Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2320657121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386704

RESUMO

To control net sodium (Na+) uptake, Arabidopsis plants utilize the plasma membrane (PM) Na+/H+ antiporter SOS1 to achieve Na+ efflux at the root and Na+ loading into the xylem, and the channel-like HKT1;1 protein that mediates the reverse flux of Na+ unloading off the xylem. Together, these opposing transport systems govern the partition of Na+ within the plant yet they must be finely co-regulated to prevent a futile cycle of xylem loading and unloading. Here, we show that the Arabidopsis SOS3 protein acts as the molecular switch governing these Na+ fluxes by favoring the recruitment of SOS1 to the PM and its subsequent activation by the SOS2/SOS3 kinase complex under salt stress, while commanding HKT1;1 protein degradation upon acute sodic stress. SOS3 achieves this role by direct and SOS2-independent binding to previously unrecognized functional domains of SOS1 and HKT1;1. These results indicate that roots first retain moderate amounts of salts to facilitate osmoregulation, yet when sodicity exceeds a set point, SOS3-dependent HKT1;1 degradation switches the balance toward Na+ export out of the root. Thus, SOS3 functionally links and co-regulates the two major Na+ transport systems operating in vascular plants controlling plant tolerance to salinity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Transporte Proteico , Transporte Biológico , Proteólise , Osmorregulação , Trocadores de Sódio-Hidrogênio/genética , Proteínas de Arabidopsis/genética
2.
Plant Cell Environ ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148196

RESUMO

Soil salinity is a serious concern for tomato culture, affecting both yield and quality parameters. Although some genes involved in tomato salt tolerance have been identified, their genetic diversity has been rarely studied. In the present study, we assessed salt tolerance-related traits at juvenile and adult stages in a large core collection and identified salt tolerance quantitative trait loci (QTLs) by genome-wide association study (GWAS). The results suggested that a major QTL is involved in leaf sodium accumulation at both physiological stages. We were able to identify the underlying candidate gene, coding for a well-known sodium transporter, called SlHKT1.2. We showed that an eQTL for the expression of this gene in roots colocalized with the above ground sodium content QTL. A polymorphism putatively responsible for its variation was identified in the gene promoter. Finally, to extend the applicability of these results, we carried out the same analysis on a test-cross panel composed of the core collection crossed with a distant line. The results indicated that the identified QTL retained its functional impact even in a hybrid genetic context: this paves the way for its use in breeding programs aimed at improving salinity tolerance in tomato cultivars.

3.
Plant J ; 112(2): 322-338, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35979653

RESUMO

Soil salinity is a significant threat to global agriculture. Understanding salt exclusion mechanisms in halophyte species may be instrumental in improving salt tolerance in crops. Puccinellia tenuiflora is a typical salt-excluding halophytic grass often found in potassium-deprived saline soils. Our previous work showed that P. tenuiflora possesses stronger selectivity for K+ than for Na+ ; however, the mechanistic basis of this phenomenon remained elusive. Here, P. tenuiflora PutHKT1;5 was cloned and the functions of PutHKT1;5 and PutSOS1 were characterized using heterologous expression systems. Yeast assays showed that PutHKT1;5 possessed Na+ transporting capacity and was highly selective for Na+ over K+ . PutSOS1 was located at the plasma membrane and operated as a Na+ /K+ exchanger, with much stronger Na+ extrusion capacity than its homolog from Arabidopsis. PutHKT2;1 mediated high-affinity K+ and Na+ uptake and its expression levels were upregulated by mild salinity and K+ deprivation. Salinity-induced changes of root PutHKT1;5 and PutHKT1;4 transcript levels matched the expression pattern of root PutSOS1, which was consistent with root Na+ efflux. The transcript levels of root PutHKT2;1 and PutAKT1 were downregulated by salinity. Taken together, these findings demonstrate that the functional activity of PutHKT1;5 and PutSOS1 in P. tenuiflora roots is fine-tuned under saline conditions as well as by operation of other ion transporters/channel (PutHKT1;4, PutHKT2;1, and PutAKT1). This leads to the coordination of radial Na+ and K+ transport processes, their loading to the xylem, or Na+ retrieval and extrusion under conditions of mild salinity and/or K+ deprivation.


Assuntos
Arabidopsis , Potássio , Potássio/metabolismo , Sódio/metabolismo , Salinidade , Poaceae/genética , Poaceae/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Solo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982804

RESUMO

Salinity stress severely hampers plant growth and productivity. How to improve plants' salt tolerance is an urgent issue. However, the molecular basis of plant resistance to salinity still remains unclear. In this study, we used two poplar species with different salt sensitivities to conduct RNA-sequencing and physiological and pharmacological analyses; the aim is to study the transcriptional profiles and ionic transport characteristics in the roots of the two Populus subjected to salt stress under hydroponic culture conditions. Our results show that numerous genes related to energy metabolism were highly expressed in Populus alba relative to Populus russkii, which activates vigorous metabolic processes and energy reserves for initiating a set of defense responses when suffering from salinity stress. Moreover, we found the capacity of Na+ transportation by the P. alba high-affinity K+ transporter1;2 (HKT1;2) was superior to that of P. russkii under salt stress, which enables P. alba to efficiently recycle xylem-loaded Na+ and to maintain shoot K+/Na+ homeostasis. Furthermore, the genes involved in the synthesis of ethylene and abscisic acid were up-regulated in P. alba but downregulated in P. russkii under salt stress. In P. alba, the gibberellin inactivation and auxin signaling genes with steady high transcriptions, several antioxidant enzymes activities (such as peroxidase [POD], ascorbate peroxidase [APX], and glutathione reductase [GR]), and glycine-betaine content were significantly increased under salt stress. These factors altogether confer P. alba a higher resistance to salinity, achieving a more efficient coordination between growth modulation and defense response. Our research provides significant evidence to improve the salt tolerance of crops or woody plants.


Assuntos
Populus , Tolerância ao Sal , Tolerância ao Sal/genética , Transcriptoma , Árvores/genética , Estresse Fisiológico/genética , Populus/metabolismo , Sódio/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Proc Natl Acad Sci U S A ; 115(52): E12443-E12452, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530653

RESUMO

Stressors such as soil salinity and dehydration are major constraints on plant growth, causing worldwide crop losses. Compounding these insults, increasing climate volatility requires adaptation to fluctuating conditions. Salinity stress responses are relatively well understood in Arabidopsis thaliana, making this system suited for the rapid molecular dissection of evolutionary mechanisms. In a large-scale genomic analysis of Catalonian A. thaliana, we resequenced 77 individuals from multiple salinity gradients along the coast and integrated these data with 1,135 worldwide A. thaliana genomes for a detailed understanding of the demographic and evolutionary dynamics of naturally evolved salinity tolerance. This revealed that Catalonian varieties adapted to highly fluctuating soil salinity are not Iberian relicts but instead have immigrated to this region more recently. De novo genome assembly of three allelic variants of the high-affinity K+ transporter (HKT1;1) locus resolved structural variation between functionally distinct alleles undergoing fluctuating selection in response to seasonal changes in soil salinity. Plants harboring alleles responsible for low root expression of HKT1;1 and consequently high leaf sodium (HKT1;1HLS ) were migrants that have moved specifically into areas where soil sodium levels fluctuate widely due to geography and rainfall variation. We demonstrate that the proportion of plants harboring HKT1;1HLS alleles correlates with soil sodium level over time, HKT1;1HLS -harboring plants are better adapted to intermediate levels of salinity, and the HKT1;1HLS allele clusters with high-sodium accumulator accessions worldwide. Together, our evidence suggests that HKT1;1 is under fluctuating selection in response to climate volatility and is a worldwide determinant in adaptation to saline conditions.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Simportadores/genética , Simportadores/metabolismo , Adaptação Biológica/genética , Adaptação Fisiológica/genética , Alelos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Frequência do Gene/genética , Transporte de Íons , Salinidade , Tolerância ao Sal , Sódio/metabolismo , Cloreto de Sódio , Solo , Simportadores/fisiologia
6.
Plant Cell Physiol ; 61(7): 1321-1334, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32379873

RESUMO

HKT1;5 loci/alleles are important determinants of crop salinity tolerance. HKT1;5s encode plasmalemma-localized Na+ transporters, which move xylem Na+ into xylem parenchyma cells, reducing shoot Na+ accumulation. Allelic variation in rice OsHKT1;5 sequence in specific landraces (Nona Bokra OsHKT1;5-NB/Nipponbare OsHKT1;5-Ni) correlates with variation in salt tolerance. Oryza coarctata, a halophytic wild rice, grows in fluctuating salinity at the seawater-estuarine interface in Indian and Bangladeshi coastal regions. The distinct transport characteristics of the shoots and roots expressing the O. coarctata OcHKT1;5 transporter are reported vis-à-vis OsHKT1;5-Ni. Yeast sodium extrusion-deficient cells expressing OcHKT1;5 are sensitive to increasing Na+ (10-100 mM). Electrophysiological measurements in Xenopus oocytes expressing O. coarctata or rice HKT1;5 transporters indicate that OcHKT1;5, like OsHKT1;5-Ni, is a Na+-selective transporter, but displays 16-fold lower affinity for Na+ and 3.5-fold higher maximal conductance than OsHKT1;5-Ni. For Na+ concentrations >10 mM, OcHKT1;5 conductance is higher than that of OsHKT1;5-Ni, indicating the potential of OcHKT1;5 for increasing domesticated rice salt tolerance. Homology modeling/simulation suggests that four key amino-acid changes in OcHKT1;5 (in loops on the extracellular side; E239K, G207R, G214R, L363V) account for its lower affinity and higher Na+ conductance vis-à-vis OsHKT1;5-Ni. Of these, E239K in OcHKT1;5 confers lower affinity for Na+ transport, as evidenced by Na+ transport assays of reciprocal site-directed mutants for both transporters (OcHKT1;5-K239E, OsHKT1;5-Ni-E270K) in Xenopus oocytes. Both transporters have likely analogous roles in xylem sap desalinization, and differences in xylem sap Na+ concentrations in both species are attributed to differences in Na+ transport affinity/conductance between the transporters.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Aminoácidos , Animais , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Oócitos/metabolismo , Organismos Geneticamente Modificados , Oryza/genética , Proteínas de Plantas/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Xenopus , Xilema/metabolismo
7.
Plant Cell Environ ; 43(12): 2932-2956, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32744336

RESUMO

Salinization of land is likely to increase due to climate change with impact on agricultural production. Since most species used as crops are sensitive to salinity, improvement of salt tolerance is needed to maintain global food production. This review summarises successes and failures of transgenic approaches in improving salt tolerance in crop species. A conceptual model of coordinated physiological mechanisms in roots and shoots required for salt tolerance is presented. Transgenic plants overexpressing genes of key proteins contributing to Na+ 'exclusion' (PM-ATPases with SOS1 antiporter, and HKT1 transporter) and Na+ compartmentation in vacuoles (V-H+ ATPase and V-H+ PPase with NHX antiporter), as well as two proteins potentially involved in alleviating water deficit during salt stress (aquaporins and dehydrins), were evaluated. Of the 51 transformations, with gene(s) involved in Na+ 'exclusion' or Na+ vacuolar compartmentation that contained quantitative data on growth and include a non-saline control, 48 showed improvements in salt tolerance (less impact on plant mass) of transgenic plants, but with only two tested in field conditions. Of these 51 transformations, 26 involved crop species. Tissue ion concentrations were altered, but not always in the same way. Although glasshouse data are promising, field studies are required to assess crop salinity tolerance.


Assuntos
Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Plantas Tolerantes a Sal/genética , Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/fisiologia
8.
Int J Mol Sci ; 20(5)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823627

RESUMO

Abiotic stresses generally cause a series of morphological, biochemical and molecular changes that unfavorably affect plant growth and productivity. Among these stresses, soil salinity is a major threat that can seriously impair crop yield. To cope with the effects of high salinity on plants, it is important to understand the mechanisms that plants use to deal with it, including those activated in response to disturbed Na⁺ and K⁺ homeostasis at cellular and molecular levels. HKT1-type transporters are key determinants of Na⁺ and K⁺ homeostasis under salt stress and they contribute to reduce Na⁺-specific toxicity in plants. In this review, we provide a brief overview of the function of HKT1-type transporters and their importance in different plant species under salt stress. Comparison between HKT1 homologs in different plant species will shed light on different approaches plants may use to cope with salinity.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Plantas/genética , Estresse Salino , Plantas Tolerantes a Sal/genética , Simportadores/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Simportadores/química , Simportadores/metabolismo
9.
Plant J ; 90(5): 898-917, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27987327

RESUMO

Plant breeding and improvements in agronomic practice are making a consistent contribution to increasing global crop production year upon year. However, the rate of yield improvement currently lags behind the targets set to produce enough food to meet the demands of the predicted global population in 2050. Furthermore, crops that are exposed to harmful abiotic environmental factors (abiotic stresses, e.g. water limitation, salinity, extreme temperature) are prone to reduced yields. Here, we briefly describe the processes undertaken in conventional breeding programmes, which are usually designed to improve yields in near-optimal conditions rather than specifically breeding for improved crop yield stability under stressed conditions. While there is extensive fundamental research activity that examines mechanisms of plant stress tolerance, there are few examples that apply this research to improving commercial crop yields. There are notable exceptions, and we highlight some of these to demonstrate the magnitude of yield gains that could be made by translating agronomic, phenological and genetic solutions focused on improving or mitigating the effect of abiotic stress in the field; in particular, we focus on improvements in crop water-use efficiency and salinity tolerance. We speculate upon the reasons for the disconnect between research and research translation. We conclude that to realise untapped rapid gains towards food security targets new funding structures need to be embraced. Such funding needs to serve both the core and collaborative activities of the fundamental, pre-breeding and breeding research communities in order to expedite the translation of innovative research into the fields of primary producers.


Assuntos
Cruzamento , Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Produtos Agrícolas/genética , Abastecimento de Alimentos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Sorghum/genética , Sorghum/metabolismo , Sorghum/fisiologia , Triticum/genética , Triticum/metabolismo , Triticum/fisiologia
10.
Physiol Mol Biol Plants ; 24(1): 61-73, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29398839

RESUMO

Aegilops cylindrica, a salt-tolerant gene pool of wheat, is a useful plant model for understanding mechanism of salt tolerance. A salt-tolerant USL26 and a salt-sensitive K44 genotypes of A. cylindrica, originating from Uremia Salt Lake shores in Northwest Iran and a non-saline Kurdestan province in West Iran, respectively, were identified based on screening evaluation and used for this work. The objective of the current study was to investigate the expression patterns of four genes related to ion homeostasis in this species. Under treatment of 400 mM NaCl, USL26 showed significantly higher root and shoot dry matter levels and K+ concentrations, together with lower Na+ concentrations than K44 genotype. A. cylindrica HKT1;5 (AecHKT1;5), SOS1 (AecSOS1), NHX1 (AecNHX1) and VP1 (AecVP1) were partially sequenced to design each gene specific primer. Quantitative real-time PCR showed a differential expression pattern of these genes between the two genotypes and between the root and shoot tissues. Expressions of AecHKT1;5 and AecSOS1 was greater in the roots than in the shoots of USL26 while AecNHX1 and AecVP1 were equally expressed in both tissues of USL26 and K44. The higher transcripts of AecHKT1;5 in the roots versus the shoots could explain both the lower Na+ in the shoots and the much lower Na+ and higher K+ concentrations in the roots/shoots of USL26 compared to K44. Therefore, the involvement of AecHKT1;5 in shoot-to-root handover of Na+ in possible combination with the exclusion of excessive Na+ from the root in the salt-tolerant genotype are suggested.

11.
BMC Plant Biol ; 17(1): 209, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157217

RESUMO

BACKGROUND: Selecting for low concentration of Na+ in the shoot provides one approach for tackling salinity stress that adversely affects crop production. Novel alleles for Na+ exclusion can be identified and then introduced into elite crop cultivars. RESULTS: We have identified loci associated with lower Na+ concentration in leaves of durum wheat landraces originating from Afghanistan. Seedlings of two F2 populations derived from crossings between Australian durum wheat (Jandaroi) and two Afghani landraces (AUS-14740 and AUS-14752) were grown hydroponically and evaluated for Na+ and K+ concentration in the third leaf. High heritability was found for both third leaf Na+ concentration and the K+/Na+ ratio in both populations. Further work focussed on line AUS-14740. Bulk segregant analysis using 9 K SNP markers identified two loci significantly associated with third leaf Na+ concentration. Marker regression analysis showed a strong association between all traits studied and a favourable allele originating from AUS-14740 located on the long arm of chromosome 4B. CONCLUSIONS: The candidate gene in the relevant region of chromosome 4B is likely to be the high affinity K+ transporter B1 (HKT1;5-B1). A second locus associated with third leaf Na+ concentration was located on chromosome 3BL, with the favourable allele originating from Jandaroi; however, no candidate gene can be identified.


Assuntos
Plantas Tolerantes a Sal/genética , Sódio/metabolismo , Triticum/genética , Afeganistão , Cruzamentos Genéticos , Genes de Plantas/genética , Técnicas de Genotipagem , Hidroponia , Fenótipo , Folhas de Planta/química , Folhas de Planta/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Potássio/análise , Potássio/metabolismo , Locos de Características Quantitativas/genética , Tolerância ao Sal , Plantas Tolerantes a Sal/metabolismo , Sódio/análise , Triticum/metabolismo
12.
Plant Cell Environ ; 40(5): 658-671, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27987209

RESUMO

Excessive soil salinity diminishes crop yield and quality. In a previous study in tomato, we identified two closely linked genes encoding HKT1-like transporters, HKT1;1 and HKT1;2, as candidate genes for a major quantitative trait locus (kc7.1) related to shoot Na+ /K+ homeostasis - a major salt tolerance trait - using two populations of recombinant inbred lines (RILs). Here, we determine the effectiveness of these genes in conferring improved salt tolerance by using two near-isogenic lines (NILs) that were homozygous for either the Solanum lycopersicum allele (NIL17) or for the Solanum cheesmaniae allele (NIL14) at both HKT1 loci; transgenic lines derived from these NILs in which each HKT1;1 and HKT1;2 had been silenced by stable transformation were also used. Silencing of ScHKT1;2 and SlHKT1;2 altered the leaf Na+ /K+ ratio and caused hypersensitivity to salinity in plants cultivated under transpiring conditions, whereas silencing SlHKT1;1/ScHKT1;1 had a lesser effect. These results indicate that HKT1;2 has the more significant role in Na+ homeostasis and salinity tolerance in tomato.


Assuntos
Proteínas de Transporte de Cátions/genética , Homeostase , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Potássio/metabolismo , Salinidade , Sódio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Simportadores/genética , Alelos , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Plantas , Loci Gênicos , Homeostase/efeitos dos fármacos , Homeostase/genética , Endogamia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Análise de Componente Principal , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cloreto de Sódio/farmacologia , Simportadores/metabolismo
13.
Plant Cell Physiol ; 57(10): 2047-2057, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27440547

RESUMO

TmHKT1;4-A1 and TmHKT1;4-A2 are two Na+ transporter genes that have been identified as associated with the salt tolerance Nax1 locus found in a durum wheat (Triticum turgidum L. subsp. durum) line issued from a cross with T. monococcum. In the present study, we were interested in getting clues on the molecular mechanisms underpinning this salt tolerance quantitative trait locus (QTL). By analyzing the phylogenetic relationships between wheat and T. monococcum HKT1;4-type genes, we found that durum and bread wheat genomes possess a close homolog of TmHKT1;4-A1, but no functional close homolog of TmHKT1;4-A2. Furthermore, performing real-time reverse transcription-PCR experiments, we showed that TmHKT1;4-A1 and TmHKT1;4-A2 are similarly expressed in the leaves but that TmHKT1;4-A2 is more strongly expressed in the roots, which would enable it to contribute more to the prevention of Na+ transfer to the shoots upon salt stress. We also functionally characterized the TmHKT1;4-A1 and TmHKT1;4-A2 transporters by expressing them in Xenopus oocytes. The two transporters displayed close functional properties (high Na+/K+ selectivity, low affinity for Na+, stimulation by external K+ of Na+ transport), but differed in some quantitative parameters: Na+ affinity was 3-fold lower and the maximal inward conductance was 3-fold higher in TmHKT1;4-A2 than in TmHKT1;4-A1. The conductance of TmHKT1;4-A2 at high Na+ concentration (>10 mM) was also shown to be higher than that of the two durum wheat HKT1;4-type transporters so far characterized. Altogether, these data support the hypothesis that TmHKT1;4-A2 is responsible for the Nax1 trait and provide new insight into the understanding of this QTL.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Tolerância ao Sal/genética , Triticum/genética , Triticum/fisiologia , Animais , Proteínas de Transporte de Cátions/genética , Cátions , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Tolerância ao Sal/efeitos dos fármacos , Sódio/farmacologia , Cloreto de Sódio/farmacologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Xenopus
14.
J Exp Bot ; 65(1): 213-22, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24192995

RESUMO

Plant tolerance to salinity constraint involves complex and integrated functions including control of Na(+) uptake, translocation, and compartmentalization. Several members of the high-affinity K(+) transporter (HKT) family, which comprises plasma-membrane transporters permeable to K(+) and Na(+) or to Na(+) only, have been shown to play major roles in plant Na(+) and K(+) homeostasis. Among them, HKT1;4 has been identified as corresponding to a quantitative trait locus (QTL) of salt tolerance in wheat but was not functionally characterized. Here, we isolated two HKT1;4-type cDNAs from a salt-tolerant durum wheat (Triticum turgidum L. subsp. durum) cultivar, Om Rabia3, and investigated the functional properties of the encoded transporters using a two-electrode voltage-clamp technique, after expression in Xenopus oocytes. Both transporters displayed high selectivity for Na(+), their permeability to other monovalent cations (K(+), Li(+), Cs(+), and Rb(+)) being ten times lower than that to Na(+). Both TdHKT1;4-1 and TdHKT1;4-2 transported Na(+) with low affinity, although the half-saturation of the conductance was observed at a Na(+) concentration four times lower in TdHKT1;4-1 than in TdHKT1;4-2. External K(+) did not inhibit Na(+) transport through these transporters. Quinine slightly inhibited TdHKT1;4-2 but not TdHKT1;4-1. Overall, these data identified TdHKT1;4 transporters as new Na(+)-selective transporters within the HKT family, displaying their own functional features. Furthermore, they showed that important differences in affinity exist among durum wheat HKT1;4 transporters. This suggests that the salt tolerance QTL involving HKT1;4 may be at least in part explained by functional variability among wheat HKT1;4-type transporters.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Sódio/metabolismo , Triticum/fisiologia , Animais , Sequência de Bases , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Cátions/metabolismo , DNA Complementar/química , DNA Complementar/genética , DNA de Plantas/química , DNA de Plantas/genética , Expressão Gênica , Dados de Sequência Molecular , Oócitos , Filogenia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas , Salinidade , Tolerância ao Sal , Análise de Sequência de DNA , Triticum/genética , Xenopus
15.
Plant Sci ; 342: 112052, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38417716

RESUMO

Nitraria sibirica Pall is a halophytic shrub growing in desert steppe zones. It exhibits extraordinary adaptability to saline-alkali soil, drought, and sand burial. In this study, the high-affinity K+ transporter NsHKT1 was identified and found to play a key role in salt tolerance in N. sibirica. NsHKT1 was used to improve salt tolerance in a poplar hybrid. The expression characteristics of NsHKT1 were analyzed by transforming Arabidopsis and poplar with the ß-glucuronidase (GUS) gene driven by the NsHKT1 promoter. The results showed that NsHKT1 expression was induced by various abiotic stresses and phytohormones. GUS expression was also detected in the reproductive organs of transgenic Arabidopsis, indicating its function in regulating plant reproductive growth. Transgenic 84 K poplar plants overexpressing NsHKT1 exhibited less damage, higher antioxidant capacity, higher chlorophyll and proline levels, and lower malondialdehyde content compared with non-transgenic plants under salt stress. These results are consistent with the salt tolerance results for transgenic Arabidopsis overexpressing NsHKT1, indicating that NsHKT1 plays a key role in salt tolerance in herbaceous and ligneous plants. Inductively coupled plasma-optical emission spectrometry showed a significantly lower leaf Na+ content in transgenic poplar than in the non-transgenic line, revealing that NsHKT1, as a member of HKT family subclass 1, was highly selective to Na+ and prevented shoot Na+ accumulation. Transcriptome analysis indicated that differentially expressed genes in transgenic poplars under salt stress were associated mainly with the isoflavonoid, cutin, suberine, wax, anthocyanin, flavonoid, and cyanoamino biosynthesis pathways, as well as the MAPK signaling pathway, indicating that NsHKT1 not only regulates ion homeostasis but also influences secondary metabolism and signal transaction in transgenic plants.


Assuntos
Arabidopsis , Tolerância ao Sal , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino , Estresse Fisiológico/genética , Proteínas de Membrana Transportadoras/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Plant Sci ; 336: 111841, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37625549

RESUMO

Salinity reduces the growth and productivity of crop plants worldwide. Mangroves have evolved efficient ion homeostasis mechanisms to survive under their natural saline growth habitat. Information obtained from them may be utilized for increasing the salt tolerance of crop plants. We identified and characterized a high-affinity potassium transporter gene (AoHKT1) from Avicennia officinalis. The expression of AoHKT1 was induced by NaCl mainly in the leaves. Functional study by heterologous expression of AoHKT1 in Arabidopsis T-DNA insertional mutants athkt1-1 and athkt1-4 revealed that it could enhance the salt tolerance of the mutant plants. This was accompanied by an increase in K+ accumulation in the leaves. AoHKT1 was localized to the plasma membrane in Arabidopsis, and when expressed in yeast, it could complement the functions of both Na+ and K+ transporters. An attempt was made to identify the upstream regulator of AtHKT1, a close homolog of AoHKT1. Using chromatin immunoprecipitation, luciferase assay and yeast one-hybrid assays, WRKY9 was identified as the main transcription factor in the process. Furthermore, this was corroborated by the observation that AtHKT1 levels were significantly reduced in the atwrky9 seedlings. These findings revealed a part of the molecular regulatory mechanism of HKT1 induction in response to salt treatment in Arabidopsis. Our study suggests that AoHKT1 is a potential candidate for generating crop plants with increased salt tolerance.

17.
Plant Signal Behav ; 16(11): 1950888, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34252347

RESUMO

Tomato is an important crop for its high nutritional and medicinal properties. The role of salicylic acid (SA) in 1-aminocyclopropane-1-carboxylate synthase (ACS), sodium-hydrogen exchanger (NHX1), salt overly sensitive 1 (sos1) and high-affinity K+ transporter (HKT1;2) transcripts, and ACS enzyme activity and ethylene (ET) production, and growth and physiological attributes was evaluated in tomato cv. Pusa Ruby under salinity stress. Thirty days-old seedlings treated with 0 mM NaCl, 250 mM NaCl, 250 mM NaCl plus 100 µM SA were assessed for different growth and physiological parameters at 45 DAS. Results showed ACS, NHX1, sos1 and HKT1;2 transcripts were significantly changed in SA treated plants. The ACS enzyme activity and ET content were considerably decreased in SA treated plants. Shoot length (SL), root length (RL), number of leaves (NL), leaf area per plant (LA), shoot fresh weight (SFW) and root fresh weight (RFW) were also improved under SA treatment. Conversely, the electrolyte leakage and sodium ion (Na+) content were significantly reduced in SA treated plants. In addition, the endogenous proline and potassium ion (K+) content, and K+/Na+ ratio were considerably increased under SA treatment. Likewise, antioxidant enzymes (SOD, CAT, APX and GR) profile were better in SA treated plant. The present findings suggest that SA reverse the negative effects of salinity stress and stress induced ET production by modulating ACS, NHX, sos1 and HKT1;2 transcript level, and improving various growth and physiological parameters, and antioxidants enzymes profile. This will contribute to a better understanding of salinity stress tolerance mechanisms of tomato plants involving SA and ET cross talk and ions homeostasis to develop more tolerant plant.


Assuntos
Etilenos/biossíntese , Ácido Salicílico/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Sódio/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
18.
Plant Physiol Biochem ; 155: 271-283, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32795909

RESUMO

The calmodulin-like proteins (CMLs) are a large family involved in plant biological processes. A calmodulin-like gene CmCML13 (GenBank accession number: MT340534) from melon (Cucumis melo L.) was isolated and functionally analyzed. CmCML13 was predicted to possess 3 EF-hands in which only the first EF-hand could bind with Ca2+. Subcellular localization assay revealed that CmCML13 was localized in nucleus, cell membrane, vacuolar membrane and cytoplasmic strand. The transcript level of CmCML13 was temporally and spatially regulated under salt stress. Constitutive expression of CmCML13 in the Arabidopsis thaliana enhanced salt tolerance at seeds germination. CmCML13 improved the transgenic Arabidopsis plants salt tolerance by significantly reducing Na+ content of shoots, which was unrelated to HKT1-involving pathway. Moreover, overexpressing of CmCML13 in Arabidopsis showed stronger drought tolerance. This study demonstrates that the CmCML13 is an important multifunctional protein associated with salt and drought stress, which may play a key role in stress signaling pathway.


Assuntos
Arabidopsis/fisiologia , Calmodulina/genética , Cucumis melo/genética , Secas , Tolerância ao Sal , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/fisiologia
19.
Front Plant Sci ; 11: 1132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849694

RESUMO

Saline stress is one of most important problems that agriculture must face in the context of climate change. In the Mediterranean basin, one of the regions most affected, persimmon production can be compromised by this effect, due to the limited availability of salt tolerant rootstocks. Seedlings coming from four populations from the Diospyros genus have been exposed to salt stress in order to identify salt tolerance genotypes within these populations. Morphological, physiological, and transcriptomic approaches have revealed different mechanisms of tolerance among the population studied. An HKT1-like gene has been shown to have different root expression related to the salt tolerance phenotypes among and within populations. Additionally, we have observed differences in salt-responsive expression among PIP aquaporin genes. Genetic variability for salt tolerance can be generated in Diospyros species through crossings and used for overcome salt stress. Furthermore, differences in water use efficiency (WUE) have been obtained between and within populations. The information gathered at transcriptomic and physiological level demonstrated natural and heritable variability among Diospyros genus which is the key for salt-tolerant rootstock breeding programs.

20.
Plant Physiol Biochem ; 154: 341-352, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32604062

RESUMO

Genes encoding HKT1-like Na+ transporters play a key role in the salinity tolerance mechanism in Arabidopsis and other plant species by retrieving Na+ from the xylem of different organs and tissues. In this study, we investigated the role of two HKT1;2 allelic variants in tomato salt tolerance in relation to vegetative growth and fruit yield in plants subjected to salt treatment in a commercial greenhouse under real production conditions. We used two near-isogenic lines (NILs), homozygous for either the Solanum lycopersicum (NIL17) or S. cheesmaniae (NIL14) allele, at HKT1;2 loci and their respective RNAi-Sl/ScHKT1;2 lines. The results obtained show that both ScHKT1;2- and SlHKT1;2-silenced lines display hypersensitivity to salinity associated with an altered leaf Na+/K+ ratio, thus confirming that HKT1;2 plays an important role in Na+ homeostasis and salinity tolerance in tomato. Both silenced lines also showed Na+ over-accumulation and a slight, but significant, reduction in K+ content in the flower tissues of salt-treated plants and consequently a higher Na+/K+ ratio as compared to the respective unsilenced lines. This altered Na+/K+ ratio in flower tissues is associated with a sharp reduction in fruit yield, measured as total fresh weight and number of fruits, in both silenced lines under salinity conditions. Our findings demonstrate that Na+ transporter HKT1;2 protects the flower against Na+ toxicity and mitigates the reduction in tomato fruit yield under salinity conditions.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Proteínas de Plantas/fisiologia , Estresse Salino , Solanum lycopersicum/fisiologia , Flores/química , Frutas/crescimento & desenvolvimento , Potássio/metabolismo , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA