal structural variations such as reversal, translocation, fusion, and fission among the BILs. The repeat-mediated recombination and non-homologous end-joining contributed virtually equal to the rearrangement of mitogenomes. Similarly, the relative order, copy-number, expression level, and RNA-editing rate of mitochondrial genes were also extensively varied among BILs. CONCLUSIONS: These novel findings unraveled an unusual mystery of the maternal inheritance and possible cause for heterogeneity of mitogenomes in rice population. The current piece of work will greatly develop our understanding of the plant nucleo-cytoplasmic interaction and their potential role in plant growth and developmental processes.


Assuntos
Genoma Mitocondrial , Oryza/genética , Edição de RNA , Perfilação da Expressão Gênica , Recombinação Homóloga , Hibridização Genética
15.
Proc Biol Sci ; 287(1926): 20200443, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32345166

RESUMO

Polymorphic Batesian mimics exhibit multiple protective morphs that each mimic a different noxious model. Here, we study the genomic transitions leading to the evolution of different mimetic wing patterns in the polymorphic Mocker Swallowtail Papilio dardanus. We generated a draft genome (231 Mb over 30 chromosomes) and re-sequenced individuals of three morphs. Genome-wide single nucleotide polymorphism (SNP) analysis revealed elevated linkage disequilibrium and divergence between morphs in the regulatory region of engrailed, a developmental gene previously implicated in the mimicry switch. The diverged region exhibits a discrete chromosomal inversion (of 40 kb) relative to the ancestral orientation that is associated with the cenea morph, but not with the bottom-recessive hippocoonides morph or with non-mimetic allopatric populations. The functional role of this inversion in the expression of the novel phenotype is currently unknown, but by preventing recombination, it allows the stable inheritance of divergent alleles enabling geographic spread and local coexistence of multiple adaptive morphs.


Assuntos
Mimetismo Biológico/fisiologia , Borboletas/parasitologia , Inversão Cromossômica , Animais , Genes de Insetos , Genômica , Desequilíbrio de Ligação , Fenótipo , Sequências Reguladoras de Ácido Nucleico , Asas de Animais
16.
Cytogenet Genome Res ; 160(4): 167-176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32396893

RESUMO

During gametogenesis, the human genome can acquire various de novo rearrangements. Most constitutional genomic rearrangements are created through 1 of the 4 well-known mechanisms, i.e., nonallelic homologous recombination, erroneous repair after double-strand DNA breaks, replication errors, and retrotransposition. However, recent studies have identified 2 types of extremely complex rearrangements that cannot be simply explained by these mechanisms. The first type consists of chaotic structural changes in 1 or a few chromosomes that result from "chromoanagenesis (an umbrella term that covers chromothripsis, chromoanasynthesis, and chromoplexy)." The other type is large independent rearrangements in multiple chromosomes indicative of "transient multifocal genomic crisis." Germline chromoanagenesis (chromothripsis) likely occurs predominantly during spermatogenesis or postzygotic embryogenesis, while multifocal genomic crisis appears to be limited to a specific time window during oogenesis and early embryogenesis or during spermatogenesis. This review article introduces the current understanding of the molecular basis of de novo rearrangements in the germline.


Assuntos
Cromotripsia , Mutação em Linhagem Germinativa/genética , Recombinação Genética , Desenvolvimento Embrionário/genética , Humanos , Oogênese/genética , Espermatogênese/genética
17.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629901

RESUMO

Large genomic rearrangements (LGRs) affecting one or more exons of BRCA1 and BRCA2 constitute a significant part of the mutation spectrum of these genes. Since 2004, the National Institute of Oncology, Hungary, has been involved in screening for LGRs of breast or ovarian cancer families enrolled for genetic testing. LGRs were detected by multiplex ligation probe amplification method, or next-generation sequencing. Where it was possible, transcript-level characterization of LGRs was performed. Phenotype data were collected and analyzed too. Altogether 28 different types of LGRs in 51 probands were detected. Sixteen LGRs were novel. Forty-nine cases were deletions or duplications in BRCA1 and two affected BRCA2. Rearrangements accounted for 10% of the BRCA1 mutations. Three exon copy gains, two complex rearrangements, and 23 exon losses were characterized by exact breakpoint determinations. The inferred mechanisms for LGR formation were mainly end-joining repairs utilizing short direct homologies. Comparing phenotype features of the LGR-carriers to that of the non-LGR BRCA1 mutation carriers, revealed no significant differences. Our study is the largest comprehensive report of LGRs of BRCA1/2 in familial breast and ovarian cancer patients in the Middle and Eastern European region. Our data add novel insights to genetic interpretation associated to the LGRs.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Adulto , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Neoplasias da Mama/metabolismo , Éxons/genética , Feminino , Rearranjo Gênico/genética , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença/genética , Genômica/métodos , Células Germinativas , Mutação em Linhagem Germinativa/genética , Humanos , Hungria/epidemiologia , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Fatores de Risco , Deleção de Sequência
18.
BMC Cancer ; 19(1): 535, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159747

RESUMO

BACKGROUND: Hereditary cancer predisposition syndromes are responsible for approximately 5-10% of all diagnosed cancer cases. In the past, single-gene analysis of specific high risk genes was used for the determination of the genetic cause of cancer heritability in certain families. The application of Next Generation Sequencing (NGS) technology has facilitated multigene panel analysis and is widely used in clinical practice, for the identification of individuals with cancer predisposing gene variants. The purpose of this study was to investigate the extent and nature of variants in genes implicated in hereditary cancer predisposition in individuals referred for testing in our laboratory. METHODS: In total, 1197 individuals from Greece, Romania and Turkey were referred to our laboratory for genetic testing in the past 4 years. The majority of referrals included individuals with personal of family history of breast and/or ovarian cancer. The analysis of genes involved in hereditary cancer predisposition was performed using a NGS approach. Genomic DNA was enriched for targeted regions of 36 genes and sequencing was carried out using the Illumina NGS technology. The presence of large genomic rearrangements (LGRs) was investigated by computational analysis and Multiplex Ligation-dependent Probe Amplification (MLPA). RESULTS: A pathogenic variant was identified in 264 of 1197 individuals (22.1%) analyzed while a variant of uncertain significance (VUS) was identified in 34.8% of cases. Clinically significant variants were identified in 29 of the 36 genes analyzed. Concerning the mutation distribution among individuals with positive findings, 43.6% were located in the BRCA1/2 genes whereas 21.6, 19.9, and 15.0% in other high, moderate and low risk genes respectively. Notably, 25 of the 264 positive individuals (9.5%) carried clinically significant variants in two different genes and 6.1% had a LGR. CONCLUSIONS: In our cohort, analysis of all the genes in the panel allowed the identification of 4.3 and 8.1% additional pathogenic variants in other high or moderate/low risk genes, respectively, enabling personalized management decisions for these individuals and supporting the clinical significance of multigene panel analysis in hereditary cancer predisposition.


Assuntos
Neoplasias da Mama/genética , Neoplasias Colorretais/genética , Testes Genéticos/métodos , Mutação , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Ovarianas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Variação Genética , Grécia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Romênia , Turquia , Adulto Jovem
19.
Haemophilia ; 25(3): 475-483, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30866119

RESUMO

INTRODUCTION: Only two large duplications of F9 causing haemophilia B (HB) have been reported. AIM: To analyse the pathogenic mechanisms of large F9 duplications. METHODS: We have identified two large duplications of F9 (dup ex 1-6 and dup ex 4-6) associated with mild and severe HB in probands A and B, respectively. Here, we localized the breakpoints of the two duplications using long-range PCR and genome walking combined with quantitative primer walking strategies. We traced the origin of dup ex 4-6 by haplotype analysis then performed somatic mosaicism detection in sporadic pedigree B and detected the effect of chimeric intron derived from the duplication on transcription by minigene assay. RESULTS: Mechanisms of fork stalling and template switching and/or microhomology-mediated break-induced replication (FoSTeS/MMBIR) might be responsible for the formation of two tandem direct duplications. The dup ex 4-6 was traced to maternal grandmother of proband B, who was both somatic mosaicism and germline mosaic and the duplication might be formed during mitosis of her early embryonic cells. Minigene assay demonstrated that chimeric intron generated three transcripts, one minor transcript produced an in-frame protein adding duplicated 143 amino acids into the normal FIX, explaining the small amount of larger FIX shown in Western blot. The inter-F9 dup ex 1-6 adjacent to the original F9 copy created two identical promoters, and promoter competition might be the pathogenic mechanism of the duplication causing mild HB. CONCLUSIONS: This study highlights that duplications can be associated with diseases by complicated pathogenic mechanisms.


Assuntos
Fator IX/genética , Duplicação Gênica , Hemofilia B/genética , Sequência de Bases , Criança , Biologia Computacional , Feminino , Avós , Hemofilia B/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Transcrição Gênica
20.
BMC Genomics ; 18(1): 607, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28800729

RESUMO

BACKGROUND: Campanulaceae species are known to have highly rearranged plastid genomes lacking the acetyl-CoA carboxylase (ACC) subunit D gene (accD), and instead have a nuclear (nr)-accD. Plastid genome information has been thought to depend on studies concerning Trachelium caeruleum and genome announcements for Adenophora remotiflora, Campanula takesimana, and Hanabusaya asiatica. RNA editing information for plastid genes is currently unavailable for Campanulaceae. To understand plastid genome evolution in Campanulaceae, we have sequenced and characterized the chloroplast (cp) genome and nr-accD of Platycodon grandiflorum, a basal member of Campanulaceae. RESULTS: We sequenced the 171,818 bp cp genome containing a 79,061 bp large single-copy (LSC) region, a 42,433 bp inverted repeat (IR) and a 7840 bp small single-copy (SSC) region, which represents the cp genome with the largest IR among species of Campanulaceae. The genome contains 110 genes and 18 introns, comprising 77 protein-coding genes, four RNA genes, 29 tRNA genes, 17 group II introns, and one group I intron. RNA editing of genes was detected in 18 sites of 14 protein-coding genes. Platycodon has an IR containing a 3' rps12 operon, which occurs in the middle of the LSC region in four other species of Campanulaceae (T. caeruleum, A. remotiflora, C. takesimana, and H. asiatica), but lacks accD, clpP, infA, and rpl23, as has been found in these four species. Platycodon nr-accD contains about 3.2 kb intron between nr-accD.e1 and nr-accD.e2 at the same insertion point as in other Campanulaceae. The phylogenies of the plastid genomes and accD show that Platycodon is basal in the Campanulaceae clade, indicating that IR disruption in Campanulaceae occurred after the loss of accD, clpP, infA, and rpl23 in the cp genome, which occurred during plastid evolution in Campanulaceae. CONCLUSIONS: The plastid genome of P. grandiflorum lacks the rearrangement of the IR found in T. caeruleum, A. remotiflora, C. takesimana, and H. asiatica. The absence of accD, clpP, infA, and rpl23 in the plastid genome is a synapomorphic characteristic of Campanulaceae. The chloroplast genome phylogeny supports the hypothesis that chloroplast genomic arrangement occurred after accD nuclear transfer and loss of the four genes in the plastid of early Campanulaceae as a lineage of asterids.


Assuntos
Acetil-CoA Carboxilase/genética , Núcleo Celular/genética , Transferência Genética Horizontal , Plastídeos/genética , Platycodon/enzimologia , Platycodon/genética , Sequência de Bases , Evolução Molecular , Rearranjo Gênico , Genoma de Cloroplastos/genética , Filogenia , Platycodon/citologia , Edição de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA