Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 47(9): 2684-2702, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35380399

RESUMO

Hereditary peripheral neuropathies called Charcot-Marie-Tooth (CMT) disease affect the sensory nerves as well as motor neurons. CMT diseases are composed of a heterogeneous group of diseases. They are characterized by symptoms such as muscle weakness and wasting. Type 2 CMT (CMT2) disease is a neuropathy with blunted or disrupted neuronal morphological differentiation phenotypes including process formation of peripheral neuronal axons. In the early stages of CMT2, demyelination that occurs in Schwann cells (glial cells) is rarely observed. CMT2W is an autosomal-dominant disease and is responsible for the gene encoding histidyl-tRNA synthetase 1 (HARS1), which is a family molecule of cytoplasmic aminoacyl-tRNA synthetases and functions by ligating histidine to its cognate tRNA. Despite increasing knowledge of the relationship of mutations on responsible genes with diseases, it still remains unclear how each mutation affects neuronal differentiation. Here we show that in neuronal N1E-115 cells, a severe Asp364-to-Tyr (D364Y) mutation of HARS1 leads to formation of small aggregates of HARS1 proteins; in contrast, wild type proteins are distributed throughout cell bodies. Expression of D364Y mutant proteins inhibited process formation whereas expression of wild type proteins possessed the normal differentiation ability to grow processes. Pretreatment with the antiepileptic valproic acid recovered inhibition of process formation by D364Y mutant proteins through the c-Jun N-terminal kinase signaling pathway. Taken together, these results indicate that the D364Y mutation of HARS1 causes HARS1 proteins to form small aggregates, inhibiting process growth, and that these effects are recovered by valproic acid. This could be a potential therapeutic drug for CMT2W at the cellular levels.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Doença de Charcot-Marie-Tooth , Ácido Valproico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas Mutantes/genética , Mutação , RNA de Transferência , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
2.
J Peripher Nerv Syst ; 27(1): 38-49, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34813128

RESUMO

Charcot-Marie-Tooth disease (CMT) and related diseases are a genetically and clinically heterogeneous group of peripheral neuropathies. Particularly, mutations in several aminoacyl-tRNA synthetase (ARS) genes have been reported to cause axonal CMT (CMT2) or distal hereditary motor neuropathy (dHMN). However, the common pathogenesis among CMT subtypes by different ARS gene defects is not well understood. This study was performed to investigate ARS gene mutations in a CMT cohort of 710 Korean families. Whole-exome sequencing was applied to 710 CMT patients who were negative for PMP22 duplication. We identified 12 disease-causing variants (from 13 families) in GARS1, AARS1, HARS1, WARS1, and YARS1 genes. Seven variants were determined to be novel. The frequency of overall ARS gene mutations was 1.22% among all independent patients diagnosed with CMT and 1.83% in patients negative for PMP22 duplication. WARS1 mutations have been reported to cause dHMN; however, in our patients with WARS1 variants, CMT was associated with sensory involvement. We analyzed genotype-phenotype correlations and expanded the phenotypic spectrum of patients with CMT possessing ARS gene variants. We also characterized clinical phenotypes according to ARS genes. This study will be useful for performing exact molecular and clinical diagnoses and providing reference data for other population studies.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Aminoacil-tRNA Sintetases/genética , Doença de Charcot-Marie-Tooth/patologia , Estudos de Coortes , Humanos , Mutação/genética , Fenótipo , Proteínas/genética , República da Coreia
3.
FEBS J ; 288(1): 91-94, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32940403

RESUMO

The pathogenic mechanism of neuropathy-associated aminoacyl-tRNA synthetase (ARS) gene variants is poorly defined. Mullen et al. generate new models of pathogenic, dominant HARS1 mutations and show that they increase eIF2α phosphorylation and decrease protein translation in neurons. These results are consistent with a dominant-negative mechanism of ARS-mediated peripheral neuropathy. Comment on: https://doi.org/10.1111/febs.15449.


Assuntos
Histidina-tRNA Ligase , Doenças do Sistema Nervoso Periférico , Animais , Mutação , Crescimento Neuronal , Doenças do Sistema Nervoso Periférico/genética , Biossíntese de Proteínas , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA