Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 78(5): 835-849.e7, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32369735

RESUMO

Disrupted sleep-wake and molecular circadian rhythms are a feature of aging associated with metabolic disease and reduced levels of NAD+, yet whether changes in nucleotide metabolism control circadian behavioral and genomic rhythms remains unknown. Here, we reveal that supplementation with the NAD+ precursor nicotinamide riboside (NR) markedly reprograms metabolic and stress-response pathways that decline with aging through inhibition of the clock repressor PER2. NR enhances BMAL1 chromatin binding genome-wide through PER2K680 deacetylation, which in turn primes PER2 phosphorylation within a domain that controls nuclear transport and stability and that is mutated in human advanced sleep phase syndrome. In old mice, dampened BMAL1 chromatin binding, transcriptional oscillations, mitochondrial respiration rhythms, and late evening activity are restored by NAD+ repletion to youthful levels with NR. These results reveal effects of NAD+ on metabolism and the circadian system with aging through the spatiotemporal control of the molecular clock.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores Etários , Envelhecimento/genética , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/fisiologia , Citocinas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Proteínas Circadianas Period/genética , Sirtuína 1/metabolismo , Sirtuínas/metabolismo
2.
FASEB J ; 38(9): e23654, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38717442

RESUMO

Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.


Assuntos
Fatores de Transcrição de Choque Térmico , Metformina , Miócitos Cardíacos , Resposta a Proteínas não Dobradas , Animais , Masculino , Ratos , Angiotensina II/farmacologia , Cardiomegalia/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/metabolismo , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Metformina/farmacologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
3.
Exp Brain Res ; 242(8): 1983-1998, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38935089

RESUMO

The aim of this study was to investigate histone deacetylase 6 (HDAC6) modifies the heat shock protein 90 (HSP90) and heat shock transcription factor 1 (HSF1) affect the levels of pathological markers such as Aß oligomers (Aßo) and Tau phosphorylation (p-Tau) in APP/PS1 double transgenic mice hippocampal tissues or HT22 neurons as well as the changes in cognitive behavioral functions of mice. (1) APP/PS1 transgenic mice (6 months old, 25 ~ 30 g) were randomly assigned to 5 experimental groups, C57BL/6J mice (6 months old, 25 ~ 30 g) were used as 4 control groups, with 8 mice in each group. All mice underwent intracerebroventricular (i.c.v.) cannulation, and the experimental groups were administered with normal saline (APP + NS group), HDAC6 agonist tubastatin A hydrochloride (TSA) (APP + TSA group) or HDAC6 agonist theophylline (Theo) (APP + Theo group), HSP90 inhibitor Ganetespib (Gane) (APP + Gane group), or a combination of pre-injected Gane by TSA (APP + Gane + TSA group); the control group received i.c.v. injections of Gane (Gane group), TSA (TSA group), Theo (Theo group) or NS (NS group), respectively. (2) Mouse hippocampal neurons HT22 were randomly divided into a control group (Control) and an Aß1-42 intervention group (Aß). Within the Aß group, further divisions were made for knockdown HSP90 (Aß + siHSP90 group), overexpression HSP90 (Aß + OE-HSP90 group), knockdown HSF1(Aß + siHSF1 group) and knockdown HSF1 followed by overexpression HSP90 (Aß + siHSF1 + OE-HSP90 group), resulting in a total of 6 groups. Morris water maze test was used to evaluate the cognitive behavior of the mice. Western blot and immunohistochemistry or immunofluorescence were performed to detect the levels of HDAC6, HSP90, HSF1, Aß1-42, Tau protein, and p-Tau in the hippocampal tissue or HT22 cells. qRT-PCR was used to measure the levels of hdac6, hsp90, and hsf1 mRNA in the hippocampus or nerve cells. (1) The levels of HDAC6, Aß1-42 and p-Tau were elevated, while HSP90 and HSF1 were decreased in the hippocampal tissue of APP/PS1 transgenic mice (all P < 0.01). Inhibiting HDAC6 upregulated the expressions of HSP90 and HSF1 in the hippocampal tissue of APP/PS1 mice, while decreasing the levels of Aß1-42 and p-Tau as well as improving the spatial cognitive behavior in mice (P < 0.05 or P < 0.01). The opposite effects were observed upon HDAC6 activation. However, inhibiting HSP90 reduced the expression of HSF1 (P < 0.01) and increased the levels of Aß1-42 and p-Tau (P < 0.05 or P < 0.01) but did not significantly affect the expression of HDAC6 (P > 0.05). No significant changes were observed in the aforementioned indicators in the 4 control groups (P > 0.05). (2) In the Aß1-42 intervention group, HDAC6 and Aß1-42, p-Tau expression levels were elevated, while HSP90 and HSF1 expressions were all decreased, and cell viability was reduced (P < 0.05 or P < 0.01). Overexpression of HSP90 upregulated HSF1 expression, decreased the levels of Aß1-42 and p-Tau, and increased cell viability (P < 0.05 or P < 0.01). Knocking down HSP90 had the opposite effect; and knocking down HSF1 increased the levels of Aß1-42 and p-Tau and decreased cells viability (all P < 0.01), but did not result in significant changes in the expression levels of HSP90 (P > 0.05). Inhibiting HDAC6 can upregulate the expressions of HSP90 and HSF1 but reduce the levels of Aß1-42 and p-Tau in the hippocampus of APP/PS1 mice and improvement of cognitive behavioral function in mice; Overexpression of HSP90 can increase HSF1 but decrease Aß1-42 and p-Tau levels in the hippocampal neurons and increase cell activity. It is suggested that HDAC6 may affect the formation of Aß oligomers and the changes in Tau protein phosphorylation levels in the hippocampus of AD transgenic mouse as well as the alterations in cognitive behavioral functions by regulating the HSP90-HSF1 pathway.


Assuntos
Proteínas de Choque Térmico HSP90 , Fatores de Transcrição de Choque Térmico , Hipocampo , Desacetilase 6 de Histona , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Animais , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Camundongos , Fatores de Transcrição de Choque Térmico/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Cognição/fisiologia , Cognição/efeitos dos fármacos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Masculino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
4.
Environ Toxicol ; 39(1): 9-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37584547

RESUMO

BACKGROUND: Aberrant expression of MUC1 correlates with the progression of esophageal squamous cell carcinoma (ESCC), this study aimed to explore the effect of targeting MUC1 by Go-203 on malignant behavior of ESCC and the underlying mechanism. METHODS AND RESULTS: IHC was used to examine the expression of MUC1 and DNAJB6 in ESCC samples. qRT-PCR and western blotting were used to examine the expression of MUC1 and DNAJB6 in ESCC cell lines. CCK8, wound healing, and transwell assays were used to determine the effect of regulating MUC1/DNAJB6 on the proliferation, migration, and invasion of ESCC cells. The effect of overexpressing/targeting MUC1 on the activation of the AKT/HSF-1 pathway was determined by western blotting. A negative correlation was confirmed between the expression of DNAJB6 and MUC1 in ESCC tissue samples by IHC, and high expression of MUC1 and low expression of DNAJB6 correlated with lymph node metastasis in ESCC patients. Overexpressing MUC1 downregulated the expression of DNAJB6, promoted ESCC proliferation, invasion, migration and activated the AKT pathway, while targeting MUC1 suppressed proliferation, invasion, migration, and the AKT pathway and up-regulated DNAJB6 expression in vitro. Moreover, MUC1 increased the phosphorylation of HSF-1 via the AKT pathway, and inhibiting AKT-HSF-1 increased the expression of DNAJB6 in vitro. CONCLUSIONS: This study indicated that MUC1 could promote tumorigenesis and metastasis in ESCC by downregulating DNAJB6 expression through AKT-HSF-1 pathway.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/metabolismo , Metástase Linfática , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Mucina-1/metabolismo
5.
J Biol Chem ; 298(5): 101796, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248532

RESUMO

All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the heat shock proteins (HSPs). This potent production overcomes the general suppression of gene expression and results in high levels of HSPs to subsequently refold or degrade misfolded proteins. Once the damage or stress is repaired or removed, cells terminate the production of HSPs and resume regular functions. Thus, fulfillment of the stress response requires swift and robust coordination between stress response activation and completion that is determined by the status of the cell. In recent years, single-cell fluorescence microscopy techniques have begun to be used in unravelling HSP-gene expression pathways, from DNA transcription to mRNA degradation. In this review, we will address the molecular mechanisms in different organisms and cell types that coordinate the expression of HSPs with signaling networks that act to reprogram gene transcription, mRNA translation, and decay and ensure protein quality control.


Assuntos
Proteínas de Choque Térmico , Proteostase , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Transdução de Sinais
6.
J Biol Chem ; 298(10): 102365, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963432

RESUMO

Biomolecular condensates are self-organized membraneless bodies involved in many critical cellular activities, including ribosome biogenesis, protein synthesis, and gene transcription. Aliphatic alcohols are commonly used to study biomolecular condensates, but their effects on transcription are unclear. Here, we explore the impact of the aliphatic dialcohol, 1,6-hexanediol (1,6-HD), on Pol II transcription and nucleosome occupancy in budding yeast. As expected, 1,6-HD, a reagent effective in disrupting biomolecular condensates, strongly suppressed the thermal stress-induced transcription of Heat Shock Factor 1-regulated genes that have previously been shown to physically interact and coalesce into intranuclear condensates. Surprisingly, the isomeric dialcohol, 2,5-HD, typically used as a negative control, abrogated Heat Shock Factor 1-target gene transcription under the same conditions. Each reagent also abolished the transcription of genes that do not detectably coalesce, including Msn2/Msn4-regulated heat-inducible genes and constitutively expressed housekeeping genes. Thus, at elevated temperature (39 °C), HDs potently inhibit the transcription of disparate genes and as demonstrated by chromatin immunoprecipitation do so by abolishing occupancy of RNA polymerase in chromatin. Concurrently, histone H3 density increased at least twofold within all gene coding and regulatory regions examined, including quiescent euchromatic loci, silent heterochromatic loci, and Pol III-transcribed loci. Our results offer a caveat for the use of HDs in studying the role of condensates in transcriptional control and provide evidence that exposure to these reagents elicits a widespread increase in nucleosome density and a concomitant loss of both Pol II and Pol III transcription.


Assuntos
Cromatina , Glicóis , Nucleossomos , RNA Polimerase II , Transcrição Gênica , Cromatina/química , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Nucleossomos/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Glicóis/farmacologia
7.
Biochem Biophys Res Commun ; 673: 16-22, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37354655

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder and the most common form of dementia. The pathogenesis is a complex process, in which the proteotoxicity of amyloid-ß (Aß) was identified as a major factor. 4-Phenylbutyric acid (4-PBA) is an aromatic short-chain fatty acid that may attenuate Aß proteotoxicity through its already shown properties as a chemical chaperone or by inhibition of histone deacetylases (HDACs). In the present study, we investigated the molecular effects of 4-PBA on Aß proteotoxicity using the nematode Caenorhabditis elegans as a model. Computer-based analysis of motility was used as a measure of Aß proteotoxicity in the transgenic strain GMC101, expressing human Aß1-42 in body wall muscle cells. Aß aggregation was quantified using the fluorescent probe NIAD-4 to correlate the effects of 4-PBA on motility with the amount of the proteotoxic protein. Furthermore, these approaches were supplemented by gene regulation via RNA interference (RNAi) to identify molecular targets of 4-PBA. 4-PBA improved the motility of GMC101 nematodes and reduced Aß aggregation significantly. Knockdown of hsf-1, encoding an ortholog essential for the cytosolic heat shock response, prevented the increase in motility and decrease in Aß aggregation by 4-PBA incubation. RNAi for hda-1, encoding an ortholog of histone deacetylase 2, also increased motility. Double RNAi for hsf-1 and hda-1 revealed a dominant effect of hsf-1 RNAi. Moreover, 4-PBA failed to further increase motility under hda-1 RNAi. Accordingly, the results suggest that 4-PBA attenuates Aß proteotoxicity in an AD-model of C. elegans through activation of HSF-1 via inhibition of HDA-1.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Animais , Humanos , Doença de Alzheimer/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Modelos Animais de Doenças
8.
Genes Cells ; 27(12): 719-730, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36203316

RESUMO

The induction mechanism of heme oxygenase-1 (HO-1) by heat shock (HS) is still unknown. Here, we discovered that HS activates the HO-1 expression in a mouse hepatoma cell line (Hepa 1-6). Knockdown experiments showed that the HS-induced HO-1 expression was dependent on HS factor 1 (HSF1). A chromatin immunoprecipitation (ChIP) assay demonstrated that the HS-activated HSF1 bound to the HS elements (HSEs) in the upstream enhancer 1 region (E1). Unexpectedly, HS also facilitates the BTB and CNC homology 1 (BACH1) binding to the Maf recognition elements (MAREs) in E1. We examined the effects of a catalytically inactive CRISPR-associated 9 nucleases (dCas9) with short guide RNAs (sgRNAs), and demonstrated that the HSF1 binding to HSEs in E1 was indispensable for the HS-induced HO-1 expression. Heme treatment (HA) dissociates BACH1 from MAREs and facilitated the binding of nuclear factor-erythroid-2-related factor 2 (NRF2) to MAREs. Following treatment with both HS and HA, the HO-1 induction and the HSF1 binding to HSEs in E1 were most notably observed. These results indicate that the HS-induced HO-1 expression is dependent on the HSF1 binding to HSEs in E1, although modulated by the BACH1 and NRF2 binding to MAREs within the same E1.


Assuntos
Resposta ao Choque Térmico , Heme Oxigenase-1 , Animais , Camundongos , Heme Oxigenase-1/genética , Linhagem Celular , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Choque Térmico/genética
9.
Insect Mol Biol ; 32(1): 69-78, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36279182

RESUMO

Heat shock factor 1 (HSF1) functions to maintain cellular and organismal homeostasis by regulating the expression of target genes, including those encoding heat shock proteins (HSPs). In the present study, the gene encoding HSF1 was cloned from the rice pest Chilo suppressalis, and designated Cshsf1. The deduced protein product, CsHSF1, contained conserved domains typical of the HSF1 family, including a DNA-binding domain, two hydrophobic heptad repeat domains, and a C-terminal transactivation domain. Real-time quantitative PCR showed that Cshsf1 was highly expressed in hemocytes. Expression analysis in different developmental stages of C. suppressalis revealed that Cshsf1 was most highly expressed in male adults. RNAi-mediated silencing of Cshsf1 expression reduced C. suppressalis survival at high temperatures. To investigate the regulatory interactions between Cshsf1 and Cshsps, the promoters and expression patterns of 18 identified Cshsps in C. suppressalis were analysed; four types of heat shock elements (HSEs) were identified in promoter regions including canonical, tail-tail, head-head, and step/gap. The expression of Cshsp19.0, Cshsp21.7B, Cshsp60, Cshsp70 and Cshsp90 was positively regulated by Cshsf1; however, Cshsp22.8, Cshsp702, Cshsp705 and Cshsp706 gene expression was not altered. This study provides a foundation for future studies of HSF1 in insects during thermal stress.


Assuntos
Proteínas de Choque Térmico , Mariposas , Masculino , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mariposas/genética , Mariposas/metabolismo , Resposta ao Choque Térmico/genética , Regiões Promotoras Genéticas , Interferência de RNA
10.
Arch Biochem Biophys ; 736: 109525, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702450

RESUMO

Impaired integrity of the intestinal epithelium is a cause of intestinal and extraintestinal diseases. Heat shock protein 70 (HSP70), a cytoprotective protein, plays an important role in maintaining intestinal homeostasis. The intestinal expression of HSP70 is linked with the local microbiota. The present study investigated the molecular mechanisms underlying the upregulation of HSP70 by n-butyrate, a major metabolite of the intestinal microbiota in human intestinal Caco-2 cells. Treatment of Caco-2 cells with n-butyrate upregulated HSP70 protein and mRNA levels in a dose-dependent manner. Using luciferase reporter assay, it was found that n-butyrate enhanced the transcriptional activity of HSP70. These effects were sensitive to the inhibition of heat shock factor 1 (HSF1), a transcription factor, and AMP-activated protein kinase (AMPK). N-butyrate increased the phosphorylation (activity) of HSF1 and AMPK. Taken together, this study shows that n-butyrate is partly involved in the microbiota-dependent intestinal expression of HSP70, and the effect is exerted through the HSF1 and AMPK pathways.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas de Choque Térmico HSP70 , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Butiratos/farmacologia , Células CACO-2 , Fatores de Transcrição de Choque Térmico/farmacologia , Resposta ao Choque Térmico , Proteínas de Choque Térmico HSP70/metabolismo
11.
J Oral Pathol Med ; 52(10): 961-970, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783225

RESUMO

BACKGROUND: Oral squamous cell carcinoma is characterized by high rates of morbidity and mortality. Evidence obtained for different types of cancer shows that tumor initiation, progression, and therapeutic resistance are regulated by heat shock factor 1. This research aimed to analyze the effects of heat shock factor 1 on the biological behavior of oral squamous cell carcinoma. METHODS: Clinicopathological and immunoexpression study of heat shock factor 1 in 70 cases of oral tongue SCC and functional assays by gene silencing of this factor in an oral tongue SCC cell line. RESULTS: Heat shock factor 1 was overexpressed in oral tongue SCC specimens compared to normal oral mucosa (p < 0.0001) and in the SCC15 line compared to immortalized keratinocytes (p < 0.005). No significant associations were observed between overexpression of heat shock factor 1 and clinicopathological parameters or survival rates of the oral tongue SCC cases in the present sample. In vitro experiments showed that heat shock factor 1 silencing inhibited cell proliferation (p < 0.005) and cell cycle progression, with the accumulation of cells in the G0/G1 phase (p < 0.01). In addition, heat shock factor 1 silencing reduced cell invasion capacity (p < 0.05) and epithelial-mesenchymal transition, characterized by a decrease in vimentin expression (p < 0.05) and an increase in E-cadherin expression (p < 0.001). CONCLUSION: Heat shock factor 1 may exert several functions that help maintain cell stability under the stressful conditions of the tumor microenvironment. Thus, strategies targeting the regulation of this protein may in the future be a useful therapeutic tool to control the progression of oral squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Resposta ao Choque Térmico , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias da Língua/patologia , Microambiente Tumoral
12.
J Gastroenterol Hepatol ; 38(1): 138-152, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36300571

RESUMO

BACKGROUND AND AIM: Liver cancer stem cells (LCSCs) cause therapeutic refractoriness and relapse in hepatocellular carcinoma. Heat shock factor 1 (HSF1) plays versatile roles in multiple cancers. However, the role of HSF1 in LCSCs is not well understood. This study investigated the function and signal mechanisms of HSF1 in maintaining LCSC phenotypes. METHODS: We established two LCSC lines, HepG2-R and HuH-7-R. Constitutive activation of HSF1 was observed in these LCSCs. Specific short hairpin RNAs (shRNAs) and chemical inhibitors were used to identify the relationship between HSF1 expression and LCSCs phenotypes. RESULTS: We revealed a concomitant activation modality involving HSF1 and STAT3 in LCSCs and liver cancer tissues. We also found that liver cancer patients whose HSF1 and STAT3 mRNA expression levels were high presented with unfavorable clinicopathological characteristics. Moreover, the secretion of interleukin-8 (IL-8) was elevated in the LCSC medium and was directly regulated by HSF1 at the transcriptional level. In turn, IL-8 activated HSF1 and STAT3 signaling, and a neutralizing IL-8 antibody inhibited HSF1 and STAT3 activity, reduced cancer stem cell marker expression, and decreased LCSC microsphere formation. Simultaneous intervention with HSF1 and STAT3 led to synergistically suppressed stemness acquisition and growth suppression in the LCSCs in vivo and in vitro. CONCLUSIONS: Our study indicates that IL-8 mediates the crosstalk between the HSF1 and Stat3 signaling pathways in LCSCs and that the combined targeting of HSF1 and STAT3 is a promising treatment strategy for patients with advanced liver cancer.


Assuntos
Fatores de Transcrição de Choque Térmico , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Fator de Transcrição STAT3 , Humanos , Comunicação Autócrina , Linhagem Celular Tumoral , Fatores de Transcrição de Choque Térmico/metabolismo , Interleucina-8/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
13.
Biol Pharm Bull ; 46(2): 334-337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724961

RESUMO

Morphinone (MO) is an electrophilic metabolite of morphine that covalently binds to protein thiols, resulting in toxicity in vitro and in vivo. We have previously identified a variety of redox signaling pathways that are activated during electrophilic stress. However, the role of MO in such activation remains unknown. In this study, we examined whether MO could activate heat shock protein (HSP) 90/heat shock factor (HSF) 1 signaling in HepG2 cells. MO exposure caused S-modification of HSP90 (determined using biotin-PEAC5-maleimide labeling) and nuclear translocation of transcription factor HSF1, thereby up-regulating its downstream genes encoding B-cell lymphoma 2-associated anthanogene 3 and heat shock 70 kDa protein 1. However, dihydromorphinone, a non-electrophilic metabolite of morphine, had little effect on HSF1 activation or upregulation of these genes, suggesting that covalent modification plays a role in this process and that the HSP90/HSF1 pathway is a redox-signaled adaptive response to morphine metabolism.


Assuntos
Proteínas de Ligação a DNA , Morfina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90 , Morfina/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Humanos , Células Hep G2
14.
Adv Exp Med Biol ; 1409: 23-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35995906

RESUMO

Heat shock factor 1 (HSF1) is a master transcription regulator that mediates the induction of heat shock protein chaperones for quality control (QC) of the proteome and maintenance of proteostasis as a protective mechanism in response to stress. Research in this particular area has accelerated dramatically over the past three decades following successful isolation, cloning, and characterization of HSF1. The intricate multi-protein complexes and transcriptional activation orchestrated by HSF1 are fundamental processes within the cellular QC machinery. Our primary focus is on the regulation and function of HSF1 in aging and neurodegenerative diseases (ND) which represent physiological and pathological states of dysfunction in protein QC. This chapter presents an overview of HSF1 structural, functional, and energetic properties in healthy cells while addressing the deterioration of HSF1 function viz-à-viz age-dependent and neuron-specific vulnerability to ND. We discuss the structural domains of HSF1 with emphasis on the intrinsically disordered regions and note that disease proteins associated with ND are often structurally disordered and exquisitely sensitive to changes in cellular environment as may occur during aging. We propose a hypothesis that age-dependent changes of the intrinsically disordered proteome likely hold answers to understand many of the functional, structural, and organizational changes of proteins and signaling pathways in aging - dysfunction of HSF1 and accumulation of disease protein aggregates in ND included.Structured AbstractsIntroduction: Heat shock factor 1 (HSF1) is a master transcription regulator that mediates the induction of heat shock protein chaperones for quality control (QC) of the proteome as a cyto-protective mechanism in response to stress. There is cumulative evidence of age-related deterioration of this QC mechanism that contributes to disease vulnerability. OBJECTIVES: Herein we discuss the regulation and function of HSF1 as they relate to the pathophysiological changes of protein quality control in aging and neurodegenerative diseases (ND). METHODS: We present an overview of HSF1 structural, functional, and energetic properties in healthy cells while addressing the deterioration of HSF1 function vis-à-vis age-dependent and neuron-specific vulnerability to neurodegenerative diseases. RESULTS: We examine the impact of intrinsically disordered regions on the function of HSF1 and note that proteins associated with neurodegeneration are natively unstructured and exquisitely sensitive to changes in cellular environment as may occur during aging. CONCLUSIONS: We put forth a hypothesis that age-dependent changes of the intrinsically disordered proteome hold answers to understanding many of the functional, structural, and organizational changes of proteins - dysfunction of HSF1 in aging and appearance of disease protein aggregates in neurodegenerative diseases included.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Proteoma/metabolismo , Agregados Proteicos , Proteínas de Choque Térmico , Chaperonas Moleculares/metabolismo , Resposta ao Choque Térmico
15.
Saudi Pharm J ; 30(10): 1387-1395, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36387339

RESUMO

Muscular atrophy (MA) is a disease of various origins, i.e., genetic or the most common, caused by mechanical injury. So far, there is no universal therapeutic model because this disease is often progressive with numerous manifested symptoms. Moreover, there is no safe and low-risk therapy dedicated to muscle atrophy. For this reason, our research focuses on finding an alternative method using natural compounds to treat MA. This study proposes implementing natural substances such as celastrol and Rhynchophylline on the cellular level, using a simulated and controlled atrophy process. Methods: Celastrol and Rhynchophylline were used as natural compounds against simulated atrophy in C2C12 cells. Skeletal muscle C2C12 cells were stimulated for the differentiation process. Atrophic conditions were obtained by the exposure to the low concertation of doxorubicin and validated by FoxO3 and MAFbx. The protective and regenerative effect of drugs on cell proliferation was determined by the MTT assay and MT-CO1, VDAC1, and prohibitin expression. Results: The obtained results revealed that both natural substances reduced atrophic symptoms. Rhynchophylline and celastrol attenuated atrophic cells in the viability studies, morphology analysis by diameter measurements, modulated prohibitin VDAC, and MT-CO1 expression. Conclusions: The obtained results revealed that celastrol and Rhynchophylline could be effectively used as a supportive treatment in atrophy-related disorders. Thus, natural drugs seem promising for muscle regeneration.

16.
J Mol Cell Cardiol ; 150: 65-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098823

RESUMO

Palmitic acid (PA)-induced myocardial injury is considered a critical contributor to the development of obesity and type 2 diabetes mellitus (T2DM)-related cardiomyopathy. However, the underlying mechanism has not been fully understood. Here, we demonstrated that PA induced the cell death of H9c2 cardiomyoblasts in a dose- and time-dependent manner, while different ferroptosis inhibitors significantly abrogated the cell death of H9c2 cardiomyoblasts and primary neonatal rat cardiomyocytes exposed to PA. Mechanistically, PA decreased the protein expression levels of both heat shock factor 1 (HSF1) and glutathione peroxidase 4 (GPX4) in a dose- and time-dependent manner, which were restored by different ferroptosis inhibitors. Overexpression of HSF1 not only alleviated PA-induced cell death and lipid peroxidation but also improved disturbed iron homeostasis by regulating the transcription of iron metabolism-related genes (e.g., Fth1, Tfrc, Slc40a1). Additionally, PA-blocked GPX4 protein expression was evidently restored by HSF1 overexpression. Inhibition of endoplasmic reticulum (ER) stress rather than autophagy contributed to HSF1-mediated GPX4 expression. Moreover, GPX4 overexpression protected against PA-induced ferroptosis, whereas knockdown of GPX4 reversed the anti-ferroptotic effect of HSF1. Consistent with the in vitro findings, PA-challenged Hsf1-/- mice exhibited more serious ferroptosis, increased Slc40a1 and Fth1 mRNA expression, decreased GPX4 and TFRC expression and enhanced ER stress in the heart compared with Hsf1+/+ mice. Altogether, HSF1 may function as a key defender against PA-induced ferroptosis in cardiomyocytes by maintaining cellular iron homeostasis and GPX4 expression.


Assuntos
Ferroptose , Fatores de Transcrição de Choque Térmico/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ácido Palmítico/farmacologia , Animais , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/genética , Ferro/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos
17.
Arch Biochem Biophys ; 707: 108938, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34051214

RESUMO

Intestinal inflammation is associated with the integrity of the intestinal epithelium, which forms a physical barrier against noxious luminal substances. Heat shock 70 kDa protein 1A (HSP70), a molecular chaperon that exerts a cytoprotective effect, regulates intestinal integrity. This study investigated the modulation of HSP70 expression by dietary polyphenols, with particular reference to curcumin, in human intestinal Caco-2 cells. Immunoblot analysis demonstrated that among the 21 different polyphenols tested, curcumin most potently increased HSP70 levels in Caco-2 cells without affecting cell viability. Curcumin also increased the phosphorylation of heat shock factor 1 (HSF1), a well-known transcription factor of HSP70. Promoter and qRT-PCR assays indicated that curcumin upregulated Hspa1a levels via transcriptional activation. Pharmacological inhibition of MEK, a mechanistic target of rapamycin, p38 mitogen-activated protein kinase, and phosphatidyl 3-inositol kinase suppressed curcumin-mediated HSP70 expression, whereas HSF1 phosphorylation was sensitive only to MEK inhibition. Taken together, curcumin increases the expression of HSP70 in intestinal Caco-2 cells via transcriptional activation, possibly enhancing cell integrity. The effects exerted by curcumin are regulated by various signaling pathways. Our findings will expectedly contribute to a deeper understanding of the regulation of intestinal HSP70 by dietary components.


Assuntos
Curcumina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos
18.
Exp Cell Res ; 396(1): 112246, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32861670

RESUMO

Heat shock factor 1 (Hsf1) is an ancient transcription factor that monitors protein homeostasis (proteostasis) and counteracts disturbances by triggering a transcriptional programme known as the heat shock response (HSR). The HSR is transiently activated and upregulates the expression of core proteostasis genes, including chaperones. Dysregulation of Hsf1 and its target genes are associated with disease; cancer cells rely on a constitutively active Hsf1 to promote rapid growth and malignancy, whereas Hsf1 hypoactivation in neurodegenerative disorders results in formation of toxic aggregates. These central but opposing roles highlight the importance of understanding the underlying molecular mechanisms that control Hsf1 activity. According to current understanding, Hsf1 is maintained latent by chaperone interactions but proteostasis perturbations titrate chaperone availability as a result of chaperone sequestration by misfolded proteins. Liberated and activated Hsf1 triggers a negative feedback loop by inducing the expression of key chaperones. Until recently, Hsp90 has been highlighted as the central negative regulator of Hsf1 activity. In this review, we focus on recent advances regarding how the Hsp70 chaperone controls Hsf1 activity and in addition summarise several additional layers of activity control.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Processamento de Proteína Pós-Traducional , Acilação , Retroalimentação Fisiológica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Homeostase/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Ubiquitinação
19.
J Proteome Res ; 19(4): 1620-1634, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32154729

RESUMO

Gastric cancer is one of the most common types of cancer worldwide. Nevertheless, effective therapeutic strategies have not yet been discovered. Several studies have shown that tanshinone IIA (TIIA), which is extracted from the traditional herbal medicine plant Danshen (Salvia miltiorrhiza), has potential activity against many kinds of cancer. Our previous research demonstrated that TIIA can induce cell death in gastric cancer. However, the exact signaling pathway response is still unclear. Post-translational modification (PTM) plays a significant role in a wide range of physiological processes in cancer, via regulation of both signal transduction cascades and many cellular pathways. Here, we integrated multilayer omics-transcriptomics and dynamic phosphoproteomics-to elucidate the regulatory networks triggered by TIIA in gastric cancer. We identified the phosphorylation of heat shock protein 27 (HSP27) at serine 82 in response to TIIA, which caused reactive oxygen species (ROS) production and unfolded protein response (UPR). Moreover, the accumulation of cellular stress increased the expression of heat shock factor 1 (HSF1). In addition, the downstream targets of HSF1, which were involved in heat shock stress and apoptosis, were also activated in TIIA-treated cells. In conclusion, this study performs a multiomic approach to clarify a comprehensive TIIA-responsive network leading to cell death in gastric cancer.


Assuntos
Apoptose , Proteínas de Choque Térmico HSP27 , Abietanos , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP27/genética , Fosforilação
20.
Nutr Neurosci ; 23(6): 444-454, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30198423

RESUMO

Alzheimer disease (AD) is a progressive neurodegenerative brain disorder that causes significant disruption in normal brain functioning, representing the most common cause of dementia in the elderly. The main hallmark of AD is the presence of amyloid plaques in the brain formed by the deposition of insoluble amyloid protein (Aß) outside of neurons. Despite intensive investigation of the mechanisms of AD pathogenesis during the past three decades, little has been achieved in terms of effective treatments or ways to prevent the disease. Paullinia cupana, known as guarana, is a plant endemic to the Amazon region in Brazil with several beneficial effects reported, including delayed aging. In this study, we investigated the effects of chronic consumption of guarana ethanolic extract (GEE) on Aß toxicity using a C. elegans model of AD. We analyzed the behavioral phenotype, oxidative damage and Aß protein expression in worms treated with GEE. In addition, we investigated the possible role of the heat shock response on the beneficial effects induced by GEE. Overall, our data demonstrate that chronic GEE treatment decreased the formation of Aß aggregates in C. elegans, preventing the behavioral deficits and the oxidative damage inducible by Aß expression, due to activation of the heat shock protein (HSP) response. This finding provides a new alternative against amyloidogenic neurodegenerative diseases and other diseases caused by protein accumulation during aging.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Proteínas de Choque Térmico/metabolismo , Paullinia , Fragmentos de Peptídeos/toxicidade , Extratos Vegetais/administração & dosagem , Substâncias Protetoras/administração & dosagem , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA