Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(14): 2696-2713.e9, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35716669

RESUMO

Cancer cells are highly heterogeneous at the transcriptional level and epigenetic state. Methods to study epigenetic heterogeneity are limited in throughput and information obtained per cell. Here, we adapted cytometry by time-of-flight (CyTOF) to analyze a wide panel of histone modifications in primary tumor-derived lines of diffused intrinsic pontine glioma (DIPG). DIPG is a lethal glioma, driven by a histone H3 lysine 27 mutation (H3-K27M). We identified two epigenetically distinct subpopulations in DIPG, reflecting inherent heterogeneity in expression of the mutant histone. These two subpopulations are robust across tumor lines derived from different patients and show differential proliferation capacity and expression of stem cell and differentiation markers. Moreover, we demonstrate the use of these high-dimensional data to elucidate potential interactions between histone modifications and epigenetic alterations during the cell cycle. Our work establishes new concepts for the analysis of epigenetic heterogeneity in cancer that could be applied to diverse biological systems.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/patologia , Cromatina/genética , Epigênese Genética , Glioma/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Mutação
2.
Mol Cell ; 76(6): 965-980.e12, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31588023

RESUMO

Development of effective targeted cancer therapies is fundamentally limited by our molecular understanding of disease pathogenesis. Diffuse intrinsic pontine glioma (DIPG) is a fatal malignancy of the childhood pons characterized by a unique substitution to methionine in histone H3 at lysine 27 (H3K27M) that results in globally altered epigenetic marks and oncogenic transcription. Through primary DIPG tumor characterization and isogenic oncohistone expression, we show that the same H3K27M mutation displays distinct modes of oncogenic reprogramming and establishes distinct enhancer architecture depending upon both the variant of histone H3 and the cell context in which the mutation occurs. Compared with non-malignant pediatric pontine tissue, we identify and functionally validate both shared and variant-specific pathophysiology. Altogether, we provide a powerful resource of epigenomic data in 25 primary DIPG samples and 5 rare normal pediatric pontine tissue samples, revealing clinically relevant functional distinctions previously unidentified in DIPG.


Assuntos
Glioma Pontino Intrínseco Difuso/genética , Histonas/genética , Encéfalo/patologia , Neoplasias Encefálicas/genética , Reprogramação Celular/genética , Glioma Pontino Intrínseco Difuso/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Epigenômica , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , Glioma/metabolismo , Humanos , Lisina/genética , Mutação/genética , Ponte/metabolismo , Transdução de Sinais , Transcriptoma/fisiologia
3.
Genes Dev ; 33(19-20): 1428-1440, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31488577

RESUMO

The histone methyltransferase activity of PRC2 is central to the formation of H3K27me3-decorated facultative heterochromatin and gene silencing. In addition, PRC2 has been shown to automethylate its core subunits, EZH1/EZH2 and SUZ12. Here, we identify the lysine residues at which EZH1/EZH2 are automethylated with EZH2-K510 and EZH2-K514 being the major such sites in vivo. Automethylated EZH2/PRC2 exhibits a higher level of histone methyltransferase activity and is required for attaining proper cellular levels of H3K27me3. While occurring independently of PRC2 recruitment to chromatin, automethylation promotes PRC2 accessibility to the histone H3 tail. Intriguingly, EZH2 automethylation is significantly reduced in diffuse intrinsic pontine glioma (DIPG) cells that carry a lysine-to-methionine substitution in histone H3 (H3K27M), but not in cells that carry either EZH2 or EED mutants that abrogate PRC2 allosteric activation, indicating that H3K27M impairs the intrinsic activity of PRC2. Our study demonstrates a PRC2 self-regulatory mechanism through its EZH1/2-mediated automethylation activity.


Assuntos
Glioma/enzimologia , Glioma/genética , Histonas/metabolismo , Criança , Ativação Enzimática , Inativação Gênica , Histonas/genética , Humanos , Lisina/metabolismo , Metilação , Complexo Repressor Polycomb 2/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(18): e2221175120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094128

RESUMO

Diffuse midline gliomas (DMGs) including diffuse intrinsic pontine gliomas (DIPGs) bearing lysine-to-methionine mutations in histone H3 at lysine 27 (H3K27M) are lethal childhood brain cancers. These tumors harbor a global reduction in the transcriptional repressive mark H3K27me3 accompanied by an increase in the transcriptional activation mark H3K27ac. We postulated that H3K27M mutations, in addition to altering H3K27 modifications, reprogram the master chromatin remodeling switch/sucrose nonfermentable (SWI/SNF) complex. The SWI/SNF complex can exist in two main forms termed BAF and PBAF that play central roles in neurodevelopment and cancer. Moreover, BAF antagonizes PRC2, the main enzyme catalyzing H3K27me3. We demonstrate that H3K27M gliomas show increased protein levels of the SWI/SNF complex ATPase subunits SMARCA4 and SMARCA2, and the PBAF component PBRM1. Additionally, knockdown of mutant H3K27M lowered SMARCA4 protein levels. The proteolysis targeting chimera (PROTAC) AU-15330 that simultaneously targets SMARCA4, SMARCA2, and PBRM1 for degradation exhibits cytotoxicity in H3.3K27M but not H3 wild-type cells. AU-15330 lowered chromatin accessibility measured by ATAC-Seq at nonpromoter regions and reduced global H3K27ac levels. Integrated analysis of gene expression, proteomics, and chromatin accessibility in AU-15330-treated cells demonstrated reduction in the levels of FOXO1, a key member of the forkhead family of transcription factors. Moreover, genetic or pharmacologic targeting of FOXO1 resulted in cell death in H3K27M cells. Overall, our results suggest that H3K27M up-regulates SMARCA4 levels and combined targeting of SWI/SNF ATPases in H3.3K27M can serve as a potent therapeutic strategy for these deadly childhood brain tumors.


Assuntos
Neoplasias Encefálicas , Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Criança , Histonas/genética , Adenosina Trifosfatases/metabolismo , Lisina/genética , Cromatina , Glioma/genética , Neoplasias Encefálicas/genética , Mutação , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
5.
Cancer Metastasis Rev ; 42(2): 367-388, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119408

RESUMO

Recurrent, clonal somatic mutations in histone H3 are molecular hallmarks that distinguish the genetic mechanisms underlying pediatric and adult high-grade glioma (HGG), define biological subgroups of diffuse glioma, and highlight connections between cancer, development, and epigenetics. These oncogenic mutations in histones, now termed "oncohistones", were discovered through genome-wide sequencing of pediatric diffuse high-grade glioma. Up to 80% of diffuse midline glioma (DMG), including diffuse intrinsic pontine glioma (DIPG) and diffuse glioma arising in other midline structures including thalamus or spinal cord, contain histone H3 lysine 27 to methionine (K27M) mutations or, rarely, other alterations that result in a depletion of H3K27me3 similar to that induced by H3 K27M. This subgroup of glioma is now defined as diffuse midline glioma, H3K27-altered. In contrast, histone H3 Gly34Arg/Val (G34R/V) mutations are found in approximately 30% of diffuse glioma arising in the cerebral hemispheres of older adolescents and young adults, now classified as diffuse hemispheric glioma, H3G34-mutant. Here, we review how oncohistones modulate the epigenome and discuss the mutational landscape and invasive properties of histone mutant HGGs of childhood. The distinct mechanisms through which oncohistones and other mutations rewrite the epigenetic landscape provide novel insights into development and tumorigenesis and may present unique vulnerabilities for pHGGs. Lessons learned from these rare incurable brain tumors of childhood may have broader implications for cancer, as additional high- and low-frequency oncohistone mutations have been identified in other tumor types.


Assuntos
Neoplasias Encefálicas , Glioma Pontino Intrínseco Difuso , Glioma , Adolescente , Adulto Jovem , Humanos , Criança , Histonas/genética , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Epigênese Genética , Mutação
6.
BMC Cancer ; 24(1): 754, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907215

RESUMO

PURPOSE: Diffuse midline glioma (DMG), H3 K27M-mutant is a type of diffuse high-grade glioma that occurs in the brain midline carrying an extremely poor prognosis under the best efforts of surgery, radiation, and other therapies. For better therapy, we explored the efficacy and toxicity of a novel therapy that combines apatinib and temozolomide in DMG. METHODS: A retrospective analysis of 32 patients with DMG who underwent apatinib plus temozolomide treatment was performed. Apatinib was given 500 mg in adults, 250 mg in pediatric patients once daily. Temozolomide was administered at 200 mg/m2/d according to the standard 5/28 days regimen. The main clinical data included basic information of patients, radiological and pathological characteristics of tumors, treatment, adverse reactions, prognosis. RESULTS: The objective response rate was 24.1%, and the disease control rate was 79.3%. The median PFS of all patients was 5.8 months, and median OS was 10.3 months. A total of 236 cycles of treatment were available for safety assessment and the toxicity of the combination therapy was relatively well tolerated. The most common grade 3 toxicities were myelosuppression including leukopenia (5.08%), neutropenia (4.24%), lymphopenia (2.12%), thrombocytopenia (1.69%) and anemia (1.27%). Grade 4 toxicities included neutropenia (2.12%), thrombocytopenia (2.12%) and proteinuria (1.69%). All the adverse events were relieved after symptomatic treatment or dose reduction. CONCLUSIONS: Apatinib plus temozolomide could be an effective regimen with manageable toxicities and favorable efficacy and may outperform temozolomide monotherapy, particularly in newly diagnosed adults with tumors located outside the pons. The novel therapy deserves further investigation in adult DMG patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas , Glioma , Piridinas , Temozolomida , Humanos , Temozolomida/administração & dosagem , Temozolomida/uso terapêutico , Temozolomida/efeitos adversos , Feminino , Masculino , Adulto , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Piridinas/uso terapêutico , Glioma/tratamento farmacológico , Glioma/patologia , Adolescente , Estudos Retrospectivos , Criança , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Adulto Jovem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Pré-Escolar , Pessoa de Meia-Idade , Resultado do Tratamento
7.
J Neurooncol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937309

RESUMO

PURPOSE: Diffuse midline gliomas (DMG) with H3K27 alterations (H3K27M-DMG) are a highly aggressive form of brain cancer. In rare cases, H3K27 mutations have been observed in diffuse non-midline gliomas (DNMG). It is currently unclear how these tumors should be classified. Herein, we analyze the characteristics of DNMG with H3K27M mutations. METHODS: We reviewed the clinical, radiological and histological characteristics of all patients with an H3K27M mutated diffuse glioma diagnosed in our institution, between 2016 and 2023, to identify cases with a non-midline location. We then performed a molecular characterization (DNA methylation profiling, whole genome and transcriptome sequencing or targeted sequencing) of patients with an H3K27M-mutant DNMG and reviewed previously reported cases. RESULTS: Among 51 patients (18 children and 33 adults) diagnosed with an H3K27M diffuse glioma, we identified two patients (4%) who had a non-midline location. Including our two patients, 39 patients were reported in the literature with an H3K27M-mutant DNMG. Tumors were most frequently located in the temporal lobe (48%), affected adolescents and adults, and were associated with a poor outcome (median overall survival was 10.3 months (0.1-84)). Median age at diagnosis was 19.1 years. Tumors frequently harbored TP53 mutations (74%), ATRX mutations (71%) and PDGFRA mutations or amplifications (44%). In DNA methylation analysis, H3K27M-mutant DNMG clustered within or close to the reference group of H3K27M-mutant DMG. Compared to their midline counterpart, non-midline gliomas with H3K27M mutations seemed more frequently associated with PDGFRA alterations. CONCLUSION: DNMG with H3K27M mutations share many similarities with their midline counterpart, suggesting that they correspond to a rare anatomical presentation of these tumors. This is of paramount importance, as they may benefit from new therapeutic approaches such as ONC201.

8.
BMC Neurol ; 24(1): 74, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383423

RESUMO

BACKGROUND: Anaplastic ependymoma and H3K27M-mutant diffuse midline glioma are two common subtypes of brain tumors with poor long-term prognosis. The present study analyzed and compared the differences in cell types between two tumors by single-cell RNA sequencing (scRNA-seq) technology. METHODS: ScRNA-seq was performed to profile cells from cancer tissue from anaplastic ependymoma patient and H3K27M-mutant diffuse midline glioma patient. Cell clustering, marker gene identification, cell type annotation, copy number variation analysis and function analysis of differentially expressed genes were then performed. RESULTS: A total of 11,219 cells were obtained from anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and these cells categorized into 12 distinct clusters. Each cell cluster could be characterized with specific cell markers to indicate cellular heterogeneity. Five cell types were annotated in each sample, including astrocyte, oligodendrocytes, microglial cell, neural progenitor cell and immune cell. The cluster types and proportion of cell types were not consistent between the two brain tumors. Functional analyses suggest that these cell clusters are involved in tumor-associated pathways, with slight differences in the cells of origin between the two tumors. In addition, cell communication analysis showed that the NRG3-ERBB4 pair is a key Ligand-receptor pair for anaplastic ependymoma, while in H3K27M-mutant diffuse midline glioma it is the PTN-PTPRZ1 pair that establishes contact with other cells. CONCLUSION: There was intratumor heterogeneity in anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and that the subtype differences may be due to differences in the origin of the cells.


Assuntos
Neoplasias Encefálicas , Ependimoma , Glioma , Humanos , Glioma/genética , Glioma/patologia , Histonas/genética , Variações do Número de Cópias de DNA , Mutação/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ependimoma/genética , Análise de Sequência de RNA , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética
9.
Neurol Sci ; 45(6): 2845-2851, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38228940

RESUMO

AIM: The aim of this study was to determine the usefulness of magnetic resonance imaging (MRI) characteristics in discriminating H3 K27M-mutant gliomas from wildtype gliomas in the spinal cord. MATERIALS AND METHODS: Fifty-eight patients with spinal cord gliomas were enrolled in this study. The H3 K27 gene status was identified by Sanger sequencing or immunohistochemistry test of resection tumor specimens. The MR imaging characteristics were evaluated and compared between H3 K27M-mutant and wildtype gliomas using the χ2 test and the Mann-Whitney U test. RESULTS: Of 58 recruited patients, 23 (39.7%) were diagnosed with H3 K27M-mutant glioma. The H3 K27M-mutant gliomas were found to more likely occur in men compared with wildtype gliomas (87.0% vs. 42.9%, p = 0.001). On T2-weighted MR images, the signal-to-noise ratio (SNR) of H3 K27M-mutant gliomas was significantly lower than that of wildtype gliomas (103.9 ± 72.0 vs. 168.9 ± 86.8, p < 0.001). Of 35 wildtype tumors, 60% showed well-defined margin but this feature was not found in all mutant tumors (p < 0.001). The SNR of tumors on contrast-enhanced T1-weighted images of the H3 K27M-mutant gliomas was significantly lower than that of wildtype gliomas (187.7 ± 160.4 vs. 295.1 ± 207.8, p = 0.006). Receiver operating-characteristic analysis revealed that area under curve (AUC) of combination of 1/SNR on T2-weighted images, 1/SNR on contrast-enhanced T1-weighted images, ill-defined margin, and sex reached 0.937 (95% CI, 0.873-1.000) in discriminating H3 K27M-mutant gliomas. CONCLUSIONS: The MR imaging characteristics are valuable in discriminating H3 K27M-mutant from wildtype gliomas in the spinal cord and the combination of these imaging features with sex had a high strength in this discrimination.


Assuntos
Glioma , Histonas , Imageamento por Ressonância Magnética , Mutação , Neoplasias da Medula Espinal , Humanos , Masculino , Glioma/genética , Glioma/diagnóstico por imagem , Glioma/patologia , Feminino , Imageamento por Ressonância Magnética/métodos , Neoplasias da Medula Espinal/genética , Neoplasias da Medula Espinal/diagnóstico por imagem , Neoplasias da Medula Espinal/patologia , Adulto , Pessoa de Meia-Idade , Histonas/genética , Adulto Jovem , Idoso , Adolescente , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia
10.
Childs Nerv Syst ; 40(1): 65-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37644138

RESUMO

PURPOSE: Diffuse Midline Glioma (DMG) with H3K27M mutation is a rare and aggressive midline high grade glioma with a predominant astrocytic differentiation and K27M mutation in either H3F3A or HIST1H3B/C. This tumor is more common in children than in adults. The current study was aimed to determine clinicohistoradiological and surgical outcome of patients who have undergone surgery for DMG and study disease severity of patients with DMG. METHODS: This is an observational study in which 29 DMG patients were evaluated for clinicohistoradiological and surgical outcomes by assessing the pre and postoperative neurological status. RESULT: Survival duration was significantly high in patients with age > 18 years (p = 0.02). Patients who had undergone Radiation Therapy showed higher survival rate (p = 0.05) and the cases with low levels of Ki 67 index had improved post operative outcome (p = 0.002). CONCLUSION: DMG with H3K27M mutation in newly classified Central Nervous System tumor are WHO grade IV Tumors, comprising H3K27M mutation as molecular marker for diagnosis and related with a poor prognosis.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Adulto , Humanos , Pessoa de Meia-Idade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Histonas/genética , Glioma/genética , Glioma/cirurgia , Glioma/diagnóstico , Mutação/genética , Resultado do Tratamento
11.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542334

RESUMO

The BMP pathway is one of the major signaling pathways in embryonic development, ontogeny and homeostasis, identified many years ago by pioneers in developmental biology. Evidence of the deregulation of its activity has also emerged in many cancers, with complex and sometimes opposing effects. Recently, its role has been suspected in Diffuse Midline Gliomas (DMG), among which Diffuse Intrinsic Pontine Gliomas (DIPG) are one of the most complex challenges in pediatric oncology. Genomic sequencing has led to understanding part of their molecular etiology, with the identification of histone H3 mutations in a large proportion of patients. The epigenetic remodeling associated with these genetic alterations has also been precisely described, creating a permissive context for oncogenic transcriptional program activation. This review aims to describe the new findings about the involvement of BMP pathway activation in these tumors, placing their appearance in a developmental context. Targeting the oncogenic synergy resulting from this pathway activation in an H3K27M context could offer new therapeutic perspectives based on targeting treatment-resistant cell states.


Assuntos
Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Criança , Glioma/metabolismo , Histonas/metabolismo , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/metabolismo , Glioma Pontino Intrínseco Difuso/patologia , Mutação , Transdução de Sinais , Proteínas Morfogenéticas Ósseas/metabolismo
12.
J Magn Reson Imaging ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889147

RESUMO

BACKGROUND: Multi-shell diffusion characteristics may help characterize brainstem gliomas (BSGs) and predict H3K27M status. PURPOSE: To identify the diffusion characteristics of BSG patients and investigate the predictive values of various diffusion metrics for H3K27M status in BSG. STUDY TYPE: Prospective. POPULATION: Eighty-four BSG patients (median age 10.5 years [IQR 6.8-30.0 years]) were included, of whom 56 were pediatric and 28 were adult patients. FIELD STRENGTH/SEQUENCE: 3 T, multi-shell diffusion imaging. ASSESSMENT: Diffusion kurtosis imaging and neurite orientation dispersion and density imaging analyses were performed. Age, gender, and diffusion metrics, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity, radial diffusivity (RD), mean kurtosis (MK), axial kurtosis (AK), radial kurtosis, intracellular volume fraction (ICVF), orientation dispersion index, and isotropic volume fraction (ISOVF), were compared between H3K27M-altered and wildtype BSG patients. STATISTICAL TESTS: Chi-square test, Mann-Whitney U test, multivariate analysis of variance (MANOVA), step-wise multivariable logistic regression. P-values <0.05 were considered significant. RESULTS: 82.4% pediatric and 57.1% adult patients carried H3K27M alteration. In the whole group, the H3K27M-altered BSGs demonstrated higher FA, AK and lower RD, ISOVF. The combination of age and median ISOVF showed fair performance for H3K27M prediction (AUC = 0.78). In the pediatric group, H3K27M-altered BSGs showed higher FA, AK, MK, ICVF and lower RD, MD, ISOVF. The combinations of median ISOVF, 5th percentile of FA, median MK and median MD showed excellent predictive power (AUC = 0.91). In the adult group, H3K27M-altered BSGs showed higher ICVF and lower RD, MD. The 75th percentile of RD demonstrated fair performance for H3K27M status prediction (AUC = 0.75). DATA CONCLUSION: Different alteration patterns of diffusion measures were identified between H3K27M-altered and wildtype BSGs, which collectively had fair to excellent predictive value for H3K27M alteration status, especially in pediatric patients. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.

13.
J Magn Reson Imaging ; 58(3): 850-861, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36692205

RESUMO

BACKGROUND: Determination of H3 K27M mutation in diffuse midline glioma (DMG) is key for prognostic assessment and stratifying patient subgroups for clinical trials. MRI can noninvasively depict morphological and metabolic characteristics of H3 K27M mutant DMG. PURPOSE: This study aimed to develop a deep learning (DL) approach to noninvasively predict H3 K27M mutation in DMG using T2-weighted images. STUDY TYPE: Retrospective and prospective. POPULATION: For diffuse midline brain gliomas, 341 patients from Center-1 (27 ± 19 years, 184 males), 42 patients from Center-2 (33 ± 19 years, 27 males) and 35 patients (37 ± 18 years, 24 males). For diffuse spinal cord gliomas, 133 patients from Center-1 (30 ± 15 years, 80 males). FIELD STRENGTH/SEQUENCE: 5T and 3T, T2-weighted turbo spin echo imaging. ASSESSMENT: Conventional radiological features were independently reviewed by two neuroradiologists. H3 K27M status was determined by histopathological examination. The Dice coefficient was used to evaluate segmentation performance. Classification performance was evaluated using accuracy, sensitivity, specificity, and area under the curve. STATISTICAL TESTS: Pearson's Chi-squared test, Fisher's exact test, two-sample Student's t-test and Mann-Whitney U test. A two-sided P value <0.05 was considered statistically significant. RESULTS: In the testing cohort, Dice coefficients of tumor segmentation using DL were 0.87 for diffuse midline brain and 0.81 for spinal cord gliomas. In the internal prospective testing dataset, the predictive accuracies, sensitivities, and specificities of H3 K27M mutation status were 92.1%, 98.2%, 82.9% in diffuse midline brain gliomas and 85.4%, 88.9%, 82.6% in spinal cord gliomas. Furthermore, this study showed that the performance generalizes to external institutions, with predictive accuracies of 85.7%-90.5%, sensitivities of 90.9%-96.0%, and specificities of 82.4%-83.3%. DATA CONCLUSION: In this study, an automatic DL framework was developed and validated for accurately predicting H3 K27M mutation using T2-weighted images, which could contribute to the noninvasive determination of H3 K27M status for clinical decision-making. EVIDENCE LEVEL: 2 Technical Efficacy: Stage 2.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioma , Neoplasias da Medula Espinal , Masculino , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Histonas/genética , Estudos Retrospectivos , Estudos Prospectivos , Mutação , Glioma/diagnóstico por imagem , Glioma/genética , Imageamento por Ressonância Magnética , Neoplasias da Medula Espinal/diagnóstico por imagem , Neoplasias da Medula Espinal/genética
14.
BMC Neurol ; 23(1): 87, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36855102

RESUMO

BACKGROUND: H3K27-altered diffuse midline gliomas are uncommon central nervous system tumors with extremely poor prognoses. CASE PRESENTATION: We report the case of a 24-year-old man patient with multiple, inter alia osseous metastases who presented with back pain, hemi-hypoesthesia, and hemi-hyperhidrosis. The patient underwent combined radio-chemotherapy and demonstrated temporary improvement before deteriorating. CONCLUSIONS: H3K27-altered diffuse midline glioma presents an infrequent but crucial differential diagnosis and should be considered in cases with rapid neurological deterioration and multiple intracranial and intramedullary tumor lesions in children and young adults. Combined radio-chemotherapy delayed the neurological deterioration, but unfortunately, progression occurred three months after the diagnosis.


Assuntos
Glioma , Neoplasias da Coluna Vertebral , Criança , Masculino , Adulto Jovem , Humanos , Adulto , Neoplasias da Coluna Vertebral/complicações , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Diagnóstico Diferencial , Osso e Ossos , Protocolos de Quimioterapia Combinada Antineoplásica
15.
Childs Nerv Syst ; 39(3): 833-835, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36094605

RESUMO

Diffuse midline glioma (DMG), H3 K27-altered, are aggressive central nervous system tumors which are universally fatal, with a median survival of 8-12 months after diagnosis. Here, we present a patient who was incidentally found to have a lesion, concerning for tumor, within the right thalamus on brain magnetic resonance imaging at 2 years of age. Twelve years later, subsequent imaging showed that the lesion had enlarged, with biopsy consistent with DMG harboring an H3 K27M mutation. This case illustrates an unusual presentation of a DMG, H3 K27-altered, with an indolent course. Such findings highlight the fact that more research is needed to understand what factors may contribute to these tumors' malignant course.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Histonas/genética , Mutação
16.
Childs Nerv Syst ; 39(6): 1663-1666, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36759369

RESUMO

PURPOSE: Spinal cord diffuse midline glioma (DMG) with H3 K27-alteration is a group of spinal cord high-grade glioma with poor outcome. We present a case with rare onset symptom pattern of pediatric spinal DMG, contributing to the understanding of the clinical presentations and natural history of pediatric spinal cord DMG. METHODS AND RESULTS: A 7-year-old boy was admitted due to symptoms of intracranial hypertension without obvious spinal cord-related symptoms. Head radiological examinations, blood and cerebral spinal fluid tests did not support intracranial lesion, infection, or autoimmune diseases. Spinal magnetic resonance imaging revealed intraspinal occupying lesion with leptomeningeal dissemination. Pathology of the lesion verified DMG with H3 K27M-alteration. CONCLUSION: Pediatric DMG with leptomeningeal dissemination could present with initial symptoms of intracranial hypertension without obvious spinal cord-related symptoms. Spinal cord examinations in cases of intracranial hypertension with negative head radiological examination results could be valuable in finding the etiology.


Assuntos
Glioma , Hipertensão Intracraniana , Neoplasias da Medula Espinal , Masculino , Humanos , Criança , Neoplasias da Medula Espinal/complicações , Neoplasias da Medula Espinal/diagnóstico por imagem , Glioma/complicações , Glioma/diagnóstico por imagem , Hospitalização , Hipertensão Intracraniana/diagnóstico por imagem , Hipertensão Intracraniana/etiologia
17.
BMC Biol ; 20(1): 124, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637482

RESUMO

BACKGROUND: Neurodevelopmental disorders increase brain tumor risk, suggesting that normal brain development may have protective properties. Mutations in epigenetic regulators are common in pediatric brain tumors, highlighting a potentially central role for disrupted epigenetic regulation of normal brain development in tumorigenesis. For example, lysine 27 to methionine mutation (H3K27M) in the H3F3A gene occurs frequently in Diffuse Intrinsic Pontine Gliomas (DIPGs), the most aggressive pediatric glioma. As H3K27M mutation is necessary but insufficient to cause DIPGs, it is accompanied by additional mutations in tumors. However, how H3K27M alone increases vulnerability to DIPG tumorigenesis remains unclear. RESULTS: Here, we used human embryonic stem cell models with this mutation, in the absence of other DIPG contributory mutations, to investigate how H3K27M alters cellular proliferation and differentiation. We found that H3K27M increased stem cell proliferation and stem cell properties. It interfered with differentiation, promoting anomalous mesodermal and ectodermal gene expression during both multi-lineage and germ layer-specific cell specification, and blocking normal differentiation into neuroectoderm. H3K27M mutant clones exhibited transcriptomic diversity relative to the more homogeneous wildtype population, suggesting reduced fidelity of gene regulation, with aberrant expression of genes involved in stem cell regulation, differentiation, and tumorigenesis. These phenomena were associated with global loss of H3K27me3 and concordant loss of DNA methylation at specific genes in H3K27M-expressing cells. CONCLUSIONS: Together, these data suggest that H3K27M mutation disrupts normal differentiation, maintaining a partially differentiated state with elevated clonogenicity during early development. This disrupted response to early developmental cues could promote tissue properties that enable acquisition of additional mutations that cooperate with H3K27M mutation in genesis of DMG/DIPG. Therefore, this work demonstrates for the first time that H3K27M mutation confers vulnerability to gliomagenesis through persistent clonogenicity and aberrant differentiation and defines associated alterations of histone and DNA methylation.


Assuntos
Neoplasias do Tronco Encefálico , Epigênese Genética , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/patologia , Carcinogênese/genética , Proliferação de Células , Criança , Histonas , Humanos , Mutação , Células-Tronco/metabolismo
18.
Glia ; 70(9): 1681-1698, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35524725

RESUMO

Diffuse midline glioma (DMG) is a type of lethal brain tumor that develops mainly in children. The majority of DMG harbor the K27M mutation in histone H3. Oligodendrocyte progenitor cells (OPCs) in the brainstem are candidate cells-of-origin for DMG, yet there is no genetically engineered mouse model of DMG initiated in OPCs. Here, we used the RCAS/Tv-a avian retroviral system to generate DMG in Olig2-expressing progenitors and Nestin-expressing progenitors in the neonatal mouse brainstem. PDGF-A or PDGF-B overexpression, along with p53 deletion, resulted in gliomas in both models. Exogenous overexpression of H3.3K27M had a significant effect on tumor latency and tumor cell proliferation when compared with H3.3WT in Nestin+ cells but not in Olig2+ cells. Further, the fraction of H3.3K27M-positive cells was significantly lower in DMGs initiated in Olig2+ cells relative to Nestin+ cells, both in PDGF-A and PDGF-B-driven models, suggesting that the requirement for H3.3K27M is reduced when tumorigenesis is initiated in Olig2+ cells. RNA-sequencing analysis revealed that the differentially expressed genes in H3.3K27M tumors were non-overlapping between Olig2;PDGF-B, Olig2;PDGF-A, and Nestin;PDGF-A models. GSEA analysis of PDGFA tumors confirmed that the transcriptomal effects of H3.3K27M are cell-of-origin dependent with H3.3K27M promoting epithelial-to-mesenchymal transition (EMT) and angiogenesis when Olig2 marks the cell-of-origin and inhibiting EMT and angiogenesis when Nestin marks the cell-of-origin. We did observe some overlap with H3.3K27M promoting negative enrichment of TNFA_Signaling_Via_NFKB in both models. Our study suggests that the tumorigenic effects of H3.3K27M are cell-of-origin dependent, with H3.3K27M being more oncogenic in Nestin+ cells than Olig2+ cells.


Assuntos
Neoplasias Encefálicas , Glioma , Células Precursoras de Oligodendrócitos , Animais , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Glioma/patologia , Histonas , Camundongos , Mutação/genética , Nestina/genética , Células Precursoras de Oligodendrócitos/patologia
19.
J Neuroinflammation ; 19(1): 276, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403059

RESUMO

Diffuse midline glioma (DMG), formerly called diffuse intrinsic pontine glioma (DIPG), is a high-grade malignant pediatric brain tumor with a near-zero survival rate. To date, only radiation therapy provides marginal survival benefit; however, the median survival time remains less than a year. Historically, the infiltrative nature and sensitive location of the tumor rendered surgical removal and biopsies difficult and subsequently resulted in limited knowledge of the disease, as only post-mortem tissue was available. Therefore, clinical decision-making was based upon experience with the more frequent and histologically similar adult glioblastoma (GBM). Recent advances in tissue acquisition and molecular profiling revealed that DMG and GBM are distinct disease entities, with separate tissue characteristics and genetic profiles. DMG is characterized by heterogeneous tumor tissue often paired with an intact blood-brain barrier, possibly explaining its resistance to chemotherapy. Additional profiling shed a light on the origin of the disease and the influence of several mutations such as a highly recurring K27M mutation in histone H3 on its tumorigenesis. Furthermore, early evidence suggests that DMG has a unique immune microenvironment, characterized by low levels of immune cell infiltration, inflammation, and immunosuppression that may impact disease development and outcome. Within the tumor microenvironment of GBM, tumor-associated microglia/macrophages (TAMs) play a large role in tumor development. Interestingly, TAMs in DMG display distinct features and have low immune activation in comparison to other pediatric gliomas. Although TAMs have been investigated substantially in GBM over the last years, this has not been the case for DMG due to the lack of tissue for research. Bit by bit, studies are exploring the TAM-glioma crosstalk to identify what factors within the DMG microenvironment play a role in the recruitment and polarization of TAMs. Although more research into the immune microenvironment is warranted, there is evidence that targeting or stimulating TAMs and their factors provide a potential treatment option for DMG. In this review, we provide insight into the current status of DMG research, assess the knowledge of the immune microenvironment in DMG and GBM, and present recent findings and therapeutic opportunities surrounding the TAM-glioma crosstalk.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Criança , Adulto , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia , Glioma/patologia , Microambiente Tumoral
20.
J Transl Med ; 20(1): 64, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109850

RESUMO

BACKGROUND: Diffuse hemispheric glioma H3 G34-mutant (G34-DHG) is a new type of pediatric-type diffuse high-grade glioma in the fifth edition of the WHO Classification of Tumors of the Central Nervous System. The current treatment for G34-DHG involves a combination of surgery and conventional radiotherapy or chemotherapy; however, the therapeutic efficacy of this approach is not satisfactory. In recent years, molecular targeted therapy and immunotherapy have achieved significant benefits in a variety of tumors. In-depth understanding of molecular changes and immune infiltration in G34-DHGs will help to establish personalized tumor treatment strategies. Here, we report the clinicopathological, molecular and immune infiltration characteristics of G34-DHG cases from our center along with cases from the HERBY Trial and the Chinese Glioma Genome Atlas database (CGGA). METHODS: Hematoxylin-eosin (HE) and immunohistochemistry (IHC) staining were used to present the clinicopathological characteristics of 10 Chinese G34-DHG patients treated at our institution. To address the molecular characteristics of G34-DHG, we performed whole-exome sequencing (WES) and RNA sequencing (RNA-seq) analyses of 5 patients from our center and 3 Chinese patients from the Chinese Glioma Genome Atlas (CGGA) database. Additionally, 7 European G34-DHG patients from the HERBY Trail were also subjected to analyses, with 7 cases of WES data and 2 cases of RNA-seq data. Six G34-DHG patients from another organization were used as external validation. RESULTS: WES showed a high frequency of PDGFRA mutation in G34-DHGs (12/15). We further identified frequent mutations in MUC family genes in G34-DHGs, including MUC16 (8/15) and MUC17 (8/15). Although no statistical difference was found, PDGFRA mutation tended to be an indicator for worse prognosis whereas MUC16/MUC17 mutation indicated a favorable prognosis in G34-DHGs. RNA sequencing results revealed that most G34-DHG are considered to be immune cold tumors. However, one patient in our cohort with MUC16 mutation showed significant immune infiltration, and the total overall survival of this patient reached 75 months. CONCLUSIONS: Our results demonstrate that G34-DHG is a new high-grade glioma with high frequency of PDGFRA and MUC gene family mutations. PDGFRA may serve as an indicator of poor prognosis and an effective therapeutic target. Moreover, MUC16 tends to be a favorable prognostic factor and indicates high immune infiltration in certain patients, and these findings may provide a new direction for targeted therapy and immunotherapy of patients with G34-DHGs.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Glioma/genética , Glioma/patologia , Histonas , Humanos , Mutação/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA