Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Exp Biol ; 227(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38916067

RESUMO

Black soldier fly (Hermetia illucens) larvae are used to upcycle biowaste into insect biomass for animal feed. Previous research on black soldier fly has explored the assimilation of dietary fatty acids (FAs), but endogenous FA synthesis and modification remain comparatively unexplored. This study presents a 1H/2H-NMR methodology for measuring lipid synthesis in black soldier fly larvae using diluted deuterated water (2H2O) as a stable isotopic tracer delivered through the feeding media. This approach was validated by measuring 2H incorporation into the larvae's body water and consequent labelling of FA esterified into triacylglycerols. A 5% 2H enrichment in the body water, adequate to label the FA, is achieved after 24 h in a substrate with 10% 2H2O. A standard feeding trial using an invasive macroalgae was designed to test this method, revealing de novo lipogenesis was lower in larvae fed with macroalgae, probably related to the poor nutritional value of the diet.


Assuntos
Óxido de Deutério , Larva , Espectroscopia de Ressonância Magnética , Alga Marinha , Animais , Larva/metabolismo , Larva/crescimento & desenvolvimento , Alga Marinha/metabolismo , Alga Marinha/química , Óxido de Deutério/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ração Animal/análise , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Lipídeos/análise , Dípteros/metabolismo , Simuliidae/metabolismo , Simuliidae/crescimento & desenvolvimento , Dieta/veterinária
2.
J Sci Food Agric ; 104(11): 6987-7001, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38619109

RESUMO

BACKGROUND: Conventional petroleum-based packaging films cause severe environmental problems. In the present study, bio-edible film was introduced as being safe to replace petroleum-based polymers. A food application for edible sachets and a composite edible film (EF) from marine algae, Gracilaria fisheri (GF) extract, were proposed. RESULTS: Carbohydrates were the most prevalent component in fresh GF fronds. Under neutral conditions comprising 90 °C for 40 min, the structure of the extract was determined by Fourier transform infrared to be a carrageenan-like polysaccharide. Glycerol was the best plasticizer for EF formation because it had the highest tensile strength (TS). The integration of gelatin into the algal composite film with gelatin (CFG) was validated to be significant. The best casting temperatures for 2 h were 70 and 100 °C among the four tested temperatures (25, 60, 70 and 100 °C). Temperatures did not result in any significant (P ≤ 0.05) differences in any character (color values, TS, water vapor permeability, oxygen transmission, thickness and water activity), except elongation at break. Visually, the CFG had a slightly yellow appearance. The best-to-worst order of film stability in the three tested solvents was oil, distilled water (DW) and ethanol. Its stability in ethanol (0-100%), temperature of DW (30-100 °C) and pH (3-7 in DW) demonstrated inverse relationships with the concentration or different conditions, except for pH 8-10 in DW. All treatments were significantly (P ≤ 0.05) different. CONCLUSION: The novel material made from polysaccharides from algae, G. fisheri, was used to improve EF. The edible sachet application is plausible from the EF. © 2024 Society of Chemical Industry.


Assuntos
Filmes Comestíveis , Embalagem de Alimentos , Gelatina , Gracilaria , Alga Marinha , Resistência à Tração , Gelatina/química , Embalagem de Alimentos/instrumentação , Alga Marinha/química , Gracilaria/química , Permeabilidade
3.
Ecol Appl ; 33(3): e2799, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36504174

RESUMO

Extensive seaweed aquaculture is a growing industry expected to expand globally due to its relatively low impact and benefits in the form of ecosystem services. However, seaweeds are ecosystem engineers that may alter coastal environments by creating complex habitats on previously bare mudflats. These changes may scale up to top-consumers, particularly migratory shorebirds, species of conservation concern that regulate trophic webs at these habitats. Understanding how habitats are transformed and how this affects different species is critical to direct ecological applications for commercial seaweed management. We experimentally assessed through a Before-After Control-Impact design the potential changes exerted by Gracilaria chilensis farming on bare mudflats on the abundance, biomass, and assemblage structure of benthic macroinvertebrates, and their scaled-up effects on shorebirds' habitat use and prey consumption. As predicted, experimental cultivation of G. chilensis significantly affects different components of biodiversity that scale-up from lower to upper trophic levels. The total biomass of benthic macroinvertebrates increased with seaweed cultivation and remained high for at least 2 months after harvest, boosted by an increase in the median size of polychaetes, particularly Nereids. Tactile-foraging shorebirds tracked these changes at the patch level increasing their abundance and spending more time foraging at seaweed cultivated plots. These results suggest that seaweed farming has the potential to impact shorebird populations by favoring tactile-foraging species which could lead to a competitive disadvantage to species that rely on visual cues. Therefore, the establishment of new seaweed farms in bare mudflats at key sites for shorebirds must be planned warranting habitat heterogeneity (i.e., cultivated and non-cultivated areas) at the landscape level and based on a previous experimental approach to account for local characteristics. Fostering properly designed extensive seaweed farming over other aquaculture industries with greater negative environmental impacts would provide benefits for human well-being and for ecosystem functions.


Assuntos
Biodiversidade , Ecossistema , Alga Marinha , Humanos , Agricultura , Aquicultura , Invertebrados , Aves
4.
Mar Drugs ; 21(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504903

RESUMO

In this study, a comparison was made of the chemical makeup of different extracts obtained from Gracilaria bursa-pastoris, a type of red seaweed that was gathered from the Nador lagoon situated in the northern part of Morocco. Additionally, their anti-diabetic and antioxidant properties were investigated. The application of GC-MS technology to analyze the fatty acid content of the samples revealed that linoleic acid and eicosenoic acid were the most abundant unsaturated fatty acids across all samples, with palmitic acid and oleic acid following in frequency. The HPLC analysis indicated that ascorbic and kojic acids were the most prevalent phenolic compounds, while apigenin was the most common flavonoid molecule. The aqueous extract exhibited significant levels of polyphenols and flavonoids, registering values of 381.31 ± 0.33 mg GAE/g and 201.80 ± 0.21 mg QE/g, respectively. Furthermore, this particular extract demonstrated a remarkable ability to scavenge DPPH radicals, as evidenced by its IC50 value of 0.17 ± 0.67 mg/mL. In addition, the methanolic extract was found to possess antioxidant properties, as evidenced by its ability to prevent ß-carotene discoloration, with an IC50 ranging from 0.062 ± 0.02 mg/mL to 0.070 ± 0.06 mg/mL. In vitro study showed that all extracts significantly inhibited the enzymatic activity of α-amylase and α-glucosidase. Finally, molecular docking models were applied to assess the interaction between the primary phytochemicals identified in G. bursa-pastoris extracts and the human pancreatic α-amylase and α-glucosidase enzymes. The findings suggest that these extracts contain bioactive substances capable of reducing enzyme activity more effectively than the commercially available drug acarbose.


Assuntos
Antioxidantes , Gracilaria , Humanos , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , alfa-Glucosidases , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química
5.
Mar Drugs ; 21(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132954

RESUMO

Marine macroalgae (seaweeds) are important primary global producers, with a wide distribution in oceans around the world from polar to tropical regions. Most of these species are exposed to variable environmental conditions, such as abiotic (e.g., light irradiance, temperature variations, nutrient availability, salinity levels) and biotic factors (e.g., grazing and pathogen exposure). As a result, macroalgae developed numerous important strategies to increase their adaptability, including synthesizing secondary metabolites, which have promising biotechnological applications, such as UV-absorbing Mycosporine-Like Amino Acid (MAAs). MAAs are small, water-soluble, UV-absorbing compounds that are commonly found in many marine organisms and are characterized by promising antioxidative, anti-inflammatory and photoprotective properties. However, the widespread use of MAAs by humans is often restricted by their limited bioavailability, limited success in heterologous expression systems, and low quantities recovered from the natural environment. In contrast, bloom-forming macroalgal species from all three major macroalgal clades (Chlorophyta, Phaeophyceae, and Rhodophyta) occasionally form algal blooms, resulting in a rapid increase in algal abundance and high biomass production. This review focuses on the bloom-forming species capable of producing pharmacologically important compounds, including MAAs, and the application of proteomics in facilitating macroalgal use in overcoming current environmental and biotechnological challenges.


Assuntos
Rodófitas , Alga Marinha , Humanos , Alga Marinha/química , Raios Ultravioleta , Estações do Ano , Aminoácidos/química , Rodófitas/química
6.
Microb Ecol ; 84(4): 1288-1293, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34731271

RESUMO

Despite an increasing awareness of disease impacts on both cultivated and native seaweed populations, the development of marine probiotics has been limited and predominately focused on farmed animals. Bleaching (loss of thallus pigmentation) is one of the most prevalent diseases observed in marine macroalgae. Endemic probiotic bacteria have been characterized to prevent bleaching disease in red macroalgae Agarophyton vermiculophyllum and Delisea pulchra; however, the extent to which probiotic strains provide cross-protection to non-endemic hosts and the influence of native microbiota remain unknown. Using A. vermiculophyllum as a model, we demonstrate that co-inoculation with the pathogen Pseudoalteromonas arctica G-MAN6 and D. pulchra probiotic strain Phaeobacter sp. BS52 or Pseudoalteromonas sp. PB2-1 reduced the disease risks compared to the pathogen only treatment. Moreover, non-endemic probiotics outperformed the endemic probiotic strain Ralstonia sp. G-NY6 in the presence of the host natural microbiota. This study highlights how the native microbiota can impact the effectiveness of marine probiotics and illustrates the potential of harnessing probiotics that can function across different hosts to mitigate the impact of emerging marine diseases.


Assuntos
Microbiota , Probióticos , Rhodobacteraceae , Rodófitas , Alga Marinha , Animais
7.
Fish Shellfish Immunol ; 126: 164-177, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35623544

RESUMO

This study evaluated the effects of agar waste (AW) dietary supplementation, obtained from the seaweed Gracilaria gracilis cultivated under two different spectral lights, neutral (NT) and blue (BL), on haematological parameters, inflammatory response, and antioxidant biomarkers of gilthead seabream (Sparus aurata). Three diets were prepared: i) a basal diet (CTR), ii) a diet supplemented with 2.5% NT, and iii) a diet supplemented with 2.5% BL. After 15 days of feeding, fish were injected with PBS (placebo) or inactivated Photobacterium damselae subsp. piscicida (stimulated) and sampled at 4 h and 24 h post-stimulus. Results indicated that fish fed NT and BL supplemented diets had lower Ht value and mean corpuscular volume (MCV) than fish fed the CTR diet, regardless of the stimulus and the sampling time. No differences in mean corpuscular haemoglobin (MCH) were found between fish fed the different diets, while the mean corpuscular haemoglobin concentration (MCHC) increased in fish fed AW supplemented diets compared to fish fed the CTR diet, regardless of the stimulus and the sampling time. In response to inflammation, fish fed the NT diet displayed higher neutrophils count in blood when compared to the CTR group, regardless of the stimulus and sampling time. Thrombocyte count was higher in fish fed NT and BL diets than in the CTR group, especially in the stimulated fish (Diet*injection (D*I), P = 0.004). An increase in plasma protease activity was detected in fish fed NT or BL diets in both placebo and stimulated fish regardless of the sampling time. Hepatic catalase activity was higher in fish fed the NT and BL than in the CTR group, particularly in the stimulated fish (D*I, P < 0.001). In addition, both stimulated and placebo fish that received the BL diet showed an increase in hepatic GR activity compared to the CTR group, regardless of the sampling time. Dietary supplementation with AW by-products obtained from G. gracilis cultured under NT and BL conditions showed to improve the inflammatory and antioxidant mechanisms in gilthead seabream in response to a UV-killed bacterial stimulus, having valuable applications for the sustainable use of seaweed toward improving the health and welfare of cultured fish.


Assuntos
Doenças dos Peixes , Gracilaria , Dourada , Alga Marinha , Ração Animal/análise , Animais , Antioxidantes , Dieta/veterinária , Suplementos Nutricionais , Estresse Oxidativo , Photobacterium
8.
Oecologia ; 198(4): 967-980, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35438318

RESUMO

Novel facultative mutualisms that develop between native and non-native ecosystem engineers can lead to the retention of the non-native partner. In some cases, behavior plays an additional, but less understood, role in the development and persistence of mutualisms. In soft-sediment marine habitats along the western Atlantic, the native decorator worm Diopatra cuprea anchors the non-native red alga Gracilaria vermiculophylla to its tube cap in a mutualism. To understand whether the worm's usage of G. vermiculophylla could represent a preference, we first surveyed the species composition of macrophytes affixed to worm tube caps at three sites in coastal Virginia, USA using transect and quadrat sampling. These unmanipulated field surveys supported previous work revealing variable, but often high frequencies (31-98%) of D. cuprea decoration with G. vermiculophylla. We next used field manipulations and controlled laboratory experiments to test the consistency of individual D. cuprea decoration with G. vermiculophylla versus three common macrophytes (Ulva sp., Agardhiella sp., and Spartina alterniflora) found in our field surveys. Twenty-four hours after removing the worm's tube cap in the field, D. cuprea decoration was dominated by both G. vermiculophylla (39.6%) and S. alterniflora (25.9%). When provided a choice of macrophytes in the laboratory, individual D. cuprea consistently decorated with G. vermiculophylla (58.7%) over the other macrophytes, showing a preference for the non-native macrophyte. Our study suggests that preference can drive strong and steadfast interactions between native and non-native organisms, facilitating the latter's persistence and spread, change available habitat, and alter community interactions.


Assuntos
Ecossistema
9.
J Phycol ; 58(3): 406-423, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35090189

RESUMO

Gracilariales is a clade of florideophycean red macroalgae known for being the main source of agar. We present a de novo genome assembly and annotation of Gracilaria domingensis, an agarophyte alga with flattened thallus widely distributed along Central and South American Atlantic intertidal zones. In addition to structural analysis, an organizational comparison was done with other Rhodophyta genomes. The nuclear genome has 78 Mbp, with 11,437 predicted coding genes, 4,075 of which did not have hits in sequence databases. We also predicted 1,567 noncoding RNAs, distributed in 14 classes. The plastid and mitochondrion genome structures were also obtained. Genes related to agar synthesis were identified. Genes for type II galactose sulfurylases could not be found. Genes related to ascorbate synthesis were found. These results suggest an intricate connection of cell wall polysaccharide synthesis and the redox systems through the use of L-galactose in Rhodophyta. The genome of G. domingensis should be valuable to phycological and aquacultural research, as it is the first tropical and Western Atlantic red macroalgal genome to be sequenced.


Assuntos
Genoma Mitocondrial , Gracilaria , Rodófitas , Ágar/metabolismo , Galactose/metabolismo , Gracilaria/genética , Rodófitas/genética , Rodófitas/metabolismo
10.
Environ Res ; 213: 113711, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35728640

RESUMO

The use of vegetal species for gold nanoparticles (AuNPs) biosynthesis can constitute an alternative to replacing the extensive use of several hazardous chemicals commonly used during NPs synthesis and, therefore, can reduce biological impacts induced by the release of these products into the natural environment. However, the "green nanoparticles" and/or "eco-friendly nanoparticles" label does not ensure that biosynthesized NPs are harmless to non-target organisms. Thus, we aimed to synthesize AuNPs from seaweed Gracilaria crassa aqueous extract through an eco-friendly, fast, one-pot synthetic route. The formation of spherical, stable, polycrystalline NPs with a diameter of 32.0 nm ± 4.0 nm (mean ±SEM) was demonstrated by UV-vis spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy, energy-dispersive X-ray and X-ray diffraction measurement, and Fourier-transform infrared spectroscopy analysis. In addition, different phytocomponents were identified in the biosynthesized AuNPs, using Gas Chromatography-Mass Spectrometry (GC-MS). However, both G. crassa aqueous extract and the biosynthesized AuNPs showed high ecotoxicity in Anopheles stephensi larvae exposed to different concentrations. Therefore, our study supports the potential of seaweed G. crassa as a raw material source for AuNPs biosynthesis while also shedding light on its ecotoxicological potential, which necessitates consideration of its risk to aquatic biota.


Assuntos
Gracilaria , Nanopartículas Metálicas , Ouro/química , Ouro/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/toxicidade , Folhas de Planta , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Mar Drugs ; 20(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35892937

RESUMO

Various seaweed sulfated polysaccharides have been explored for antimicrobial application. This study aimed to evaluate the antibacterial activity of the native Gracilaria fisheri sulfated galactans (NSG) and depolymerized fractions against the marine pathogenic bacteria Vibrio parahaemolyticus and Vibrio harveyi. NSG was hydrolyzed in different concentrations of H2O2 to generate sulfated galactans degraded fractions (SGF). The molecular weight, structural characteristics, and physicochemical parameters of both NSG and SGF were determined. The results revealed that the high molecular weight NSG (228.33 kDa) was significantly degraded to SGFs of 115.76, 3.79, and 3.19 kDa by hydrolysis with 0.4, 2, and 10% H2O2, respectively. The Fourier transformed spectroscopy (FTIR) and 1H- and 13C-Nuclear magnetic resonance (NMR) analyses demonstrated that the polysaccharide chain structure of SGFs was not affected by H2O2 degradation, but alterations were detected at the peak positions of some functional groups. In vitro study showed that SGFs significantly exerted a stronger antibacterial activity against V. parahaemolyticus and V. harveyi than NSG, which might be due to the low molecular weight and higher sulfation properties of SGF. SGF disrupted the bacterial cell membrane, resulting in leakage of intracellular biological components, and subsequently, cell death. Taken together, this study provides a basis for the exploitation and utilization of low-molecular-weight sulfated galactans from G. fisheri to prevent and control the shrimp pathogens.


Assuntos
Gracilaria , Rodófitas , Vibrio parahaemolyticus , Antibacterianos/farmacologia , Galactanos/química , Galactanos/farmacologia , Gracilaria/química , Peróxido de Hidrogênio/farmacologia , Polissacarídeos/farmacologia , Sulfatos , Vibrio
12.
Mar Drugs ; 20(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36547914

RESUMO

Marine macroalgae are considered an untapped source of healthy natural metabolites and their market demand is rapidly increasing. Intertidal macroalgae present chemical defense mechanisms that enable them to thrive under changing environmental conditions. These intracellular chemicals include compounds that can be used for human benefit. The aim of this study was to test cultivation protocols that direct seaweed metabolic responses to enhance the production of target antioxidant and photoprotective biomaterials. We present an original integrated multi-trophic aquaculture (IMTA) design, based on a two-phase cultivation plan, in which three seaweed species were initially fed by fish effluents, and subsequently exposed to various abiotic stresses, namely, high irradiance, nutrient starvation, and high salinity. The combined effect of the IMTA's high nutrient concentrations and/or followed by the abiotic stressors enhanced the seaweeds' content of mycosporine-like amino acids (MAAs) by 2.3-fold, phenolic compounds by 1.4-fold, and their antioxidant capacity by 1.8-fold. The Sun Protection Factor (SPF) rose by 2.7-fold, and the chlorophyll and phycobiliprotein synthesis was stimulated dramatically by an order of magnitude. Our integrated cultivation system design offers a sustainable approach, with the potential to be adopted by emerging industries for food and health applications.


Assuntos
Antioxidantes , Alga Marinha , Animais , Humanos , Antioxidantes/metabolismo , Alga Marinha/química , Aquicultura , Aminoácidos/química , Peixes
13.
Ecotoxicol Environ Saf ; 241: 113767, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714486

RESUMO

With the rapid development of the seaweed industry in China, the scale and production of its commercial seaweed are ranked among the most significant worldwide. Consequently, the control of algal blooms, especially fouling diatoms, during macroalgae industrialisation is an important issue. Many diatom bloom studies have focused on physical and chemical controls, with limited economic and eco-friendly biological controls reported. In our study, Gracilaria bailiniae fresh thalli and aqueous extract profoundly suppressed Nitzschia closterium growth (50% inhibition concentration of the fourth day (IC50-4 day) was 0.667 × 10-3 g·mL-1 and 3.889 × 10-3 g·mL-1, respectively). The cellular morphology changes of N. closterium exposed to the G. bailiniae aqueous extract were severe atrophies and plasmolysis and dissolution of endocellular structures. To explore more potential allelochemicals to control N. closterium, the intracellular compounds of G. bailiniae were detected and screened. Three organic acids (citrate, hydroxyethanesulfonic acid (HA) and taurine) had allelopathic potential against N. closterium. Our results showed that citrate and HA markedly suppressed N. closterium (IC50-4 day: 1.035 mM and 1.151 mM, respectively); however, taurine poorly suppressed N. closterium (IC50-4 day: 2.500 mM). Therefore, HA is one of the main allelopathic compounds in G. bailiniae. Further, the allelopathic mechanism of HA against the N. closterium photosynthetic system broke its photosynthetic apparatus (oxygen-evolving complex, reaction centres, the effective antenna size and the donor side of photosystem II) and hindered electron transport. The experimental results provide a new and eco-friendly strategy to control diatom blooms.


Assuntos
Closterium , Diatomáceas , Gracilaria , Rodófitas , Alga Marinha , Citratos , Complexo de Proteína do Fotossistema II , Taurina
14.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499176

RESUMO

Candidate peptides with novel angiotensin-I-converting enzyme (ACE) inhibitor activity were obtained from hydrolysates of Gracilariopsis lemaneiformis by virtual screening method. Our results showed that G. lemaneiformis peptides (GLP) could significantly lower blood pressure in spontaneously hypertensive rats (SHR). At least 101 peptide sequences of GLP were identified by LC-MS/MS analysis and subjected to virtual screening. A total of 20 peptides with the highest docking score were selected and chemically synthesized in order to verify their ACE-inhibitory activities. Among them, SFYYGK, RLVPVPY, and YIGNNPAKG showed good effects with IC50 values of 6.45 ± 0.22, 9.18 ± 0.42, and 11.23 ± 0.23 µmoL/L, respectively. Molecular docking studies revealed that three peptides interacted with the active center of ACE by hydrogen bonding, hydrophobic interactions, and electrostatic forces. These peptides could form stable complexes with ACE. Furthermore, SFYYGK, RLVPVPY, and YIGNNPAKG significantly reduced systolic blood pressure (SBP) in SHR. YIGNNPAKG exhibited the highest antihypertensive effect, with the largest decrease in SBP (approximately 23 mmHg). In conclusion, SFYYGK, RLVPVPY, and YIGNNPAKG can function as potent therapeutic candidates for hypertension treatment.


Assuntos
Hipertensão , Rodófitas , Ratos , Animais , Hipertensão/tratamento farmacológico , Simulação de Acoplamento Molecular , Cromatografia Líquida , Peptidil Dipeptidase A/química , Espectrometria de Massas em Tandem , Anti-Hipertensivos/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Ratos Endogâmicos SHR , Peptídeos/química , Hidrolisados de Proteína/química
15.
J Environ Manage ; 310: 114729, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35192981

RESUMO

The seaweed Gracilaria lemaneiformis can bioremediate heavy metals and improve the environmental quality of mariculture zones. However, the seaweed litter that is produced in the growth and harvest processes becomes one of the important bottlenecks and causes secondary pollution that restricts the development of sustainable seaweed cultivation. Seaweeds exist widely in the coastal areas of the world and are cultivated on a large scale in Asia, but their decomposition process is rarely studied. Experiments that compared decaying dry (dead) and fresh (falling and dying) Gracilaria were conducted to quantify the differences in decomposition rates and heavy metal release in different physiological states. The heavy metals in the seawater and sediment were investigated. The litterbag technique under controlled laboratory conditions was used. The results indicated that the decomposition rates (k) and decay times in 50% (t50%) and 95% (t95%) values varied between dry and fresh Gracilaria. Fresh Gracilaria exhibited a weight loss rate of 15%, and the dry weight loss was 44%. The variations in MAIs (accumulation index of metals) and MR (release rate of metals) between the dry and fresh Gracilaria litters differed significantly, which provides evidence that metals are released back into the environment from Gracilaria litters. The contacted sediments could accelerate the heavy metal release from Gracilaria. Based on our estimates obtained from a 45 d experiment, at least 27.5% of Cd, 16% of Cu, 60.1% of Pb, 72.3% of Zn, 49.4% of Fe, 38.6% of Mn, 68.1% of Cr, and 67.5% of Ni present in the fresh Gracilaria and 37.4% of Cd, 46.2% of Cu, 77.7% of Pb, 53.7% of Zn, 42.7% of Fe, 67.2% of Mn, 75.1% of Cr, and 73.5% of Ni present in the dried Gracilaria were released back into the water when the biomass was left to decay. This study simulates and underscores that Gracilaria has an strong effect on the heavy metal cycles in marine environments and offers a theoretical basis for the development of sustainable seaweed industries in mariculture zones.


Assuntos
Gracilaria , Metais Pesados , Alga Marinha , Poluentes Químicos da Água , Biomassa , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Metais Pesados/análise , Água do Mar , Poluentes Químicos da Água/análise
16.
Molecules ; 27(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296423

RESUMO

Seaweed aquaculture is affected by natural and anthropogenic stressors, which put the biomass productivity of the cultures at risk. Seaweed biomass for commercial purposes, principally in pharmaceutical and/or nutraceutical applications, needs to be free of pollutants; therefore, controlled cultures have relevance in regulating the quality of biomass. The aim of this work was to demonstrate the successful utilization of controlled outdoor cultures to remove excess heavy metal accumulation in Gracilaria chilensis, an important commercial seaweed farming model. Specifically, we designed a simple and operational heavy metal depuration protocol, utilizing seawater and tap water removal, which permitted the concentration reduction of 10 heavy metals, including As, Cu, and Cd but not Zn, from the biomass at 7 days of culture. The percentage of depuration of the heavy metals ranged from 32 to 92% at 7 days, which was maintained throughout 21 days of culture. During the culture period, the monitored physicochemical parameters (temperature, salinity, and dissolved oxygen, among others) remained stable, with an increase in the daily growth rate (DGR% d-1) of the biomass recorded after 14 days of culture. Consequently, the experimental setup was successful for heavy metal depuration, which highlights the importance of controlled outdoor cultures as important tools of sustainability.


Assuntos
Poluentes Ambientais , Gracilaria , Metais Pesados , Rodófitas , Alga Marinha , Poluentes Químicos da Água , Cádmio , Água , Oxigênio , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
17.
Mol Phylogenet Evol ; 165: 107294, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34419587

RESUMO

The Gracilariales is a highly diverse, widely distributed order of red algae (Rhodophyta) that forms a well-supported clade. Aside from their ecological importance, species of Gracilariales provide important sources of agarans and possess bioactive compounds with medicinal and pharmaceutical use. Recent phylogenetic analyses from a small number of genes have greatly advanced our knowledge of evolutionary relationships in this clade, yet several key nodes were not especially well resolved. We assembled a phylogenomic data set containing 79 nuclear genes, 195 plastid genes, and 24 mitochondrial genes from species representing all three major Gracilariales lineages, including: Melanthalia, Gracilariopsis, and Gracilaria sensu lato. This data set leads to a fully-resolved phylogeny of Gracilariales, which is highly-consistent across genomic compartments. In agreement with previous findings, Melanthalia obtusata was sister to a clade including Gracilaria s.l. and Gracilariopsis, which were each resolved as well-supported clades. Our results also clarified the long-standing uncertainty about relationships in Gracilaria s.l., not resolved in single and multi-genes approaches. We further characterized the divergence time, organellar genome architecture, and morphological trait evolution in Gracilarales to better facilitate its taxonomic treatment. Gracilariopsis and Gracilaria s.l. are comparable taxonomic ranks, based on the overlapping time range of their divergence. The genomic structure of plastid and mitochondria is highly conserved within each clade but differs slightly among these clades in gene contents. For example, the plastid gene petP is lost in Gracilaria s.l. and the mitochondrial gene trnH is in different positions in the genome of Gracilariopsis and Gracilaria s.l. Our analyses of ancestral character evolution provide evidence that the main characters used to delimitate genera in Gracilariales, such as spermatangia type and features of the cystocarp's anatomy, overlap in subclades of Gracilaria s.l. We discuss the taxonomy of Gracilariales in light of these results and propose an objective and practical classification, which is in agreement with the criteria of monophyly, exclusive characters, predictability and nomenclatural stability.


Assuntos
Gracilaria , Rodófitas , Genes Mitocondriais , Gracilaria/genética , Filogenia , Plastídeos/genética , Rodófitas/genética
18.
Crit Rev Food Sci Nutr ; 61(3): 500-521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32188262

RESUMO

Marine environment is a rich and diverse source for many biologically active substances including functional foods and nutraceuticals. It is well exploited for useful compounds, natural products and aquaculture industry; and seaweeds is one of the major contributors in terms of both food security and healthy nutrition. They are well-known due to their enormous benefits and is consumed globally in many countries. However, there is lack of attention toward their toxicity reports which might be due toxic chemical compounds from seaweed, epiphytic bacteria or harmful algal bloom and absorbed heavy metals from seawater. The excess of these components might lead to harmful interactions with drugs and hormone levels in the human body. Due to their global consumption and to meet increasing demands, it is necessary to address their hazardous and toxic aspects. In this review, we have done extensive literature for healthy seaweeds, their nutritional composition while summarizing the toxic effects of selected seaweeds from red, brown and green group which includes- Gracilaria, Acanthophora, Caulerpa, Cladosiphon, and Laminaria sp. Spirulina, a microalgae (cyanobacteria) biomass is also included in toxicity discussion as it an important food supplement and many times shows adverse reactions and drug interactions. The identified compounds from seaweeds were concluded to be toxic to humans, though they exhibited certain beneficial effects too. They have an easy access in food chain and thus invade the higher trophic level organisms. This review will create an awareness among scientific and nonscientific community, as well as government organization to regulate edible seaweed consumption and keep them under surveillance for their beneficial and safe consumption.


Assuntos
Metais Pesados , Alga Marinha , Aquicultura , Suplementos Nutricionais/toxicidade , Alimento Funcional , Humanos
19.
J Phycol ; 57(1): 279-294, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098662

RESUMO

For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double-digest restriction site-associated DNA sequencing (ddRAD-seq) to identify sex-linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD-seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non-native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female-linked and 19 putatively male-linked sequences. Four female- and eight male-linked markers amplified in all three life cycle stages. Using one female- and one male-linked marker that were sex-specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non-native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD-seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex-linked markers in other haplodiplontic macroalgae for which genomes are lacking.


Assuntos
Rodófitas , Alga Marinha , Feminino , Genoma , Células Germinativas Vegetais , Masculino , Rodófitas/genética , Análise de Sequência de DNA
20.
Antonie Van Leeuwenhoek ; 114(12): 2189-2203, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34674103

RESUMO

This work introduces Waterburya agarophytonicola Bonthond and Shalygin gen. nov., sp. nov, a baeocyte producing cyanobacterium that was isolated from the rhodophyte Agarophyton vermiculophyllum (Ohmi) Gurgel et al., an invasive seaweed that has spread across the northern hemisphere. The new species genome reveals a diverse repertoire of chemotaxis and adhesion related genes, including genes coding for type IV pili assembly proteins and a high number of genes coding for filamentous hemagglutinin family (FHA) proteins. Among a genetic basis for the synthesis of siderophores, carotenoids and numerous vitamins, W. agarophytonicola is potentially capable of producing cobalamin (vitamin B12), for which A. vermiculophyllum is an auxotroph. With a taxonomic description of the genus and species and a draft genome, this study provides as a basis for future research, to uncover the nature of this geographically independent association between seaweed and cyanobiont.


Assuntos
Cianobactérias , Rodófitas , Alga Marinha , Cianobactérias/genética , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA