Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105128, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543361

RESUMO

Gliomas are the most prevalent primary tumor of the central nervous system. Despite advances in imaging technologies, neurosurgical techniques, and radiotherapy, a cure for high-grade glioma remains elusive. Several groups have reported that protein tyrosine phosphatase receptor type Z (PTPRZ) is highly expressed in glioblastoma, and that targeting PTPRZ attenuates tumor growth in mice. PTPRZ is modified with diverse glycan, including the PTPRZ-unique human natural killer-1 capped O-mannosyl core M2 glycans. However, the regulation and function of these unique glycans are unclear. Using CRISPR genome-editing technology, we first demonstrated that disruption of the PTPRZ gene in human glioma LN-229 cells resulted in profoundly reduced tumor growth in xenografted mice, confirming the potential of PTPRZ as a therapeutic target for glioma. Furthermore, multiple glycan analyses revealed that PTPRZ derived from glioma patients and from xenografted glioma expressed abundant levels of human natural killer-1-capped O-Man glycans via extrinsic signals. Finally, since deficiency of O-Man core M2 branching enzyme N-acetylglucosaminyltransferase IX (GnT-IX) was reported to reduce PTPRZ protein levels, we disrupted the GnT-IX gene in LN-229 cells and found a significant reduction of glioma growth both in vitro and in the xenograft model. These results suggest that the PTPR glycosylation enzyme GnT-IX may represent a promising therapeutic target for glioma.


Assuntos
Glioma , N-Acetilglucosaminiltransferases , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores , Animais , Humanos , Camundongos , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Glioma/fisiopatologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/metabolismo , Linhagem Celular Tumoral , Feminino , Camundongos SCID , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/deficiência , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Técnicas de Silenciamento de Genes
2.
EMBO J ; 39(15): e103457, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32567721

RESUMO

Seizure protein 6 (SEZ6) is required for the development and maintenance of the nervous system, is a major substrate of the protease BACE1 and is linked to Alzheimer's disease (AD) and psychiatric disorders, but its molecular functions are not well understood. Here, we demonstrate that SEZ6 controls glycosylation and cell surface localization of kainate receptors composed of GluK2/3 subunits. Loss of SEZ6 reduced surface levels of GluK2/3 in primary neurons and reduced kainate-evoked currents in CA1 pyramidal neurons in acute hippocampal slices. Mechanistically, loss of SEZ6 in vitro and in vivo prevented modification of GluK2/3 with the human natural killer-1 (HNK-1) glycan, a modulator of GluK2/3 function. SEZ6 interacted with GluK2 through its ectodomain and promoted post-endoplasmic reticulum transport of GluK2 in the secretory pathway in heterologous cells and primary neurons. Taken together, SEZ6 acts as a new trafficking factor for GluK2/3. This novel function may help to better understand the role of SEZ6 in neurologic and psychiatric diseases.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo , Receptores de Ácido Caínico/metabolismo , Animais , Glicosilação , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Receptores de Ácido Caínico/genética , Receptor de GluK2 Cainato , Receptor de GluK3 Cainato
3.
J Neurochem ; 166(3): 547-559, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37005741

RESUMO

Astrocytes are the most abundant glial cell type in the brain, where they participate in various homeostatic functions. Transcriptomically, diverse astrocyte subpopulations play distinct roles during development and disease progression. However, the biochemical identification of astrocyte subtypes, especially by membrane surface protein glycosylation, remains poorly investigated. Protein tyrosine phosphatase receptor type zeta (PTPRZ) is a highly expressed membrane protein in CNS glia cells that can be modified with diverse glycosylation, including the unique HNK-1 capped O-mannosyl (O-Man) core M2 glycan mediated by brain-specific branching enzyme GnT-IX. Although PTPRZ modified with HNK-1 capped O-Man glycans (HNK-1-O-Man+ PTPRZ) is increased in reactive astrocytes of demyelination model mice, whether such astrocytes emerge in a broad range of disease-associated conditions or are limited to conditions associated with demyelination remains unclear. Here, we show that HNK-1-O-Man+ PTPRZ localizes in hypertrophic astrocytes of damaged brain areas in patients with multiple sclerosis. Furthermore, we show that astrocytes expressing HNK-1-O-Man+ PTPRZ are present in two demyelination mouse models (cuprizone-fed mice and a vanishing white matter disease model), while traumatic brain injury does not induce glycosylation. Administration of cuprizone to Aldh1l1-eGFP and Olig2KICreER/+ ;Rosa26eGFP mice revealed that cells expressing HNK-1-O-Man+ PTPRZ are derived from cells in the astrocyte lineage. Notably, GnT-IX but not PTPRZ mRNA was up-regulated in astrocytes isolated from the corpus callosum of cuprizone model mice. These results suggest that the unique PTPRZ glycosylation plays a key role in the patterning of demyelination-associated astrocytes.


Assuntos
Astrócitos , Doenças Desmielinizantes , Animais , Camundongos , Astrócitos/metabolismo , Encéfalo/metabolismo , Cuprizona/toxicidade , Cuprizona/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Modelos Animais de Doenças , Glicosilação , Camundongos Endogâmicos C57BL , Polissacarídeos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo
4.
Mol Cell Proteomics ; 18(10): 2044-2057, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31375533

RESUMO

Glycoproteins are decorated with complex glycans for protein functions. However, regulation mechanisms of complex glycan biosynthesis are largely unclear. Here we found that bisecting GlcNAc, a branching sugar residue in N-glycan, suppresses the biosynthesis of various types of terminal epitopes in N-glycans, including fucose, sialic acid and human natural killer-1. Expression of these epitopes in N-glycan was elevated in mice lacking the biosynthetic enzyme of bisecting GlcNAc, GnT-III, and was conversely suppressed by GnT-III overexpression in cells. Many glycosyltransferases for N-glycan terminals were revealed to prefer a nonbisected N-glycan as a substrate to its bisected counterpart, whereas no up-regulation of their mRNAs was found. This indicates that the elevated expression of the terminal N-glycan epitopes in GnT-III-deficient mice is attributed to the substrate specificity of the biosynthetic enzymes. Molecular dynamics simulations further confirmed that nonbisected glycans were preferentially accepted by those glycosyltransferases. These findings unveil a new regulation mechanism of protein N-glycosylation.


Assuntos
Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferases/genética , Polissacarídeos/química , Polissacarídeos/genética , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Camundongos , Simulação de Dinâmica Molecular , Mutação , N-Acetilglucosaminiltransferases/metabolismo , Especificidade por Substrato
5.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360882

RESUMO

The human natural killer (HNK-1) carbohydrate plays important roles during nervous system development, regeneration after trauma and synaptic plasticity. Four proteins have been identified as receptors for HNK-1: the laminin adhesion molecule, high-mobility group box 1 and 2 (also called amphoterin) and cadherin 2 (also called N-cadherin). Because of HNK-1's importance, we asked whether additional receptors for HNK-1 exist and whether the four identified proteins share any similarity in their primary structures. A set of 40,000 sequences homologous to the known HNK-1 receptors was selected and used for large-scale sequence alignments and motif searches. Although there are conserved regions and highly conserved sites within each of these protein families, there was no sequence similarity or conserved sequence motifs found to be shared by all families. Since HNK-1 receptors have not been compared regarding binding constants and since it is not known whether the sulfated or non-sulfated part of HKN-1 represents the structurally crucial ligand, the receptors are more heterogeneous in primary structure than anticipated, possibly involving different receptor or ligand regions. We thus conclude that the primary protein structure may not be the sole determinant for a bona fide HNK-1 receptor, rendering receptor structure more complex than originally assumed.


Assuntos
Antígenos CD57/metabolismo , Caderinas/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB2/metabolismo , Laminina/metabolismo , Oligossacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Antígenos CD57/química , Caderinas/química , Proteína HMGB1/química , Proteína HMGB2/química , Humanos , Laminina/química , Ligantes , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Oligossacarídeos/química , Ligação Proteica , Domínios Proteicos
6.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500611

RESUMO

Human natural killer-1 (HNK-1) is a sulfated glyco-epitope regulating cell adhesion and synaptic functions. HNK-1 and its non-sulfated forms, which are specifically expressed in the brain and the kidney, respectively, are distinctly biosynthesized by two homologous glycosyltransferases: GlcAT-P in the brain and GlcAT-S in the kidney. However, it is largely unclear how the activity of these isozymes is regulated in vivo. We recently found that bisecting GlcNAc, a branching sugar in N-glycan, suppresses both GlcAT-P activity and HNK-1 expression in the brain. Here, we observed that the expression of non-sulfated HNK-1 in the kidney is unexpectedly unaltered in mutant mice lacking bisecting GlcNAc. This suggests that the biosynthesis of HNK-1 in the brain and the kidney are differentially regulated by bisecting GlcNAc. Mechanistically, in vitro activity assays demonstrated that bisecting GlcNAc inhibits the activity of GlcAT-P but not that of GlcAT-S. Furthermore, molecular dynamics simulation showed that GlcAT-P binds poorly to bisected N-glycan substrates, whereas GlcAT-S binds similarly to bisected and non-bisected N-glycans. These findings revealed the difference of the highly homologous isozymes for HNK-1 synthesis, highlighting the novel mechanism of the tissue-specific regulation of HNK-1 synthesis by bisecting GlcNAc.


Assuntos
Antígenos CD57/biossíntese , Glucuronosiltransferase/metabolismo , Animais , Encéfalo/metabolismo , Células COS , Linhagem Celular , Chlorocebus aethiops , Epitopos/metabolismo , Glicosiltransferases/metabolismo , Células HEK293 , Humanos , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Polissacarídeos/metabolismo
7.
Dev Dyn ; 249(1): 125-140, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31587387

RESUMO

BACKGROUND: The neural crest is a group of multipotent cells that give rise to a wide variety of cells, especially portion of the peripheral nervous system. Neural crest cells (NCCs) show evolutionary conserved fate restrictions based on their axial level of origin: cranial, vagal, trunk, and sacral. While much is known about these cells in mammals, birds, amphibians, and fish, relatively little is known in other types of amniotes such as snakes, lizards, and turtles. We attempt here to provide a more detailed description of the early phase of trunk neural crest cell (tNCC) development in turtle embryos. RESULTS: In this study, we show, for the first time, migrating tNCC in the pharyngula embryo of Trachemys scripta by vital-labeling the NCC with DiI and through immunofluorescence. We found that (a) tNCC form a line along the sides of the trunk NT; (b) The presence of late migrating tNCC on the medial portion of the somite; (c) The presence of lateral mesodermal migrating tNCC in pharyngula embryos; (d) That turtle embryos have large/thick peripheral nerves. CONCLUSIONS: The similarities and differences in tNCC migration and early PNS development that we observe across sauropsids (birds, snake, gecko, and turtle) suggests that these species evolved some distinct NCC pathways.


Assuntos
Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Feminino , Imunofluorescência , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Camundongos , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/metabolismo , Coelhos , Tartarugas
8.
J Proteome Res ; 19(8): 3033-3043, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32436713

RESUMO

Prior investigations by our research group focused on the method development for the simultaneous analysis of sulfated and phosphorylated glycans. Herein, the developed method was applied to analyze minor acidic N-glycans including sulfated and phosphorylated N-glycans in human serum. First, 2-aminobenzoic acid-labeled minor acidic N-glycans were enriched from the serum using a serotonin-immobilized column and were then separated into groups using hydrophilic interaction liquid chromatography, and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Phosphorylated hybrid-type and sulfated bi-antennary N-glycans were detected in the serum. In addition, we observed that multiple types of glucuronidated N-glycans were present. These results indicate that the developed method is applicable to the analysis of glucuronidated as well as sulfated and phosphorylated N-glycans. It was also applied to the sera obtained from 17 healthy subjects and 15 pancreatic cancer patients, and the profiles of sulfated, phosphorylated, and glucuronidated N-glycans were compared. The expressed amount of glucuronidated N-glycans was significantly decreased in some pancreatic cancer patients. Numerous examples of the N-glycan analysis in human serum were reported, but phosphorylated and glucuronidated glycans were not investigated. The methods described herein allow the analysis of minor acidic glycans that are typically difficult to detect.


Assuntos
Polissacarídeos , Sulfatos , Cromatografia Líquida , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Neurol Sci ; 41(2): 365-372, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31654362

RESUMO

OBJECTIVES: Anti-myelin-associated glycoprotein (MAG) antibody is associated with clinically heterogeneous polyneuropathies. Our purpose was to compare neuropathy phenotypes identified by different anti-MAG tests' results. METHODS: Cohort study: Sera from 40 neuropathy anti-MAG EIA positive patients were tested for anti-MAG by Western blot (WB), for anti-peripheral nerve myelin (PNM) on monkey nerve by immunofluorescence assay (IFA), and for anti-HNK1 on rat CNS slices by IFA. Anti-sulfatide antibodies, for comparison, were also tested by EIA. RESULTS: Among 40 anti-MAG EIA positive sera, 85% also had anti-PNM IFA reactivity and 67.5% bind HNK1 on rat CNS. Anti-HNK1 positive patients had the classical predominantly distal acquired demyelinating symmetric (DADS) neuropathy with a benign course, while anti-PNM positive but anti-HNK1 negative patients had predominantly axonal neuropathy with a high frequency of anti-sulfatide reactivity and the worst long-term prognosis. Anti-MAG EIA positive patients without anti-PNM or anti-HNK1 IFA reactivity had a CIDP-like polyneuropathy. CONCLUSION: Different methods to test for anti-MAG antibodies identify different clinical and electrophysiological findings, as well as long-term outcome. HNK1 reactivity is the strongest marker of DADS.


Assuntos
Autoanticorpos/sangue , Imunoglobulina M/imunologia , Glicoproteína Associada a Mielina/metabolismo , Doenças do Sistema Nervoso Periférico/imunologia , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Bainha de Mielina/imunologia , Glicoproteína Associada a Mielina/imunologia , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Polineuropatias/imunologia , Ratos , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 114(18): E3689-E3698, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416698

RESUMO

Anti-MAG (myelin-associated glycoprotein) neuropathy is a disabling autoimmune peripheral neuropathy caused by monoclonal IgM autoantibodies that recognize the carbohydrate epitope HNK-1 (human natural killer-1). This glycoepitope is highly expressed on adhesion molecules, such as MAG, present in myelinated nerve fibers. Because the pathogenicity and demyelinating properties of anti-MAG autoantibodies are well established, current treatments are aimed at reducing autoantibody levels. However, current therapies are primarily immunosuppressive and lack selectivity and efficacy. We therefore hypothesized that a significant improvement in the disease condition could be achieved by selectively neutralizing the pathogenic anti-MAG antibodies with carbohydrate-based ligands mimicking the natural HNK-1 glycoepitope 1. In an inhibition assay, a mimetic (2, mimHNK-1) of the natural HNK-1 epitope blocked the interaction of MAG with pathogenic IgM antibodies from patient sera but with only micromolar affinity. Therefore, considering the multivalent nature of the MAG-IgM interaction, polylysine polymers of different sizes were substituted with mimetic 2. With the most promising polylysine glycopolymer PL84(mimHNK-1)45 the inhibitory effect on patient sera could be improved by a factor of up to 230,000 per epitope, consequently leading to a low-nanomolar inhibitory potency. Because clinical studies indicate a correlation between the reduction of anti-MAG IgM levels and clinical improvement, an immunological surrogate mouse model for anti-MAG neuropathy producing high levels of anti-MAG IgM was developed. The observed efficient removal of these antibodies with the glycopolymer PL84(mimHNK-1)45 represents an important step toward an antigen-specific therapy for anti-MAG neuropathy.


Assuntos
Anticorpos Neutralizantes , Autoanticorpos/imunologia , Antígenos CD57/imunologia , Glicoproteína Associada a Mielina/imunologia , Polirradiculoneuropatia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Bovinos , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Polirradiculoneuropatia/tratamento farmacológico , Polirradiculoneuropatia/imunologia , Polirradiculoneuropatia/patologia
11.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987628

RESUMO

Because of the importance of the HNK-1 carbohydrate for preferential motor reinnervation after injury of the femoral nerve in mammals, we screened NIH Clinical Collection 1 and 2 Libraries and a Natural Product library comprising small organic compounds for identification of pharmacologically useful reagents. The reason for this attempt was to obviate the difficult chemical synthesis of the HNK-1 carbohydrate and its isolation from natural sources, with the hope to render such compounds clinically useful. We identified six compounds that enhanced neurite outgrowth from cultured spinal motor neurons at nM concentrations and increased their neurite diameter, but not their neurite branch points. Axons of dorsal root ganglion neurons did not respond to these compounds, a feature that is in agreement with their biological role after injury. We refer to the positive functions of some of these compounds in animal models of injury and delineate the intracellular signaling responses elicited by application of compounds to cultured murine central nervous system neurons. Altogether, these results point to the potential of the HNK-1 carbohydrate mimetics in clinically-oriented settings.


Assuntos
Antígenos CD57/análogos & derivados , Gânglios Espinais/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Compostos Orgânicos/farmacologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Gânglios Espinais/citologia , Masculino , Camundongos , Neurônios Motores/citologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico
12.
Dev Dyn ; 248(8): 709-727, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980777

RESUMO

Neural crest cells comprise a migratory progenitor cell population that differentiate into cell types such as neurons and glia of the peripheral nervous system, pigment cells, hormone secreting cells in glands, and skeletal and connective tissue in the head, thus making important contributions to most tissues and organs throughout the vertebrate body. The evolutionary appearance of neural crest cells is considered synonymous with the origin of vertebrates and their subsequent diversification and radiation. While the comparative biology of neural crest cells has been studied for a century and a half beginning with their discovery by Wilhelm His in 1868, most of our understanding of their development and function has come from a small number of species. Thus, critical gaps exist in our understanding of how neural crest cells mediate evolution and development. This is particularly true with respect to squamate reptiles (lizards, snakes, amphisbaenians), which account for approximately one-third of all living tetrapods. Here, we present veiled chameleons (Chamaeleo calyptratus) as a model system for studying neural crest cell development in squamates. Chameleons exhibit various morphological specializations associated with an arboreal lifestyle that may have been facilitated through neural crest cells acting as a conduit for evolutionary change.


Assuntos
Lagartos/genética , Crista Neural/citologia , Filogenia , Animais , Evolução Biológica , Diferenciação Celular , Movimento Celular
13.
J Physiol ; 595(17): 5913-5930, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28714086

RESUMO

KEY POINTS: Ionotropic glutamate receptor (iGluR) subunits are N-glycosylated at 4-12 sites, and Golgi processing produces mature receptors that contain high-mannose, hybrid and complex oligosaccharides. N-glycosylation is crucial for receptor biogenesis, influences receptor trafficking and provides a binding site for carbohydrate binding proteins. Glycan moieties are large, polar and occasionally charged, and they are attached at sites along iGluRs that position them for involvement in the structural changes underlying gating. Altering glycan content on kainate receptors (KARs), a subfamily of iGluRs, changes functional properties of the receptor, such as desensitization, recovery from desensitization and deactivation. We report the first observation that the charged trisaccharide HNK-1 is conjugated to native KARs, and we find that it substantially alters recombinant KAR functional properties. Our results show that the molecular composition of N-glycans can influence KAR biophysical properties, revealing a potential mechanism for fine-tuning the function of these receptors. ABSTRACT: Ionotropic glutamate receptors (iGluRs) are tetrameric proteins with between four and 12 consensus sites for N-glycosylation on each subunit, which potentially allows for a high degree of structural diversity conferred by this post-translational modification. N-glycosylation is required for proper folding of iGluRs in mammalian cells, although the impact of oligosaccharides on the function of successfully folded receptors is less clear. Glycan moieties are large, polar, occasionally charged and mediate many protein-protein interactions throughout the nervous system. Additionally, they are attached at sites along iGluR subunits that position them for involvement in the structural changes underlying gating. In the present study, we show that altering glycan content on kainate receptors (KARs) changes the functional properties of the receptors in a manner dependent on the identity of both the modified sugars and the subunit composition of the receptor to which they are attached. We also report that native KARs carry the complex capping oligosaccharide human natural killer-1. Glycosylation patterns probably differ between cell types, across development or with pathologies, and thus our findings reveal a potential mechanism for context-specific fine-tuning of KAR function through diversity in glycan structure.


Assuntos
Polissacarídeos/química , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/fisiologia , Alcaloides/farmacologia , Animais , Feminino , Glicosilação , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Ácido Caínico/genética , Swainsonina/farmacologia , alfa-Manosidase/antagonistas & inibidores
14.
Biochem Biophys Res Commun ; 487(2): 450-456, 2017 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-28427937

RESUMO

Human natural killer-1 (HNK-1) epitope, a highly-expressed glycan in the nervous system, is critical for normal synaptic plasticity and spatial learning. HNK-1 epitope modifies N-glycans on several neural glycoproteins, and also modifies O-mannosyl glycans. A branching enzyme for O-mannosyl glycans (GnT-IX, Core M2 synthase) exhibits brain-specific expression, and the product core M2 glycans are also limited to the brain. In a previous study, we showed that cuprizone-induced demyelination increased HNK-1-capped core M2 glycan expression, while GnT-IX deficiency ameliorated demyelination, suggesting that these glycans could be useful diagnostic markers for demyelination status and act as therapeutic targets. Nevertheless, a lack of appropriate detection tools hampered further analysis of HNK-1-capped O-mannosyl glycans. In the present study, we chemoenzymatically synthesized HNK-1-capped core M2 glycans for antibody production, and confirmed that the resulting immune sera reacted with HNK-1-capped core M2 glycans. We then examined several HNK-1-related antibodies, including the Cat-315 antibody, for reactions with HNK-1-capped core M2 glycans. Finally, we confirmed the increased HNK-1 epitope expression in demyelinated brains of cuprizone-fed mice.


Assuntos
Anticorpos Monoclonais/imunologia , Encéfalo/imunologia , Antígenos CD57/imunologia , Doenças Desmielinizantes/imunologia , Manose/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/imunologia
15.
Biochim Biophys Acta Gen Subj ; 1861(10): 2455-2461, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28709864

RESUMO

BACKGROUND: The human natural killer-1 (HNK-1) carbohydrate, a unique trisaccharide possessing sulfated glucuronic acid in a non-reducing terminus (HSO3-3GlcAß1-3Galß1-4GlcNAc-), is highly expressed in the nervous system and its spatiotemporal expression is strictly regulated. Mice deficient in the gene encoding a key enzyme, GlcAT-P, of the HNK-1 biosynthetic pathway exhibit almost complete disappearance of the HNK-1 epitope in the brain, significant reduction of long-term potentiation, and aberration of spatial learning and memory formation. In addition to its physiological roles in higher brain function, the HNK-1 carbohydrate has attracted considerable attention as an autoantigen associated with peripheral demyelinative neuropathy, which relates to IgM paraproteinemia, because of high immunogenicity. It has been suggested, however, that serum autoantibodies in IgM anti-myelin-associated glycoprotein (MAG) antibody-associated neuropathy patients show heterogeneous reactivity to the HNK-1 epitope. SCOPE OF REVIEW: We have found that structurally distinct HNK-1 epitopes are expressed in specific proteins in the nervous system. Here, we overview the current knowledge of the involvement of these HNK-1 epitopes in the regulation of neural plasticity and discuss the impact of different HNK-1 antigens of anti-MAG neuropathy patients. MAJOR CONCLUSIONS: We identified the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit GluA2 and aggrecan as HNK-1 carrier proteins. The HNK-1 epitope on GluA2 and aggrecan regulates neural plasticity in different ways. Furthermore, we found the clinical relationship between reactivity of autoantibodies to the different HNK-1 epitopes and progression of anti-MAG neuropathy. GENERAL SIGNIFICANCE: The HNK-1 epitope is indispensable for the acquisition of normal neuronal function and can be a good target for the establishment of diagnostic criteria for anti-MAG neuropathy.


Assuntos
Antígenos CD57/química , Epitopos/química , Glicoproteína Associada a Mielina/imunologia , Plasticidade Neuronal , Paraproteinemias/imunologia , Doenças do Sistema Nervoso Periférico/imunologia , Agrecanas/metabolismo , Animais , Autoanticorpos/biossíntese , Antígenos CD57/genética , Antígenos CD57/imunologia , Epitopos/genética , Epitopos/imunologia , Glucuronosiltransferase/deficiência , Glucuronosiltransferase/genética , Humanos , Imunoglobulina M/biossíntese , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Camundongos , Camundongos Knockout , Glicoproteína Associada a Mielina/genética , Paraproteinemias/genética , Paraproteinemias/patologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia , Receptores de AMPA/genética , Receptores de AMPA/imunologia
16.
Biochim Biophys Acta ; 1830(10): 4719-33, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23774590

RESUMO

BACKGROUND: Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions. SCOPE OF REVIEW: Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo. MAJOR CONCLUSIONS: Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes. GENERAL SIGNIFICANCE: Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders.


Assuntos
Sulfatos de Condroitina/biossíntese , Sulfatos de Condroitina/fisiologia , Enzimas/metabolismo
17.
Glycobiology ; 24(3): 314-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352591

RESUMO

The human natural killer-1 (HNK-1) carbohydrate comprising a sulfated trisaccharide (HSO3-3GlcAß1-3Galß1-4GlcNAc-) is expressed on N-linked and O-mannose-linked glycans in the nervous system and involved in learning and memory functions. Although whole/core glycan structures and carrier glycoproteins for the N-linked HNK-1 epitope have been studied, carrier glycoproteins and the biosynthetic pathway of the O-mannose-linked HNK-1 epitope have not been fully characterized. Here, using mass spectrometric analyses, we identified the major carrier glycoprotein of the O-linked HNK-1 as phosphacan in developing mouse brains and determined the major O-glycan structures having the terminal HNK-1 epitope from partially purified phosphacan. The O-linked HNK-1 epitope on phosphacan almost disappeared due to the knockout of protein O-mannose ß1,2-N-acetylglucosaminyltransferase 1, an N-acetylglucosaminyltransferase essential for O-mannose-linked glycan synthesis, indicating that the reducing terminal of the O-linked HNK-1 is mannose. We also showed that glucuronyltransferase-P (GlcAT-P) was involved in the biosynthesis of O-mannose-linked HNK-1 using the gene-deficient mice of GlcAT-P, one of the glucuronyltransferases for HNK-1 synthesis. Consistent with this result, we revealed that GlcAT-P specifically synthesized O-linked HNK-1 onto phosphacan using cultured cells. Furthermore, we characterized the as-yet-unknown epitope of the 6B4 monoclonal antibody (mAb), which was thought to recognize a unique phosphacan glycoform. The reactivity of the 6B4 mAb almost completely disappeared in GlcAT-P-deficient mice, and exogenously expressed phosphacan was selectively recognized by the 6B4 mAb when co-expressed with GlcAT-P, suggesting that the 6B4 mAb preferentially recognizes O-mannose-linked HNK-1 on phosphacan. This is the first study to show that 6B4 mAb-reactive O-mannose-linked HNK-1 in the brain is mainly carried by phosphacan.


Assuntos
Encéfalo/metabolismo , Antígenos CD57/metabolismo , Manose/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Antígenos CD57/química , Células COS , Configuração de Carboidratos , Chlorocebus aethiops , Glucuronosiltransferase/metabolismo , Glicosilação , Células HEK293 , Humanos , Manose/química , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-38770186

RESUMO

Background: Spinal ventral root injuries generate significant motoneuron degeneration, which hinders full functional recovery. The poor prognosis of functional recovery can be attributed to the use or combination of different therapeutic approaches. Several molecules have been screened as potential treatments in combination with surgical reimplantation of the avulsed roots, the gold standard approach for such injuries. Among the studied molecules, human natural killer-1 (HNK-1) stands out as it is related to the stimulation of motor axon outgrowth. Therefore, we aimed to comparatively investigate the effects of local administration of an HNK-1 mimetic peptide (mp-HNK-1) and systemic treatment with ursolic acid (UA), another HNK-1 mimetic, after ventral root avulsion and reimplantation with heterologous fibrin biopolymer (HFB). Methods: Female mice of the isogenic strain C57BL/6JUnib were divided into five experimental groups: Avulsion, Reimplantation, mp-HNK-1 (in situ), and UA (systemic treatment). Mice were evaluated 2 and 12 weeks after surgery. Functional assessment was performed every four days using the Catwalk platform. Neuronal survival was analyzed by cytochemistry, and glial reactions and synaptic coverage were evaluated by immunofluorescence. Results: Treatment with UA elicited long-term neuroprotection, accompanied by a decrease in microglial reactions, and reactive astrogliosis. The neuroprotective effects of UA were preceded by increased glutamatergic and GABAergic inputs in the ventral spinal cord two weeks after injury. However, a single application of mp-HNK-1 had no significant effects. Functional analysis showed that UA treatment led to an improvement in motor and sensory recovery. Conclusion: Overall, the results indicate that UA is neuroprotective, acting on glial cells and synaptic maintenance, and the combination of these findings led to a better functional recovery.

19.
Glycobiology ; 23(9): 1066-74, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23723439

RESUMO

Dystroglycan (DG) is a cell surface glycoprotein that connects extracellular matrix molecules to the intracellular cytoskeleton, functioning as mechanical and signaling axes in various physiological events. Since the ligand-binding activity of DG strictly depends on O-mannosyl glycans attached to its extracellular α-DG subunit, aberrant glycosylation causes dystroglycanopathy, a subclass of congenital muscular dystrophy. Accumulating evidence shows that like-acetylglucosaminyltransferase (LARGE), a glycosyltransferase involved in the biosynthesis of a phosphodiester-linked modification on O-mannose, is essential for α-DG to gain the ligand-binding activity. We previously reported that human natural killer-1 sulfotransferase (HNK-1ST), which was originally reported as one of the enzymes responsible for HNK-1 glycoepitope, had an ability to suppress the glycosylation and the function of α-DG. In this study, we investigated how HNK-1ST regulates the glycosylation of α-DG using deletion and mutation analyses. We generated an α-DG mutant which has only one threonine residue capable of being modified by LARGE. Focusing on the single post-phosphoryl modification site, we found that HNK-1ST showed an almost complete inhibition of the LARGE-dependent modification and transferred a sulfate group to the phosphodiester-linked moiety on O-mannose. Furthermore, using an in vitro enzymatic assay system, we demonstrated that the sulfated α-DG by HNK-1ST is no longer glycosylated by LARGE. These results illustrate one possible glycosylation pathway where α-DG function is regulated by opposing actions of HNK-1ST and LARGE.


Assuntos
Distroglicanas/metabolismo , Laminina/metabolismo , Polissacarídeos/metabolismo , Sulfotransferases/metabolismo , Sítios de Ligação , Humanos
20.
Front Neurol ; 14: 1289810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169815

RESUMO

Peripheral neuropathy with antibodies to myelin-associated glycoprotein (MAG) is an autoimmune demyelinating disorder of the peripheral nervous system caused by pathogenic IgM recognizing the human natural killer-1 glycoepitope expressed on MAG. This study aimed to analyze the performance of a new indirect immunofluorescence cell-based assay (CBA, EUROIMMUN) for the detection of anti-MAG IgM. Antibody reactivity was determined in sera from 95 patients with clinical and neurophysiological evidence of anti-MAG-associated neuropathy and in control samples from 55 patients with other forms of peripheral neuropathy. Compared to the results of the gold standard method (ELISA, Bühlmann) and using samples at a dilution of 1:100, the CBA had a sensitivity of 98.9% and a specificity of 100% (PPV 100%, NPV 98.2%). In conclusion, the CBA allows the detection of antibodies to MAG using an easy and standardized technique, and it presents a sensitive and specific alternative to the more time-consuming ELISA. Larger studies are needed to address anti-MAG titer monitoring in parallel with clinical activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA