Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(14): e23823, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39008003

RESUMO

Hepatic ischemia-reperfusion injury (HIRI) represents a major risk factor in liver transplantation and resection surgeries. Kupffer cells (KCs) produce proinflammatory cytokines and lead to hepatic neutrophil infiltration in the liver, which is one of the leading causes of HIRI. Mid1 is involved in immune infiltration, but the role of Mid1 remains poorly understood. Herin, our study aimed to investigate the effect of Mid1 on HIRI progression. Male C57BL/6 mice aged 6 weeks were used for the HIRI model established. The function of Mid1 on liver injury and hepatic inflammation was evaluated. In vitro, KCs were used to investigate the function and mechanism of Mid1 in modulating KC inflammation upon lipopolysaccharide (LPS) stimulation. We found that Mid1 expression was up-regulated upon HIRI. Mid1 inhibition alleviated liver damage, as evidenced by neutrophil infiltration, intrahepatic inflammation, and hepatocyte apoptosis. In vitro experiments further revealed that Mid1 knockdown reduced the secretion of proinflammatory cytokines and chemokines in KCs. Moreover, silenced-Mid1 suppressed proinflammatory responses by the inhibition of NF-κB, JNK, and p38 signaling pathways. Taken together, Mid1 contributes to HIRI via regulating the proinflammatory response of KCs and inducing neutrophil infiltration. Targeting Mid1 may be a promising strategy to protect against HIRI.


Assuntos
Células de Kupffer , Fígado , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/imunologia , Camundongos , Masculino , Células de Kupffer/metabolismo , Fígado/patologia , Fígado/metabolismo , Infiltração de Neutrófilos , Citocinas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , NF-kappa B/metabolismo , Apoptose , Inflamação/metabolismo , Inflamação/patologia , Transdução de Sinais
2.
FASEB J ; 38(4): e23477, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334424

RESUMO

Liver transplantation (LT) is the only effective method to treat end-stage liver disease. Hepatic ischemia-reperfusion injury (IRI) continues to limit the prognosis of patients receiving LT. Histone deacetylase 6 (HDAC6) is a unique HDAC member involved in inflammation and apoptosis. However, its role and mechanism in hepatic IRI have not yet been reported. We examined HDAC6 levels in liver tissue from LT patients, mice challenged with liver IRI, and hepatocytes subjected to hypoxia/reoxygenation (H/R). In addition, HDAC6 global-knockout (HDAC6-KO) mice, adeno-associated virus-mediated liver-specific HDAC6 overexpressing (HDAC6-LTG) mice, and their corresponding controls were used to construct hepatic IRI models. Hepatic histology, inflammatory responses, and apoptosis were detected to assess liver injury. The molecular mechanisms of HDAC6 in hepatic IRI were explored in vivo and in vitro. Moreover, the HDAC6-selective inhibitor tubastatin A was used to detect the therapeutic effect of HDAC6 on liver IRI. Together, our results showed that HDAC6 expression was significantly upregulated in liver tissue from LT patients, mice subjected to hepatic I/R surgery, and hepatocytes challenged by hypoxia/reoxygenation (H/R) treatment. Compared with control mice, HDAC6 deficiency mitigated liver IRI by inhibiting inflammatory responses and apoptosis, whereas HDAC6-LTG mice displayed the opposite phenotype. Further molecular experiments show that HDAC6 bound to and deacetylated AKT and HDAC6 deficiency improved liver IRI by activating PI3K/AKT/mTOR signaling. In conclusion, HDAC6 is a key mediator of hepatic IRI that functions to promote inflammation and apoptosis via PI3K/AKT/mTOR signaling. Targeting hepatic HDAC6 inhibition may be a promising approach to attenuate liver IRI.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Apoptose , Desacetilase 6 de Histona/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , Isquemia/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/metabolismo , Serina-Treonina Quinases TOR/metabolismo
3.
J Gene Med ; 26(5): e3692, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38745073

RESUMO

BACKGROUND: Sevoflurane (Sevo) preconditioning and postconditioning play a protective role against injury induced by hepatic ischemia/reperfusion (I/R). At the same time, the involvement of macrophage infiltration in this process and the precise mechanisms are unclear. Here, we designed this research to elucidate the protective effects of Sevo against hepatic I/R injury and the molecules involved. METHODS: The alleviating effect of Sevo on the liver injury was analyzed by liver function analysis, hematoxylin and eosin staining, Masson trichrome staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling, western blot analysis and an enzyme-linked immunosorbent assay. An in vitro cell model was developed using alpha mouse liver 12 (AML12) cells, and the cell model was treated with oxygen-glucose deprivation and reoxygenation and Sevo. Multiple bioinformatics databases were used to screen transcriptional regulators related to hepatic I/R injury and the targets of Krueppel-like factor 5 (KLF5). KLF5 expression was artificially upregulated alone or with integrin beta-2 (ITGB2) knockdown to substantiate their involvement in Sevo-mediated hepatoprotection. RESULTS: Sevo protected the liver against I/R injury by reducing cell apoptosis and inflammatory response. KLF5 was upregulated in liver tissues following I/R injury, whereas KLF5 overexpression aggravated macrophage infiltration and liver injury induced by I/R injury. KLF5 bound to the promoter of ITGB2 to enhance ITGB2 transcription. Knockdown of ITGB2 reversed the aggravation of injury caused by KLF5 overexpression in mice and AML12 cells. CONCLUSIONS: Sevo blocked KLF5-mediated transcriptional activation of ITGB2, thereby inhibiting macrophage infiltration in hepatic I/R injury.


Assuntos
Cadeias beta de Integrinas , Fatores de Transcrição Kruppel-Like , Fígado , Macrófagos , Traumatismo por Reperfusão , Sevoflurano , Animais , Camundongos , Apoptose , Antígenos CD18/metabolismo , Antígenos CD18/genética , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Sevoflurano/farmacologia , Ativação Transcricional , Cadeias beta de Integrinas/efeitos dos fármacos , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo
4.
Biochem Biophys Res Commun ; 733: 150436, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053102

RESUMO

Hepatic ischemia-reperfusion injury (IRI) is a major cause of liver damage during hepatic resection, transplantation, and other surgical procedures, often leading to graft failure and liver dysfunction. Recent studies have identified ferroptosis, a form of regulated cell death characterized by iron-dependent lipid peroxidation, as a key contributor to IRI. In this study, we investigated the protective effects of Ticlopidine, a thienopyridine compound and platelet aggregation inhibitor, on hepatic IRI. Using a C57BL/6J mouse model, we demonstrated that prophylactic Ticlopidine treatment significantly reduced necrotic and fibrotic areas in liver tissues, as well as serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST). Prussian Blue staining revealed that Ticlopidine pretreatment decreased iron accumulation in hepatic tissues, whereas markers of lipid peroxidation (malondialdehyde and 4-hydroxynonenal) and ferroptosis (PTGS2) were significantly downregulated. Additionally, Ticlopidine ameliorated inflammatory infiltration as indicated by reduced Gr-1 staining. In vitro, Ticlopidine dose-dependently inhibited ferroptosis induced by various inducers in liver cancer cell lines HUH7 and fibrosarcoma cells HT1080. The protective effects involved partial rescue of lipid peroxidation, significant reduction of ferrous iron levels, and strong protection against mitochondrial damage. These findings suggested that Ticlopidine acts as a broad-spectrum ferroptosis inhibitor, offering a promising therapeutic approach for protecting the liver against IRI.

5.
J Transl Med ; 22(1): 796, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198913

RESUMO

BACKGROUND: Liver surgery during the perioperative period often leads to a significant complication known as hepatic ischemia-reperfusion (I/R) injury. Hepatic I/R injury is linked to the innate immune response. The cGAS-STING pathway triggers the activation of innate immune through the detection of DNA within cells. Nevertheless, the precise mechanism and significance of the cGAS-STING pathway in hepatic I/R injury are yet to be investigated. METHODS: Mouse model of hepatic I/R injury was used in the C57BL/6 WT mice and the STING knockout (STING-KO) mice. In addition, purified primary hepatocytes were used to construct oxygen-glucose deprivation reperfusion (OGD-Rep) treatment models. RESULTS: Our research revealed a notable increase in mRNA and protein levels of cGAS and STING in liver during I/R injury. Interestingly, the lack of STING exhibited a safeguarding impact on hepatic I/R injury by suppressing the elevation of liver enzymes, liver cell death, and inflammation. Furthermore, pharmacological cGAS and STING inhibition recapitulated these phenomena. Macrophages play a crucial role in the activation of the cGAS-STING pathway during hepatic I/R injury. The cGAS-STING pathway experiences a significant decrease in activity and hepatic I/R injury is greatly diminished following the elimination of macrophages. Significantly, we demonstrate that the activation of the cGAS-STING pathway is primarily caused by the liberation of mitochondrial DNA (mtDNA) rather than nuclear DNA (nDNA). Moreover, the safeguarding of the liver against I/R injury is also attributed to the hindrance of mtDNA release through the utilization of inhibitors targeting mPTP and VDAC oligomerization. CONCLUSIONS: The results of our study suggest that the release of mtDNA plays a significant role in causing damage to liver by activating the cGAS-STING pathway during I/R injury. Furthermore, inhibiting the release of mtDNA can provide effective protection against hepatic I/R injury.


Assuntos
DNA Mitocondrial , Fígado , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases , Traumatismo por Reperfusão , Transdução de Sinais , Animais , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Fígado/metabolismo , Fígado/patologia , Fígado/irrigação sanguínea , Masculino , Hepatócitos/metabolismo , Camundongos , Macrófagos/metabolismo
6.
Neurochem Res ; 49(8): 2165-2178, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824460

RESUMO

Patients suffering from hepatic ischemia-reperfusion injury (HIRI) frequently exhibit postoperative cognitive deficits. Our previous observations have emphasized the diurnal variation in hepatic ischemia-reperfusion injury-induced cognitive impairment, in which gut microbiota-associated hippocampal lipid metabolism plays an important role. Herein, we further investigated the molecular mechanisms involved in the process. Hepatic ischemia-reperfusion surgery was performed under morning (ZT0, 08:00) and evening (ZT12, 20:00). Fecal microbiota transplantation was used to associate HIRI model with pseudo-germ-free mice. The novel object recognition test and Y-maze test were used to assess cognitive function. 16S rRNA gene sequencing and analysis were used for microbial analysis. Western blotting was used for hippocampal protein analysis. Compared with the ZT0-HIRI group, ZT12-HIRI mice showed learning and short term memory impairment, accompanied by down-regulated expression of hippocampal CB1R, but not CB2R. Both gut microbiota composition and microbiota metabolites were significantly different in ZT12-HIRI mice compared with ZT0-HIRI. Fecal microbiota transplantation from the ZT12-HIRI was demonstrated to induce cognitive impairment behavior and down-regulated hippocampal CB1R and ß-arrestin1. Intraperitoneal administration of CB1R inhibitor AM251 (1 mg/kg) down-regulated hippocampal CB1R and caused cognitive impairment in ZT0-HIRI mice. And intraperitoneal administration of CB1R agonist WIN 55,212-2 (1 mg/kg) up-regulated hippocampal CB1R and improved cognitive impairment in ZT12-HIRI mice. In summary, the results suggest that gut microbiota may regulate the diurnal variation of HIRI-induced cognitive function by interfering with hippocampal CB1R.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Hipocampo , Receptor CB1 de Canabinoide , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Ritmo Circadiano/fisiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Hipocampo/metabolismo , Fígado/metabolismo , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Receptor CB1 de Canabinoide/metabolismo , Traumatismo por Reperfusão/metabolismo
7.
Mol Biol Rep ; 51(1): 643, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727775

RESUMO

BACKGROUND: Baicalein is the main active flavonoid in Scutellariae Radix and is included in shosaikoto, a Kampo formula used for treating hepatitis and jaundice. However, little is known about its hepatoprotective effects against hepatic ischemia-reperfusion injury (HIRI), a severe clinical condition directly caused by interventional procedures. We aimed to investigate the hepatoprotective effects of baicalein against HIRI and partial hepatectomy (HIRI + PH) and its potential underlying mechanisms. METHODS AND RESULTS: Male Sprague-Dawley rats received either baicalein (5 mg/kg) or saline intraperitoneally and underwent a 70% hepatectomy 15 min after hepatic ischemia. After reperfusion, liver and blood samples were collected. Survival was monitored 30 min after hepatic ischemia and hepatectomy. In interleukin 1ß (IL-1ß)-treated primary cultured rat hepatocytes, the influence of baicalein on inflammatory mediator production and the associated signaling pathway was analyzed. Baicalein suppressed apoptosis and neutrophil infiltration, which are the features of HIRI + PH treatment-induced histological injury. Baicalein also reduced the mRNA expression of the proinflammatory cytokine tumor necrosis factor-α (TNF-α). In addition, HIRI + PH treatment induced liver enzyme deviations in the serum and hypertrophy of the remnant liver, which were suppressed by baicalein. In the lethal HIRI + PH treatment group, baicalein significantly reduced mortality. In IL-1ß-treated rat hepatocytes, baicalein suppressed TNF-α and chemokine mRNA expression as well as the activation of nuclear factor-kappa B (NF-κB) and Akt. CONCLUSIONS: Baicalein treatment attenuates HIRI + PH-induced liver injury and may promote survival. This potential hepatoprotection may be partly related to suppressing inflammatory gene induction through the inhibition of NF-κB activity and Akt signaling in hepatocytes.


Assuntos
Apoptose , Modelos Animais de Doenças , Flavanonas , Hepatectomia , Hepatócitos , Interleucina-1beta , Fígado , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Hepatectomia/métodos , Masculino , Ratos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Apoptose/efeitos dos fármacos , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Int J Med Sci ; 21(6): 1037-1048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774758

RESUMO

Background: Inflammatory responses, apoptosis, and oxidative stress, are key factors that contribute to hepatic ischemia/reperfusion (I/R) injury, which may lead to the failure of liver surgeries, such as hepatectomy and liver transplantation. The N6-methyladenosine (m6A) modification has been implicated in multiple biological processes, and its specific role and mechanism in hepatic I/R injury require further investigation. Methods: Dot blotting analysis was used to profile m6A levels in liver tissues at different reperfusion time points in hepatic I/R mouse models. Hepatocyte-specific METTL3 knockdown (HKD) mice were used to determine the function of METTL3 during hepatic I/R. RNA sequencing and western blotting were performed to assess the potential signaling pathways involved with the deficiency of METTL3. Finally, AAV8-TBG-METTL3 was injected through the tail vein to further elucidate the role of METTL3 in hepatic I/R injury. Results: The m6A modification levels and the expression of METTL3 were upregulated in mouse livers during hepatic I/R injury. METTL3 deficiency led to an exacerbated inflammatory response and increased cell death during hepatic I/R, whereas overexpression of METTL3 reduced the extent of liver injury. Bioinformatic analysis revealed that the MAPK pathway was significantly enriched in the livers of METTL3-deficient mice. METTL3 protected the liver from I/R injury, possibly by inhibiting the phosphorylation of JNK and ERK, but not P38. Conclusions: METTL3 deficiency aggravates hepatic I/R injury in mice by activating the MAPK signaling pathway. METTL3 may be a potential therapeutic target in hepatic I/R injury.


Assuntos
Fígado , Sistema de Sinalização das MAP Quinases , Metiltransferases , Traumatismo por Reperfusão , Animais , Humanos , Masculino , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Apoptose/genética , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/patologia , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Células HEK293
9.
BMC Anesthesiol ; 24(1): 118, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532332

RESUMO

BACKGROUND: Animal experiments have confirmed that remote ischemic preconditioning (RIPC) can reduce hepatic ischemia-reperfusion injuries (HIRIs), significantly improving early tissue perfusion and oxygenation of the residual liver after resections, accelerating surgical prognoses, and improving survival rates. However, there is still controversy over the role of RIPC in relieving HIRI in clinical studies, which warrants clarification. This study aimed to evaluate the beneficial effects and applicability of RIPC in hepatectomy and to provide evidence-based information for clinical decision-making. METHODS: Randomized controlled trials (RCTs) evaluating the efficacy and safety of RIPC interventions were collected, comparing RIPC to no preconditioning in patients undergoing hepatectomies. This search spanned from database inception to January 2024. Data were extracted independently by two researchers according to the PRISMA guidelines. The primary outcomes assessed were postoperative alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), and albumin (ALB) levels. The secondary outcomes assessed included duration of surgery and Pringle, length of postoperative hospital stay, intraoperative blood loss and transfusion, indocyanine green (ICG) clearance, hepatocyte apoptosis index, postoperative complications, and others. RESULTS: Ten RCTs were included in this meta-analysis, with a total of 865 patients (428 in the RIPC group and 437 in the control group). ALT levels in the RIPC group were lower than those in the control group on postoperative day (POD) 1 (WMD = - 59.24, 95% CI: - 115.04 to - 3.45; P = 0.04) and POD 3 (WMD = - 27.47, 95% CI: - 52.26 to - 2.68; P = 0.03). However, heterogeneities were significant (I2 = 89% and I2 = 78%), and ALT levels on POD 3 were unstable based on a sensitivity analysis. AST levels on POD 1 in the RIPC group were lower than those in the control group (WMD = - 50.03, 95% CI: - 94.35 to - 5.71; P = 0.03), but heterogeneity was also significant (I2 = 81%). A subgroup analysis showed no significant differences in ALT and AST levels on POD 1 between groups, regardless of whether the Pringle maneuver or propofol was used for anesthesia (induction only or induction and maintenance, P > 0.05). The remaining outcome indicators were not statistically significant or could not be analyzed due to lack of sufficient data. CONCLUSION: RIPC has some short-term liver protective effects on HIRIs during hepatectomies. However, there is still insufficient evidence to encourage its routine use to improve clinical outcomes. TRIAL REGISTRATION: The protocol of this study was registered with PROSPERO (CRD42022333383).


Assuntos
Precondicionamento Isquêmico , Traumatismo por Reperfusão , Animais , Humanos , Hepatectomia/métodos , Precondicionamento Isquêmico/métodos , Fígado , Complicações Pós-Operatórias , Alanina Transaminase
10.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999981

RESUMO

The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia-reperfusion injury (IRI), alcohol-induced liver injury, Con A-induced liver injury, nonalcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). IRF1 is involved in the progression of hepatic IRI through signaling pathways such as PIAS1/NFATc1/HDAC1/IRF1/p38 MAPK and IRF1/JNK. The regulation of downstream IL-12, IL-15, p21, p38, HMGB1, JNK, Beclin1, ß-catenin, caspase 3, caspase 8, IFN-γ, IFN-ß and other genes are involved in the progression of hepatic IRI, and in the development of HCC through the regulation of PD-L1, IL-6, IL-8, CXCL1, CXCL10, and CXCR3. In addition, IRF3-PPP2R1B and IRF4-FSTL1-DIP2A/CD14 pathways are involved in the development of NAFLD. Other members of the IRF family also play moderately important functions in different liver diseases. Therefore, given the significance of IRFs in liver diseases and the lack of a comprehensive compilation of their molecular mechanisms in different liver diseases, this review is dedicated to exploring the molecular mechanisms of IRFs in various liver diseases.


Assuntos
Fatores Reguladores de Interferon , Hepatopatias , Humanos , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatopatias/genética , Animais , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Transdução de Sinais
11.
Am J Physiol Cell Physiol ; 324(4): C927-C940, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717099

RESUMO

Ferroptosis is the ideal therapeutic target for hepatic ischemia and reperfusion injury (HIRI). The µ opioid receptor (MOR) is associated with ferroptosis in HIRI. We aimed to determine the ferroptosis-related therapeutic mechanism of MOR in HIRI. A model of HIRI was established in BALB/c mice. Primary hepatocytes isolated from mice were stimulated by hypoxia/reoxygenation (H/R). Changes in histopathology were determined by H&E staining. Alterations in ferroptosis were evaluated by malondialdehyde (MDA), iron, glutathione (GSH), ACSL4, GPX4, and mitochondrial morphology. ALT and AST were used to determine hepatic function. First, we found that hepatic ischemia/reperfusion (I/R) induced the destruction of hepatic tissue structure and dead hepatocytes and determined that ferroptosis occurred in vivo and in vitro. During HIRI, the expression levels of HIF-1α and KCNQ1OT1 were significantly upregulated. We demonstrated that sufentanil improved the damage in the liver and hepatocytes undergoing I/R. Importantly, sufentanil inhibited ferroptosis in HIRI. In addition, sufentanil downregulated the expression levels of HIF-1α and KCNQ1OT1 in HIRI. Increases in HIF-1α and KCNQ1OT1 reversed the role of sufentanil in ferroptosis and HIRI. Subsequently, we determined that HIF-1α could activate the transcription of KCNQ1OT1 by binding to its promoter. In addition, KCNQ1OT1 was demonstrated to enhance ACSL4 stability by interacting with SRSF1. Finally, we observed that KCNQ1OT1 downregulation protected hepatocytes from hepatic I/R and inhibited ferroptosis. KCNQ1OT1 upregulation aggravated ferroptosis and hepatic injury during I/R. However, decreases in ACSL4 and SRSF1 reversed the harmful role of KCNQ1OT1 upregulation in HIRI. MOR alleviated ferroptosis in HIRI via the HIF-1α/KCNQ1OT1 axis.


Assuntos
Ferroptose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Receptores Opioides mu , Traumatismo por Reperfusão , Animais , Camundongos , Ferroptose/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/metabolismo , Fígado/metabolismo , Fígado/patologia , Receptores Opioides mu/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Sufentanil/metabolismo , Sufentanil/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
12.
J Biol Chem ; 298(1): 101532, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953853

RESUMO

Hepatic ischemia/reperfusion (I/R) injury is an inflammation-mediated process arising from ischemia/reperfusion-elicited stress in multiple cell types, causing liver damage during surgical procedures and often resulting in liver failure. Endoplasmic reticulum (ER) stress triggers the activation of the unfolded protein response (UPR) and is implicated in tissue injuries, including hepatic I/R injury. However, the cellular mechanism that links the UPR signaling to local inflammatory responses during hepatic I/R injury remains largely obscure. Here, we report that IRE1α, a critical ER-resident transmembrane signal transducer of the UPR, plays an important role in promoting Kupffer-cell-mediated liver inflammation and hepatic I/R injury. Utilizing a mouse model in which IRE1α is specifically ablated in myeloid cells, we found that abrogation of IRE1α markedly attenuated necrosis and cell death in the liver, accompanied by reduced neutrophil infiltration and liver inflammation following hepatic I/R injury. Mechanistic investigations in mice as well as in primary Kupffer cells revealed that loss of IRE1α in Kupffer cells not only blunted the activation of the NLRP3 inflammasome and IL-1ß production, but also suppressed the expression of the inducible nitric oxide synthase (iNos) and proinflammatory cytokines. Moreover, pharmacological inhibition of IRE1α's RNase activity was able to attenuate inflammasome activation and iNos expression in Kupffer cells, leading to alleviation of hepatic I/R injury. Collectively, these results demonstrate that Kupffer cell IRE1α mediates local inflammatory damage during hepatic I/R injury. Our findings suggest that IRE1α RNase activity may serve as a promising target for therapeutic treatment of ischemia/reperfusion-associated liver inflammation and dysfunction.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases , Células de Kupffer , Fígado , Proteínas Serina-Treonina Quinases , Traumatismo por Reperfusão , Animais , Endorribonucleases/genética , Endorribonucleases/metabolismo , Hepatite/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Inositol/metabolismo , Células de Kupffer/enzimologia , Células de Kupffer/metabolismo , Fígado/irrigação sanguínea , Fígado/enzimologia , Fígado/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/metabolismo
13.
Small ; 19(30): e2300217, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37021733

RESUMO

Hepatic ischemia-reperfusion injury (HIRI) is a critical complication after liver surgery that negatively affects surgical outcomes of patients with the end-stage liver-related disease. Reactive oxygen species (ROS) are responsible for the development of ischemia-reperfusion injury and eventually lead to hepatic dysfunction. Selenium-doped carbon quantum dots (Se-CQDs) with an excellent redox-responsive property can effectively scavenge ROS and protect cells from oxidation. However, the accumulation of Se-CQDs in the liver is extremely low. To address this concern, the fabrication of Se-CQDs-lecithin nanoparticles (Se-LEC NPs) is developed through self-assembly mainly driven by the noncovalent interactions. Lecithin acting as the self-assembly building block also makes a pivotal contribution to the therapeutic performance of Se-LEC NPs due to its capability to react with ROS. The fabricated Se-LEC NPs largely accumulate in the liver, effectively scavenge ROS and inhibit the release of inflammatory cytokines, thus exerting beneficial therapeutic efficacy on HIRI. This work may open a new avenue for the design of self-assembled Se-CQDs NPs for the treatment of HIRI and other ROS-related diseases.


Assuntos
Pontos Quânticos , Traumatismo por Reperfusão , Selênio , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Carbono , Lecitinas , Fígado , Traumatismo por Reperfusão/tratamento farmacológico
14.
J Transl Med ; 21(1): 739, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858181

RESUMO

BACKGROUND: Hepatic ischemia-reperfusion (IR) injury is the primary reason for complications following hepatectomy and liver transplantation (LT). Insulin-induced gene 2 (Insig2) is one of several proteins that anchor the reticulum in the cytoplasm and is essential for metabolism and inflammatory responses. However, its function in IR injury remains ambiguous. METHODS: Insig2 global knock-out (KO) mice and mice with adeno-associated-virus8 (AAV8)-delivered Insig2 hepatocyte-specific overexpression were subjected to a 70% hepatic IR model. Liver injury was assessed by monitoring hepatic histology, inflammatory responses, and apoptosis. Hypoxia/reoxygenation stimulation (H/R) of primary hepatocytes and hypoxia model induced by cobalt chloride (CoCl2) were used for in vitro experiments. Multi-omics analysis of transcriptomics, proteomics, and metabolomics was used to investigate the molecular mechanisms underlying Insig2. RESULTS: Hepatic Insig2 expression was significantly reduced in clinical samples undergoing LT and the mouse IR model. Our findings showed that Insig2 depletion significantly aggravated IR-induced hepatic inflammation, cell death and injury, whereas Insig2 overexpression caused the opposite phenotypes. The results of in vitro H/R experiments were consistent with those in vivo. Mechanistically, multi-omics analysis revealed that Insig2 is associated with increased antioxidant pentose phosphate pathway (PPP) activity. The inhibition of glucose-6-phosphate-dehydrogenase (G6PD), a rate-limiting enzyme of PPP, rescued the protective effect of Insig2 overexpression, exacerbating liver injury. Finally, our findings indicated that mouse IR injury could be attenuated by developing a nanoparticle delivery system that enables liver-targeted delivery of substrate of PPP (glucose 6-phosphate). CONCLUSIONS: Insig2 has a protective function in liver IR by upregulating the PPP activity and remodeling glucose metabolism. The supplementary glucose 6-phosphate (G6P) salt may serve as a viable therapeutic target for alleviating hepatic IR.


Assuntos
Hepatócitos , Insulinas , Hepatopatias , Traumatismo por Reperfusão , Animais , Camundongos , Antioxidantes/metabolismo , Apoptose/genética , Glucose/metabolismo , Hepatectomia/efeitos adversos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Insulinas/metabolismo , Fígado/irrigação sanguínea , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatopatias/cirurgia , Transplante de Fígado/efeitos adversos , Fosfatos/metabolismo , Fosfatos/farmacologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
15.
Bioorg Chem ; 135: 106530, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37054517

RESUMO

Hepatic ischemia/reperfusion injury is a major cause of hypohepatia after surgical procedures such as hypovolemic shock, transplantation, and so on. In our continuous study of bioactive natural products from fungus, eight ergosterol-type sterides (1-8), including two undescribed compounds, sterolaspers A (1) and B (2), were isolated from Aspergillus sp. TJ507. Structure elucidation was accomplished by extensive spectroscopic analysis and comparison with the reported NMR data as well as X-Ray single crystal diffraction tests. Activity screen of these isolates showed 5α-stigmast-3,6-dione (3) possessing anti-hypoxia injury effects against CoCl2-induced hypoxia damage in hepatocytes. More importantly, compound 3 could improve liver function, alleviate liver damage, and restrain the hepatocellular apoptosis in hepatic ischemia/reperfusion injury murine model. As such, this ergosterol-type steride, 5α-stigmast-3,6-dione (3), might serve as lead structure for the development of novel hepatoprotective agents in the clinical treatment of hepatic ischemia/reperfusion injury.


Assuntos
Fígado , Traumatismo por Reperfusão , Camundongos , Animais , Hepatócitos , Traumatismo por Reperfusão/tratamento farmacológico , Apoptose , Isquemia/complicações , Aspergillus
16.
J Nanobiotechnology ; 21(1): 500, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129928

RESUMO

BACKGROUND: Hepatic ischemia-reperfusion injury (HIRI) is a pathophysiological process during liver transplantation, characterized by insufficient oxygen supply and subsequent restoration of blood flow leading to an overproduction of reactive oxygen species (ROS), which in turn activates the inflammatory response and leads to cellular damage. Therefore, reducing excess ROS production in the hepatic microenvironment would provide an effective way to mitigate oxidative stress injury and apoptosis during HIRI. Nanozymes with outstanding free radical scavenging activities have aroused great interest and enthusiasm in oxidative stress treatment. RESULTS: We previously demonstrated that carbon-dots (C-dots) nanozymes with SOD-like activity could serve as free radicals scavengers. Herein, we proposed that C-dots could protect the liver from ROS-mediated inflammatory responses and apoptosis in HIRI, thereby improving the therapeutic effect. We demonstrated that C-dots with anti-oxidative stress and anti-inflammatory properties improved the survival of L-02 cells under H2O2 and LPS-treated conditions. In the animal model, Our results showed that the impregnation of C-dots could effectively scavenge ROS and reduce the expression of inflammatory cytokines, such as IL-1ß, IL-6, IL-12, and TNF-α, resulting in a profound therapeutic effect in the HIRI. To reveal the potential therapeutic mechanism, transcriptome sequencing was performed and the relevant genes were validated, showing that the C-dots exert hepatoprotective effects by modulating the hepatic inflammatory network and inhibiting apoptosis. CONCLUSIONS: With negligible systemic toxicity, our findings substantiate the potential of C-dots as a therapeutic approach for HIRI, thereby offering a promising intervention strategy for clinical implementation.


Assuntos
Peróxido de Hidrogênio , Traumatismo por Reperfusão , Animais , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Apoptose
17.
Phytother Res ; 37(1): 181-194, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36097366

RESUMO

Hepatic ischemia-reperfusion injury (HIRI) is of common occurrence during liver surgery and transplantation. Pinocembrin (PIN) is a kind of flavonoid monomer extracted from the local traditional Chinese medicine Penthorum chinense Pursh (P. chinense). However, the effect of PIN on HIRI has not determined. We investigated the protective effect and potential mechanism of PIN against HIRI. Model mice were subjected to partial liver ischemia for 60 min, experimental mice were pretreated with PIN orally for 7 days, and H2 O2 -induced oxidative damage model in AML12 hepatic cells was established in vitro. Histopathologic analysis and serum biochemical levels revealed that PIN had hepatoprotective activities against HIRI. The variation of GSH, SOD, MDA, and ROS levels indicated that PIN treatments attenuated oxidative stress in tissue. PIN pretreatment obviously ameliorated apoptosis, and restrained the expression of HMGB1 and TLR4 in vivo. In vitro, compared with H2 O2 group, the contents of ROS, mitochondrial membrane potential, apoptotic cells, and Bcl-2 protein were decreased, while the Bax protein expression was increased. Moreover, HMGB-1 small interfering RNA test and western blotting showed that PIN pretreatment reduced HMGB1 and TLR4 protein levels. In conclusion, PIN pretreatment effectively protected hepatocytes from HIRI and inhibited the HMGB1/TLR4 signaling pathway.


Assuntos
Proteína HMGB1 , Traumatismo por Reperfusão , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Fígado , Transdução de Sinais , Traumatismo por Reperfusão/tratamento farmacológico , Apoptose
18.
Hepatobiliary Pancreat Dis Int ; 22(1): 45-53, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35934611

RESUMO

BACKGROUND: Hepatic ischemia-reperfusion injury (HIRI) is a common complication of liver surgeries, such as hepatectomy and liver transplantation. In recent years, several non-coding RNAs (ncRNAs) including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been identified as factors involved in the pathological progression of HIRI. In this review, we summarized the latest research on lncRNAs, miRNAs and the lncRNA-miRNA regulatory networks in HIRI. DATA SOURCES: The PubMed and Web of Science databases were searched for articles published up to December 2021 using the following keywords: "hepatic ischemia-reperfusion injury", "lncRNA", "long non-coding RNA", "miRNA" and "microRNA". The bibliography of the selected articles was manually screened to identify additional studies. RESULTS: The mechanism of HIRI is complex, and involves multiple lncRNAs and miRNAs. The roles of lncRNAs such as AK139328, CCAT1, MALAT1, TUG1 and NEAT1 have been established in HIRI. In addition, numerous miRNAs are associated with apoptosis, autophagy, oxidative stress and cellular inflammation that accompany HIRI pathogenesis. Based on the literature, we conclude that four lncRNA-miRNA regulatory networks mediate the pathological progression of HIRI. Furthermore, the expression levels of some lncRNAs and miRNAs undergo significant changes during the progression of HIRI, and thus are potential prognostic markers and therapeutic targets. CONCLUSIONS: Complex lncRNA-miRNA-mRNA networks regulate HIRI progression through mutual activation and antagonism. It is necessary to screen for more HIRI-associated lncRNAs and miRNAs in order to identify novel therapeutic targets.


Assuntos
MicroRNAs , RNA Longo não Codificante , Traumatismo por Reperfusão , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fígado/patologia , Traumatismo por Reperfusão/patologia , Hepatectomia
19.
Toxicol Appl Pharmacol ; 442: 115975, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35307376

RESUMO

BACKGROUND: Hepatic ischemia-reperfusion (HIR) injury is a pathological condition initiated by interrupted hepatic blood supply and exaggerated after reperfusion, which is one of the most lethal risks in liver transplantation and other liver surgeries. We aimed to investigate the protective mechanism of octreotide (Oct) against HIR injury. METHODS: The function of Oct was evaluated in the in vivo mouse model of HIR injury. Histological examinations were performed to assess the pathological changes. Serum parameters including ALT and AST were measured to evaluate the liver damage. qRT-PCR and western blot analysis were employed to determine the levels of long non-coding RNA SNHG12 (SNHG12) and autophagy or apoptosis-related proteins. RNA pull-down and RIP assays were used to verify the interaction between SNHG12 and TAF15. The transcriptional regulation of TAF15 in YAP1 was validated by ChIP and luciferase reporter assays. RESULTS: In the in vivo HIR injury model, Oct efficiently alleviated HIR-caused hepatic damage by suppressing apoptosis and activating autophagy. However, silencing of SNHG12 abrogated the protective effects of Oct via inactivating autophagy. Further mechanism investigation revealed that SNHG12 promoted the stabilization of Sirt1 and increased YAP1 transcriptional activity via interacting with TAF15. Up-regulation of Sirt1 and YAP1 was essential for maintaining the protective effect of Oct against HIR injury through increasing autophagic flux and suppressing apoptosis. CONCLUSIONS: Oct-induced up-regulation of SNHG12 attenuated HIR injury via promoting Sirt1 stabilization and YAP1 transcription to activate autophagy and repress apoptosis.


Assuntos
Hepatopatias , Octreotida , RNA Longo não Codificante , Traumatismo por Reperfusão , Sirtuína 1 , Fatores Associados à Proteína de Ligação a TATA , Proteínas de Sinalização YAP , Animais , Apoptose , Hepatopatias/tratamento farmacológico , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Camundongos , Octreotida/farmacologia , Octreotida/uso terapêutico , RNA Longo não Codificante/genética , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Sirtuína 1/genética , Fatores Associados à Proteína de Ligação a TATA/farmacologia , Transcrição Gênica , Proteínas de Sinalização YAP/genética
20.
Pharm Res ; 39(11): 2979-2990, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36071353

RESUMO

PURPOSE: IR injury is an unavoidable consequence in deceased donor liver transplantation. Cold preservation and warm reperfusion may change the expression and function of drug transporters in the liver due to vasoconstriction, infiltration of neutrophils and release of cytokines. We hypothesize that vasodilation, anti-platelet aggregation and proinflammatory downregulation activities of treprostinil will diminish the IR injury and its associated effects. METHODS: Livers obtained from male SD rats (n = 20) were divided into 1) Control, 2) IR, 3) Treprostinil-1 (preservation only), and 4) Treprostinil-2 (preservation and reperfusion) groups. Control livers were procured and immediately reperfused. Livers in the other groups underwent preservation for 24 h and were reperfused. All the livers were perfused using an Isolated Perfused Rat Liver (IPRL) system. Periodic perfusate, cumulative bile samples and liver tissue at the end of perfusion were collected. Liver injury markers, bile flow rates, m-RNA levels for uptake and efflux transporters (qRT-PCR) were measured. RESULTS: Cold preservation and warm reperfusion significantly increased the release of AST and ALT in untreated livers. Treprostinil supplementation substantially reduced liver injury. Bile flow rate was significantly improved in treprostinil-2 group. m-RNA levels of Slc10a1, Slc22a1, and Slc22a7 in liver were increased and m-RNA levels of Mdr1a were decreased by IR. Treprostinil treatment increased Abcb11 and Abcg2 m-RNA levels and maintained Slc22a1m-RNA similar to control livers. CONCLUSIONS: Treprostinil treatment significantly reduced liver injury. IR injury changed expression of both uptake and efflux transporters in rat livers. Treprostinil significantly altered the IR injury mediated changes in m-RNA expression of transporters.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Animais , Masculino , Ratos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Suplementos Nutricionais , Fígado/metabolismo , Doadores Vivos , Preservação de Órgãos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , RNA/metabolismo , RNA/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA