RESUMO
In order to meet the requirements of ultra-fast real-time monitoring of sarin simulator with high sensitivity and selectivity, it is of great significance to develop high performance dimethyl methylphonate (DMMP) sensor. Herein, we proposed a DMMP sensor based on p-hexafluoroisopropanol phenyl (HFIPPH) modified self-assembled single-walled carbon nanotubes (SWCNTs) with field effect transistor (FET) structure. The self-assembly method provides a 4 nanometres thick and micron sized SWCNT channel, with high selectivity to DMMP. The proposed SWCNTs-HFIPPH based sensor exhibits remarkably higher response to DMMP than bare SWCNT based gas sensor within only few seconds. The gas sensing response of SWCNTs-HFIPPH based sensor for 1 ppm DMMP is 18.2%, and the response time is about 10 s. What's more, the gas sensor we proposed here shows excellent selectivity and reproducibility, and the limitation of detection is as low as ppb level. The proposed method lays the foundation for miniaturization and integration of DMMP sensors, expecting to develop detection system for practical sarin sensing application.