Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36678914

RESUMO

Pancreatic ductal adenocarcinoma remains a highly debilitating condition with no effective disease-modifying interventions. In our search for natural products with promising anticancer activity, we identified the aminolipopeptide trichoderin A as a potential candidate. While it was initially isolated as an antitubercular peptide, we provide evidence that it is also selectively toxic against BxPC-3 and PANC-1 human pancreatic ductal adenocarcinoma cells cultured under glucose deprivation. This has critical implications for the pancreatic ductal adenocarcinoma, which is characterized by nutrient deprivation due to its hypovascularized network. We have also successfully simplified the trichoderin A peptide backbone, allowing greater accessibility to the peptide for further biological testing. In addition, we also conducted a preliminary investigation into the role of peptide lipidation at the N-terminus. This showed that analogues with longer fatty acyl chains exhibited superior cytotoxicity than those with shorter acyl chains. Further structural optimization of trichoderin A is anticipated to improve its biological activity, whilst ongoing mechanistic studies to elucidate its intracellular mechanism of action are conducted in parallel.

2.
Cells ; 9(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630312

RESUMO

xCT, also known as solute carrier family 7 member 11 (SLC7A11), the light chain of the cystine/glutamate antiporter, is positively correlated with cancer progression due to antioxidant function. During glucose deprivation, the overexpression of xCT does not protect cancer cells but instead promotes cell death. Further understanding the mechanism of glucose deprivation-induced cell death is important for developing anticancer treatments targeting the glucose metabolism. In this study, we found that breast cancer cells with a high expression of xCT demonstrated increased levels of reactive oxygen species (ROS) and were more sensitive to glucose deprivation than the cells with a low expression of xCT. However, AMP-activated protein kinase (AMPK) did not significantly affect glucose-deprivation-induced cell death. The antioxidant N-acetyl-cysteine prevented glucose-deprivation-induced cell death, and the glutathione biosynthesis inhibitor L-buthionine-S, R-sulfoximine enhanced glucose-deprivation-induced cell death. The inhibition of xCT by sulfasalazine or a knockdown of xCT reduced the glucose-deprivation-increased ROS levels and glucose-deprivation-induced cell death. Glucose deprivation reduced the intracellular glutamate, and supplementation with α-ketoglutarate prevented the glucose-deprivation-increased ROS levels and rescued cell death. The knockdown of sirtuin-3 (SIRT3) further enhanced the ROS levels, and promoted xCT-related cell death after glucose deprivation. In conclusion, our results suggested that ROS play a critical role in xCT-dependent cell death in breast cancer cells under glucose deprivation.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Neoplasias da Mama/metabolismo , Morte Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/deficiência , Espécies Reativas de Oxigênio/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Acetilcisteína/farmacologia , Sistema y+ de Transporte de Aminoácidos/genética , Neoplasias da Mama/genética , Morte Celular/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Humanos , Ácidos Cetoglutáricos/farmacologia , Proteínas Quinases/metabolismo , RNA Interferente Pequeno , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sulfassalazina/farmacologia , Regulação para Cima
3.
Cytokine Growth Factor Rev ; 55: 26-36, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32151523

RESUMO

The notion of immuno-metabolism refers to the crosstalk between key metabolic pathways and the development/maintenance of protective immunity in the context of physiological processes and anti-microbial defenses. Enthusiasm for immuno-metabolism in the context of HIV-1 infection, especially among T-cell lineages, continues to grow over time as science opens new therapeutic perspectives to limit viral pathogenesis and to boost anti-viral responses. The idea of "metabolism as a therapeutic target" is called metabolic reprogramming and is based on the use of specific metabolism-targeting drugs that are currently available for cancer therapy. In this review, we will focus on the evidence that shows the key role of mitochondria, the cell's powerhouses, and their ability to use diverse metabolic resources (referred to as metabolic plasticity) in providing optimal immune T-cell protection among HIV-1-infected patients. Conversely, we highlight observations indicating that mitochondria metabolic dysfunction associated with excessive glucose dependency, a phenomenon reported as "Warburg effect", results in the inability to mount and maintain effective T-cell-dependent immunity during persistent HIV-1 infection. Therefore, helping mitochondria to regain the metabolic plasticity and allow specific T-cells to adapt and thrive under unfavorable environmental conditions during HIV-1 infection may represent the next generation of combinatory treatment options for patients.


Assuntos
Infecções por HIV , HIV-1 , Mitocôndrias , Linfócitos T , Plasticidade Celular , Infecções por HIV/metabolismo , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA