Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.637
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(6): 1651-1664.e14, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30392956

RESUMO

The activator and composition of the NLRP6 inflammasome remain poorly understood. We find that lipoteichoic acid (LTA), a molecule produced by Gram-positive bacteria, binds and activates NLRP6. In response to cytosolic LTA or infection with Listeria monocytogenes, NLRP6 recruited caspase-11 and caspase-1 via the adaptor ASC. NLRP6 activation by LTA induced processing of caspase-11, which promoted caspase-1 activation and interleukin-1ß (IL-1ß)/IL-18 maturation in macrophages. Nlrp6-/- and Casp11-/- mice were less susceptible to L. monocytogenes infection, which was associated with reduced pathogen loads and impaired IL-18 production. Administration of IL-18 to Nlrp6-/- or Casp11-/- mice restored the susceptibility of mutant mice to L. monocytogenes infection. These results reveal a previously unrecognized innate immunity pathway triggered by cytosolic LTA that is sensed by NLRP6 and exacerbates systemic Gram-positive pathogen infection via the production of IL-18.


Assuntos
Imunidade Inata , Inflamassomos/imunologia , Lipopolissacarídeos/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Receptores de Superfície Celular/imunologia , Ácidos Teicoicos/imunologia , Animais , Caspase 1/genética , Caspase 1/imunologia , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Inflamassomos/genética , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Listeriose/genética , Listeriose/patologia , Camundongos , Camundongos Knockout , Receptores de Superfície Celular/genética
2.
Cell ; 171(4): 809-823.e13, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056340

RESUMO

Constitutive cell-autonomous immunity in metazoans predates interferon-inducible immunity and comprises primordial innate defense. Phagocytes mobilize interferon-inducible responses upon engagement of well-characterized signaling pathways by pathogen-associated molecular patterns (PAMPs). The signals controlling deployment of constitutive cell-autonomous responses during infection have remained elusive. Vita-PAMPs denote microbial viability, signaling the danger of cellular exploitation by intracellular pathogens. We show that cyclic-di-adenosine monophosphate in live Gram-positive bacteria is a vita-PAMP, engaging the innate sensor stimulator of interferon genes (STING) to mediate endoplasmic reticulum (ER) stress. Subsequent inactivation of the mechanistic target of rapamycin mobilizes autophagy, which sequesters stressed ER membranes, resolves ER stress, and curtails phagocyte death. This vita-PAMP-induced ER-phagy additionally orchestrates an interferon response by localizing ER-resident STING to autophagosomes. Our findings identify stress-mediated ER-phagy as a cell-autonomous response mobilized by STING-dependent sensing of a specific vita-PAMP and elucidate how innate receptors engage multilayered homeostatic mechanisms to promote immunity and survival after infection.


Assuntos
Bactérias Gram-Positivas/fisiologia , Infecções por Bactérias Gram-Positivas/imunologia , Proteínas de Membrana/metabolismo , Fagócitos/imunologia , Animais , Autofagia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Feminino , Masculino , Camundongos , Moléculas com Motivos Associados a Patógenos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(8): e2208675120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787356

RESUMO

In many gram-positive Actinobacteria, including Actinomyces oris and Corynebacterium matruchotii, the conserved thiol-disulfide oxidoreductase MdbA that catalyzes oxidative folding of exported proteins is essential for bacterial viability by an unidentified mechanism. Intriguingly, in Corynebacterium diphtheriae, the deletion of mdbA blocks cell growth only at 37 °C but not at 30 °C, suggesting the presence of alternative oxidoreductase enzyme(s). By isolating spontaneous thermotolerant revertants of the mdbA mutant at 37 °C, we obtained genetic suppressors, all mapped to a single T-to-G mutation within the promoter region of tsdA, causing its elevated expression. Strikingly, increased expression of tsdA-via suppressor mutations or a constitutive promoter-rescues the pilus assembly and toxin production defects of this mutant, hence compensating for the loss of mdbA. Structural, genetic, and biochemical analyses demonstrated TsdA is a membrane-tethered thiol-disulfide oxidoreductase with a conserved CxxC motif that can substitute for MdbA in mediating oxidative folding of pilin and toxin substrates. Together with our observation that tsdA expression is upregulated at nonpermissive temperature (40 °C) in wild-type cells, we posit that TsdA has evolved as a compensatory thiol-disulfide oxidoreductase that safeguards oxidative protein folding in C. diphtheriae against thermal stress.


Assuntos
Proteínas de Bactérias , Corynebacterium diphtheriae , Proteína Dissulfeto Redutase (Glutationa) , Dobramento de Proteína , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium diphtheriae/enzimologia , Corynebacterium diphtheriae/genética , Estresse Oxidativo , Proteína Dissulfeto Redutase (Glutationa)/genética , Proteína Dissulfeto Redutase (Glutationa)/metabolismo
4.
J Biol Chem ; 300(1): 105578, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110036

RESUMO

In Gram-positive bacteria, cell wall polysaccharides (CWPS) play critical roles in bacterial cell wall homeostasis and bacterial interactions with their immediate surroundings. In lactococci, CWPS consist of two components: a conserved rhamnan embedded in the peptidoglycan layer and a surface-exposed polysaccharide pellicle (PSP), which are linked together to form a large rhamnose-rich CWPS (Rha-CWPS). PSP, whose structure varies from strain to strain, is a receptor for many bacteriophages infecting lactococci. Here, we examined the first two steps of PSP biosynthesis, using in vitro enzymatic tests with lipid acceptor substrates combined with LC-MS analysis, AlfaFold2 modeling of protein 3D-structure, complementation experiments, and phage assays. We show that the PSP repeat unit is assembled on an undecaprenyl-monophosphate (C55P) lipid intermediate. Synthesis is initiated by the WpsA/WpsB complex with GlcNAc-P-C55 synthase activity and the PSP precursor GlcNAc-P-C55 is then elongated by specific glycosyltransferases that vary among lactococcal strains, resulting in PSPs with diverse structures. Also, we engineered the PSP biosynthesis pathway in lactococci to obtain a chimeric PSP structure, confirming the predicted glycosyltransferase specificities. This enabled us to highlight the importance of a single sugar residue of the PSP repeat unit in phage recognition. In conclusion, our results support a novel pathway for PSP biosynthesis on a lipid-monophosphate intermediate as an extracellular modification of rhamnan, unveiling an assembly machinery for complex Rha-CWPS with structural diversity in lactococci.


Assuntos
Parede Celular , Lactococcus , Polissacarídeos Bacterianos , Ramnose , Proteínas de Bactérias/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Glicosiltransferases/metabolismo , Lactococcus/classificação , Lactococcus/citologia , Lactococcus/metabolismo , Lactococcus/virologia , Lipídeos , Peptidoglicano/metabolismo , Polissacarídeos Bacterianos/metabolismo , Conformação Proteica , Ramnose/metabolismo , Especificidade por Substrato , Bacteriófagos/fisiologia
5.
Mol Microbiol ; 121(6): 1245-1261, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38750617

RESUMO

Linear, unbranched (1,3;1,4)-ß-glucans (mixed-linkage glucans or MLGs) are commonly found in the cell walls of grasses, but have also been detected in basal land plants, algae, fungi and bacteria. Here we show that two family GT2 glycosyltransferases from the Gram-positive bacterium Sarcina ventriculi are capable of synthesizing MLGs. Immunotransmission electron microscopy demonstrates that MLG is secreted as an exopolysaccharide, where it may play a role in organizing individual cells into packets that are characteristic of Sarcina species. Heterologous expression of these two genes shows that they are capable of producing MLGs in planta, including an MLG that is chemically identical to the MLG secreted from S. ventriculi cells but which has regularly spaced (1,3)-ß-linkages in a structure not reported previously for MLGs. The tandemly arranged, paralogous pair of genes are designated SvBmlgs1 and SvBmlgs2. The data indicate that MLG synthases have evolved different enzymic mechanisms for the incorporation of (1,3)-ß- and (1,4)-ß-glucosyl residues into a single polysaccharide chain. Amino acid variants associated with the evolutionary switch from (1,4)-ß-glucan (cellulose) to MLG synthesis have been identified in the active site regions of the enzymes. The presence of MLG synthesis in bacteria could prove valuable for large-scale production of MLG for medical, food and beverage applications.


Assuntos
Glicosiltransferases , beta-Glucanas , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , beta-Glucanas/metabolismo , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo
6.
J Biol Chem ; 299(8): 105040, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442237

RESUMO

Cu/Zn-superoxide dismutase (CuZnSOD) is an enzyme that binds a copper and zinc ion and also forms an intramolecular disulfide bond. Together with the copper ion as the active site, the disulfide bond is completely conserved among these proteins; indeed, the disulfide bond plays critical roles in maintaining the catalytically competent conformation of CuZnSOD. Here, we found that a CuZnSOD protein in Paenibacillus lautus (PaSOD) has no Cys residue but exhibits a significant level of enzyme activity. The crystal structure of PaSOD revealed hydrophobic and hydrogen-bonding interactions in substitution for the disulfide bond of the other CuZnSOD proteins. Also notably, we determined that PaSOD forms a homodimer through an additional domain with a novel fold at the N terminus. While the advantages of lacking Cys residues and adopting a novel dimer configuration remain obscure, PaSOD does not require a disulfide-introducing/correcting system for maturation and could also avoid misfolding caused by aberrant thiol oxidations under an oxidative environment.


Assuntos
Proteínas de Bactérias , Dissulfetos , Superóxido Dismutase-1 , Cobre , Cisteína , Dissulfetos/química , Superóxido Dismutase-1/química , Zinco , Proteínas de Bactérias/química , Paenibacillus , Dobramento de Proteína
7.
Infect Immun ; 92(2): e0049023, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38226817

RESUMO

Streptococcus pneumoniae is a Gram-positive bacterium and a significant health threat with the populations most at risk being children, the elderly, and the immuno-compromised. To colonize and transition into an invasive infectious organism, S. pneumoniae secretes virulence factors that are translocated across the bacterial membrane and destined for surface exposure, attachment to the cell wall, or secretion into the host. The surface exposed protein chaperones PrsA, SlrA, and HtrA facilitate S. pneumoniae protein secretion; however, the distinct roles contributed by each of these secretion chaperones have not been well defined. Tandem Mass-Tagged Mass Spectrometry and virulence, adhesion, competence, and cell wall integrity assays were used to interrogate the individual and collective contributions of PrsA, SlrA, and HtrA to multiple aspects of S. pneumoniae physiology and virulence. PrsA, SlrA, and HtrA were found to play critical roles in S. pneumoniae host cell infection and competence, and the absence of each of these secretion chaperones significantly altered the S. pneumoniae secretome in distinct ways. PrsA and SlrA were additionally found to contribute to cell wall assembly and resistance to cell wall-active antimicrobials and were important for enabling S. pneumoniae host cell adhesion during colonization and invasive infection. These findings serve to further illustrate the pivotal contributions of PrsA, SlrA, and HtrA to S. pneumoniae protein secretion and virulence.


Assuntos
Chaperonas Moleculares , Streptococcus pneumoniae , Criança , Humanos , Idoso , Chaperonas Moleculares/metabolismo , Fatores de Virulência/metabolismo , Virulência , Proteínas de Membrana/metabolismo , Resistência Microbiana a Medicamentos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
8.
BMC Genomics ; 25(1): 353, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594632

RESUMO

Mosquitoes are prolific vectors of human pathogens, therefore a clear and accurate understanding of the organization of their antimicrobial defenses is crucial for informing the development of transmission control strategies. The canonical infection response in insects, as described in the insect model Drosophila melanogaster, is pathogen type-dependent, with distinct stereotypical responses to Gram-negative bacteria and Gram-positive bacteria/fungi mediated by the activation of the Imd and Toll pathways, respectively. To determine whether this pathogen-specific discrimination is shared by mosquitoes, we used RNAseq to capture the genome-wide transcriptional response of Aedes aegypti and Anopheles gambiae (s.l.) to systemic infection with Gram-negative bacteria, Gram-positive bacteria, yeasts, and filamentous fungi, as well as challenge with heat-killed Gram-negative, Gram-positive, and fungal pathogens. From the resulting data, we found that Ae. aegypti and An. gambiae both mount a core response to all categories of infection, and this response is highly conserved between the two species with respect to both function and orthology. When we compared the transcriptomes of mosquitoes infected with different types of bacteria, we observed that the intensity of the transcriptional response was correlated with both the virulence and growth rate of the infecting pathogen. Exhaustive comparisons of the transcriptomes of Gram-negative-challenged versus Gram-positive-challenged mosquitoes yielded no difference in either species. In Ae. aegypti, however, we identified transcriptional signatures specific to bacterial infection and to fungal infection. The bacterial infection response was dominated by the expression of defensins and cecropins, while the fungal infection response included the disproportionate upregulation of an uncharacterized family of glycine-rich proteins. These signatures were also observed in Ae. aegypti challenged with heat-killed bacteria and fungi, indicating that this species can discriminate between molecular patterns that are specific to bacteria and to fungi.


Assuntos
Aedes , Infecções Bacterianas , Micoses , Animais , Humanos , Drosophila melanogaster , Mosquitos Vetores/genética , Aedes/genética , Aedes/microbiologia , Bactérias , Fungos/genética
9.
Mol Microbiol ; 120(6): 805-810, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38012814

RESUMO

Regulation of the first committed step of peptidoglycan precursor synthesis by MurA-enzyme homologs has recently taken center stage in many different bacteria. In different low-GC Gram-positive bacteria, regulation of this step has been shown to be regulated by phosphorylation of homologs of the IreB/ReoM regulatory protein by PASTA-domain Ser/Thr-protein kinases. In this issue, Mascari, Little, and Kristich determine this regulatory pathway and its links to resistance to cephalosporin ß-lactam antibiotics in the major human pathogen, Enterococcus faecalis (Efa). Unbiased genetic selections identified MurAA (MurA-family homolog) as the downstream target of IreB regulation in the absence of the IreK Ser/Thr-protein kinase. Physiological and biochemical approaches, including determination of MICs to ceftriaxone, Western blotting of MurAA cellular amounts, isotope incorporation into peptidoglycan sacculi, and thermal-shift binding assays of purified proteins, demonstrated that unphosphorylated IreB, together with proteins MurAB (MurZ-family homolog), and ReoY(Efa) negatively regulate MurAA stability and cellular amount by the ClpCP protease. Importantly, this paper supports the idea that ceftriaxone stimulates phosphorylation of IreB, which leads to increased cellular MurAA amount and precursor pathway flux required for E. faecalis cephalosporin resistance. Overall, findings in this paper significantly contribute to understanding variations of this central regulatory pathway in other low-GC Gram-positive bacteria.


Assuntos
Ceftriaxona , Enterococcus , Humanos , Fosforilação , Enterococcus/metabolismo , Peptidoglicano/metabolismo , Enterococcus faecalis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
Antimicrob Agents Chemother ; 68(3): e0124723, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289077

RESUMO

Bacterial keratitis is a vision-threatening infection mainly caused by Gram-positive bacteria (GPB). Antimicrobial therapy is commonly empirical using broad-spectrum agents with efficacy increasingly compromised by the emergence of antimicrobial resistance. We used a combination of phenotypic tests and genome sequencing to identify the predominant lineages of GPB causing keratitis and to characterize their antimicrobial resistance patterns. A total of 161 isolates, including Staphylococcus aureus (n = 86), coagulase-negative staphylococci (CoNS; n = 34), Streptococcus spp. (n = 34), and Enterococcus faecalis (n = 7), were included. The population of S. aureus isolates consisted mainly of clonal complex 5 (CC5) (30.2%). Similarly, the population of Staphylococcus epidermidis was homogenous with most of them belonging to CC2 (78.3%). Conversely, the genetic population of Streptococcus pneumoniae was highly diverse. Resistance to first-line antibiotics was common among staphylococci, especially among CC5 S. aureus. Methicillin-resistant S. aureus was commonly resistant to fluoroquinolones and azithromycin (78.6%) and tobramycin (57%). One-third of the CoNS were resistant to fluoroquinolones and 53% to azithromycin. Macrolide resistance was commonly caused by erm genes in S. aureus, mphC and msrA in CoNS, and mefA and msr(D) in streptococci. Aminoglycoside resistance in staphylococci was mainly associated with genes commonly found in mobile genetic elements and that encode for nucleotidyltransferases like ant(4')-Ib and ant(9)-Ia. Fluroquinolone-resistant staphylococci carried from 1 to 4 quinolone resistance-determining region mutations, mainly in the gyrA and parC genes. We found that GPB causing keratitis are associated with strains commonly resistant to first-line topical therapies, especially staphylococcal isolates that are frequently multidrug-resistant and associated with major hospital-adapted epidemic lineages.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus , Azitromicina , Farmacorresistência Bacteriana/genética , Macrolídeos , Infecções Estafilocócicas/microbiologia , Staphylococcus/genética , Fluoroquinolonas , Streptococcus , Testes de Sensibilidade Microbiana
11.
Microb Pathog ; 186: 106495, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070626

RESUMO

Quorum sensing (QS) is a molecular cell-cell communication utilized by several bacteria and some fungi. It involves cell density dependent gene expression that includes extra polymeric substance production, sporulation, antibiotic production, motility, competence, symbiosis and conjugation. These expressions were carried out by different signaling molecules like acyl homo-serine lactone (AHL) and auto-inducing peptides (AIPs) which was effluxed by gram negative and gram positive bacteria. Pathogenic bacteria and biofilms often exhibit high resistance to antibiotics, attributed to the presence of antibiotic efflux pumps, reduced membrane permeability, and enzymes that deactivate quorum sensing (QS) inhibitors. To counteract virulence and multi-drug resistance (MDR), novel strategies such as employing quorum sensing (QS) inhibitors and quorum quenchers are employed. It targets signaling molecules with synthesis and prevents the signal from binding to receptors. In this present review, the mechanisms of QS along with inhibitors from different sources are described. These strategies potentially interfere with QS and it can be applied in different fields, mainly in hospitals and marine environments where the pathogenic infections and biofilm formation are highly involved.


Assuntos
Bactérias , Percepção de Quorum , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias Gram-Positivas
12.
Eur J Nucl Med Mol Imaging ; 51(9): 2583-2596, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38644432

RESUMO

INTRODUCTION: Bacterial infections are a major problem in medicine, and the rapid and accurate detection of such infections is essential for optimal patient outcome. Bacterial infections can be diagnosed by nuclear imaging, but most currently available modalities are unable to discriminate infection from sterile inflammation. Bacteria-targeted positron emission tomography (PET) tracers have the potential to overcome this hurdle. In the present study, we compared three 18F-labelled PET tracers based on the clinically applied antibiotic vancomycin for targeted imaging of Gram-positive bacteria. METHODS: [18F]FB-NHS and [18F]BODIPY-FL-NHS were conjugated to vancomycin. The resulting conjugates, together with our previously developed [18F]PQ-VE1-vancomycin, were tested for stability, lipophilicity, selective binding to Gram-positive bacteria, antimicrobial activity and biodistribution. For the first time, the pharmacokinetic properties of all three tracers were compared in healthy animals to identify potential binding sites. RESULTS: [18F]FB-vancomycin, [18F]BODIPY-FL-vancomycin, and [18F]PQ-VE1-vancomycin were successfully synthesized with radiochemical yields of 11.7%, 2.6%, and 0.8%, respectively. [18F]FB-vancomycin exhibited poor in vitro and in vivo stability and, accordingly, no bacterial binding. In contrast, [18F]BODIPY-FL-vancomycin and [18F]PQ-VE1-vancomycin showed strong and specific binding to Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), which was outcompeted by unlabeled vancomycin only at concentrations exceeding clinically relevant vancomycin blood levels. Biodistribution showed renal clearance of [18F]PQ-VE1-vancomycin and [18F]BODIPY-FL-vancomycin with low non-specific accumulation in muscles, fat and bones. CONCLUSION: Here we present the synthesis and first evaluation of the vancomycin-based PET tracers [18F]BODIPY-FL-vancomycin and [18F]PQ-VE1-vancomycin for image-guided detection of Gram-positive bacteria. Our study paves the way towards real-time bacteria-targeted diagnosis of soft tissue and implant-associated infections that are oftentimes caused by Gram-positive bacteria, even after prophylactic treatment with vancomycin.


Assuntos
Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Vancomicina , Animais , Vancomicina/farmacologia , Vancomicina/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Flúor/química , Distribuição Tecidual , Camundongos , Infecções Bacterianas/diagnóstico por imagem , Traçadores Radioativos , Técnicas de Química Sintética , Radioquímica , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética
13.
Chemistry ; 30(38): e202401103, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38716707

RESUMO

This review covers the most recent advances in the development of inhibitors for the bacterial enzyme sortase A (SrtA). Sortase A (SrtA) is a critical virulence factor, present ubiquitously in Gram-positive bacteria of which many are pathogenic. Sortases are key enzymes regulating bacterial adherence to host cells, by anchoring extracellular matrix-binding proteins to the bacterial outer cell wall. By targeting virulence factors, effective treatment can be achieved, without inducing antibiotic resistance to the treatment. This is a potentially more sustainable, long-term approach to treating bacterial infections, including ones that display multiple resistance to current therapeutics. There are many promising approaches available for SrtA inhibition, some of which have the potential to advance into further clinical development, with peptidomimetic and in vivo active small molecules being among the most promising. There are currently no approved drugs on the market targeting SrtA, despite its promise, adding to the relevance of this review article, as it extends to the pharmaceutical industry additionally to academic researchers.


Assuntos
Aminoaciltransferases , Antibacterianos , Proteínas de Bactérias , Cisteína Endopeptidases , Peptidomiméticos , Bibliotecas de Moléculas Pequenas , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Antibacterianos/química , Antibacterianos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Bactérias Gram-Positivas/efeitos dos fármacos
14.
Epilepsia ; 65(6): 1777-1790, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491947

RESUMO

OBJECTIVE: Brain infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6J mice can induce acquired epileptogenesis. Diet alters acute seizure incidence in TMEV-infected mice; yet it is unclear whether intestinal dysbiosis may also impact acute or chronic behavioral comorbidities. This study thus assessed the impact of diet formulation and sterilization on acute seizure presentation, gut microbiome composition, and epilepsy-related chronic behavioral comorbidities. METHODS: Baseline fecal samples were collected from male C57BL/6J mice (4- to 5-weeks-old; Jackson Labs) upon facility arrival. Mice were randomized to either autoclaved (AC) or irradiated diet (IR) (Prolab RMH 3000) or IR (Picolab 5053). Three days later, mice underwent intracerebral TMEV or phosphate-buffered saline (PBS) injection. Fecal samples were collected from a subset of mice at infection (Day 0) and Day 7 post-infection. Epilepsy-related working memory deficits and seizure threshold were assessed 6 weeks post-infection. Gut microbiome diversity was determined by 16S rRNA amplicon sequencing of fecal samples. RESULTS: TMEV-infected mice displayed acute handling-induced seizures, regardless of diet: 28 of 57 IR Picolab 5053 (49.1%), 30 of 41 IR Prolab RMH 3000 (73.2%), and 47 of 77 AC Prolab RMH 3000 (61%) mice displayed seizures. The number of observed seizures differed significantly by diet: IR Picolab 5053 diet-fed mice had 2.2 ± 2.8 seizures (mean ± standard deviation), IR Prolab RMH 3000 diet-fed mice had 3.5 ± 2.9 seizures, and AC Prolab RMH 3000 diet-fed mice had 4.4 ± 3.8 seizures during the 7-day monitoring period. Gut microbiome composition differed significantly in TMEV-infected mice fed the AC Prolab RMH 3000 diet, with measured differences in gram-positive bacteria. These mice also displayed worsened long-term working memory deficits. SIGNIFICANCE: Diet-induced differences in intestinal dysbiosis in the TMEV model are associated with marked changes in acute seizure presentation, symptomatic recovery, and onset of chronic behavioral comorbidities of epilepsy. Our study reveals a novel disease-modifying impact of dietary manipulation on intestinal bacterial species after TMEV-induced acute seizures.


Assuntos
Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Convulsões , Theilovirus , Animais , Camundongos , Convulsões/etiologia , Masculino , Dieta , Infecções por Cardiovirus , Esterilização/métodos , Fezes/microbiologia , Doença Aguda
15.
Arch Microbiol ; 206(6): 250, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722362

RESUMO

The widespread evolution of phenotypic resistance in clinical isolates over the years, coupled with the COVID-19 pandemic onset, has exacerbated the global challenge of antimicrobial resistance. This study aimed to explore changes in bacterial infection patterns and antimicrobial resistance during the COVID-19 pandemic. This study involved the periods before and during COVID-19: the pre-pandemic and pandemic eras. The surveillance results of bacterial isolates causing infections in cancer patients at an Egyptian tertiary oncology hospital were retrieved. The Vitek®2 or Phoenix systems were utilized for species identification and susceptibility testing. Statistical analyses were performed comparing microbiological trends before and during the pandemic. Out of 2856 bacterial isolates, Gram-negative bacteria (GNB) predominated (69.7%), and Gram-positive bacteria (GPB) comprised 30.3% of isolates. No significant change was found in GNB prevalence during the pandemic (P = 0.159). Elevated rates of Klebsiella and Pseudomonas species were demonstrated during the pandemic, as was a decrease in E. coli and Acinetobacter species (P < 0.001, 0.018, < 0.001, and 0.046, respectively) in hematological patients. In surgical patients, Enterobacteriaceae significantly increased (P = 0.012), while non-fermenters significantly decreased (P = 0.007). GPB species from either hematological or surgical wards exhibited no notable changes during the pandemic. GNB resistance increased in hematological patients to carbapenems, amikacin, and tigecycline and decreased in surgical patients to amikacin and cefoxitin (P < 0.001, 0.010, < 0.001, < 0.001, and 0.016, respectively). The study highlights notable shifts in the microbial landscape during the COVID-19 pandemic, particularly in the prevalence and resistance patterns of GNB in hematological and surgical wards.


Assuntos
Antibacterianos , COVID-19 , Farmacorresistência Bacteriana , SARS-CoV-2 , Centros de Atenção Terciária , Humanos , COVID-19/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Egito/epidemiologia , Antibacterianos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Neoplasias , Testes de Sensibilidade Microbiana , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/tratamento farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Institutos de Câncer , Pandemias
16.
Arch Microbiol ; 206(9): 369, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110213

RESUMO

The RNA-based study provides an excellent indication of an organism's gene expression profile. Obtaining high-yield and high-purity RNA from Gram-positive and acid-fast bacteria is difficult without high-end kits and facilities. We optimised effective and simple protocol for RNA isolation that is a combination of enzymatic, physical and chemical treatment to disrupt cells. We successfully isolated high quality intact total RNA with yields ranging from 23.13 ± 0.40 to 61.51 ± 0.27 µg and the 260/280 purity ratio of 1.95 ± 0.01 to 2.05 ± 0.01 from Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and Mycobacterium smegmatis. These results represents a significantly enhanced yield and purity compared to other combination of techniques which we performed. Compared to previous studies the yield obtained by this method is high for the studied organisms. Furthermore the yielded RNA was successfully used for downstream applications such as quantitative real time PCR. The described method can be easily optimised and used for various bacteria.


Assuntos
RNA Bacteriano , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/isolamento & purificação , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação , Enterococcus faecalis/genética , Enterococcus faecalis/isolamento & purificação , Mycobacterium smegmatis/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-38573743

RESUMO

Facultatively anaerobic bacterial strains were isolated from samples of a methanogenic reactor and, based on 16S rRNA gene sequences, found to be affiliated with the family Propionibacteriaceae in the phylum Actinomycetota. Four strains with almost-identical 16S rRNA gene sequences were comprehensively characterized. The most closely related species to the strains was Brooklawnia cerclae BL-34T (96.4 % sequence similarity). Although most of the phenotypic characteristics of the four strains were identical, distinct differences in some cellular and physiological properties were also detected. Cells of the strains were Gram-stain-positive, non-spore-forming, pleomorphic rods. The strains utilized carbohydrates and organic acids. The strains produced acetate, propionate and lactate from glucose, but the molar ratios of the products were variable depending on the strains. The strains grew at 10-40 °C (optimum at 35 °C) and pH 5.3-8.8 (optimum at pH 6.8-7.5.) The major cellular fatty acids of the strains were anteiso-C15 : 0, C15 : 0 and C15 : 0 dimethylacetal (as a summed feature). The major respiratory quinone was menaquinone MK-9(H4) and the diagnostic diamino acid in the peptidoglycan was meso-diaminopimelic acid. The genome size of the type strain (SH051T) was 3.21 Mb and the genome DNA G+C content was 65.7 mol%. Genes responsible for propionate production through the Wood-Werkman pathway were detected in the genome of strain SH051T. Based on the results of phylogenetic, genomic and phenotypic analyses of the novel strains, the name Brooklawnia propionicigenes sp. nov. is proposed to accommodate the four strains. The type strain of the novel species is SH051T (=NBRC 116195T=DSM 116141T).


Assuntos
Propionatos , Propionibacteriaceae , Bovinos , Animais , Anaerobiose , Fazendas , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Bactérias Anaeróbias
18.
Eur J Clin Microbiol Infect Dis ; 43(5): 959-968, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38517573

RESUMO

PURPOSE: To assess Gram-positive bacterial (GPB) bloodstream infection (BSI) in neonates, covering incidence, morbidity, mortality, antimicrobial resistance patterns and biomarkers in Region Stockholm, Sweden between 2006 and 2016. METHODS: A population-based retrospective epidemiological study including infants with GPB-BSI, admitted to the neonatal units at Karolinska University Hospital (KUH). Data were collected from patient records, the Swedish Neonatal Quality Register, the microbiological laboratory at KUH and the Swedish Public Health Agency. RESULTS: We identified 357 infants with GPB-BSI, representing an incidence of 1.47/1000 live births (LB). Group B streptococcus (GBS) was the most common pathogen causing BSI in full-term infants and early-onset sepsis (EOS) (0.20/1000 LB), while coagulase-negative staphylococci (CoNS) were predominant in infants born very preterm and in late-onset sepsis (LOS) (0.79/1000 LB). There were no fatal GBS BSI cases, but 10.2% developed meningitis. The GPB case fatality rate was 9.5% and the sepsis fatality rate 2.8%. In GPB-BSI, 1/10 did not have an elevated C-reactive protein level. Staphylococcus aureus (S. aureus) BSI increased during the study period, but no methicillin or vancomycin resistant strains were found. The antimicrobial resistance (AMR) rate was highest in CoNS isolates. CONCLUSION: GPB-BSI was four times more common than Gram-negative BSI in neonates but resulted in lower mortality rate. GBS was the most common pathogen in full-term infants and in EOS. CoNS was the most common pathogen in LOS and infants born very preterm, and the AMR rate was high in these isolates. The increasing trend of S. aureus BSI indicates a need of further investigation.


Assuntos
Bactérias Gram-Positivas , Infecções por Bactérias Gram-Positivas , Sepse Neonatal , Humanos , Suécia/epidemiologia , Recém-Nascido , Sepse Neonatal/microbiologia , Sepse Neonatal/epidemiologia , Sepse Neonatal/mortalidade , Estudos Retrospectivos , Feminino , Masculino , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/classificação , Incidência , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/mortalidade , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/classificação , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/mortalidade , Streptococcus agalactiae/isolamento & purificação , Streptococcus agalactiae/efeitos dos fármacos
19.
Microb Ecol ; 87(1): 77, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806738

RESUMO

Water-filled sinkholes known locally as cenotes, found on the Yucatán Peninsula, have remarkable biodiversity. The primary objective of this study was to explore the biotechnological potential of Gram-positive cultivable bacteria obtained from sediment samples collected at the coastal cenote Pol-Ac in Yucatán, Mexico. Specifically, the investigation aimed to assess production of hydrolytic enzymes and antimicrobial compounds. 16 S rRNA gene sequencing led to the identification of 49 Gram-positive bacterial isolates belonging to the phyla Bacillota (n = 29) and Actinomycetota (n = 20) divided into the common genera Bacillus and Streptomyces, as well as the genera Virgibacillus, Halobacillus, Metabacillus, Solibacillus, Neobacillus, Rossellomorea, Nocardiopsis and Corynebacterium. With growth at 55ºC, 21 of the 49 strains were classified as moderately thermotolerant. All strains were classified as halotolerant and 24 were dependent on marine water for growth. Screening for six extracellular hydrolytic enzymes revealed gelatinase, amylase, lipase, cellulase, protease and chitinase activities in 93.9%, 67.3%, 63.3%, 59.2%, 59.2% and 38.8%, of isolated strains, respectively. The genes for polyketide synthases type I, were detected in 24 of the strains. Of 18 strains that achieved > 25% inhibition of growth in the bacterial pathogen Staphylococcus aureus ATCC 6538, 4 also inhibited growth in Escherichia coli ATCC 35,218. Isolates Streptomyces sp. NCA_378 and Bacillus sp. NCA_374 demonstrated 50-75% growth inhibition against at least one of the two pathogens tested, along with significant enzymatic activity across all six extracellular enzymes. This is the first comprehensive report on the biotechnological potential of Gram-positive bacteria isolated from sediments in the cenotes of the Yucatán Peninsula.


Assuntos
Biodiversidade , Sedimentos Geológicos , Bactérias Gram-Positivas , RNA Ribossômico 16S , Sedimentos Geológicos/microbiologia , México , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/classificação , RNA Ribossômico 16S/genética , Bioprospecção , Filogenia , Antibacterianos/farmacologia , Água do Mar/microbiologia
20.
BMC Infect Dis ; 24(1): 127, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267844

RESUMO

BACKGROUND: Oritavancin, a long-acting lipoglycopeptide approved for use in acute bacterial skin and skin structure infections, has limited data evaluating use in serious infections due to Gram-positive organisms. We aimed to assess the effectiveness and safety of oritavancin for consolidative treatment of Gram-positive bloodstream infections (BSI), including infective endocarditis (IE). METHODS: We conducted a retrospective cohort study evaluating adult patients admitted to University of Colorado Hospital from March 2016 to January 2022 who received ≥ 1 oritavancin dose for treatment of Gram-positive BSI. Patients were excluded if the index culture was drawn at an outside facility or were > 89 years of age. The primary outcome was a 90-day composite failure (clinical or microbiological failure) in those with 90-day follow-up. Secondary outcomes included individual components of the primary outcome, acute kidney injury (AKI), infusion-related reactions (IRR), and institutional cost avoidance. RESULTS: Overall, 72 patients were included. Mean ± SD age was 54 ± 16 years, 61% were male, and 10% had IE. Organisms most commonly causing BSI were Staphylococcus aureus (68%, 17% methicillin-resistant), followed by Streptococcus spp. (26%), and Enterococcus spp. (10%). Patients received standard-of-care antibiotics before oritavancin for a median (IQR) of 11 (5-17) days. Composite failure in the clinically evaluable population (n = 64) at 90-days occurred in 14% and was composed of clinical and microbiological failure, which occurred in 14% and 5% of patients, respectively. Three patients (4%) experienced AKI after oritavancin, and two (3%) experienced an IRR. Oritavancin utilization resulted in earlier discharge for 94% of patients corresponding to an institutional cost-avoidance of $3,055,804 (mean $44,938/patient) from 1,102 hospital days saved (mean 16 days/patient). CONCLUSIONS: The use of oritavancin may be an effective sequential therapy for Gram-positive BSI to facilitate early discharge resulting in institutional cost avoidance.


Assuntos
Injúria Renal Aguda , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Endocardite Bacteriana , Endocardite , Vancomicina/análogos & derivados , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Lipoglicopeptídeos/uso terapêutico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA