Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 1): 116178, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201699

RESUMO

Land use and management changes affect the composition and diversity of soil bacteria and fungi, which in turn may alter soil health and the provision of key ecological functions, such as pesticide degradation and soil detoxification. However, the extent to which these changes affect such services is still poorly understood in tropical agroecosystems. Our main goal was to evaluate how land-use (tilled versus no-tilled soil), soil management (N-fertilization), and microbial diversity depletion [tenfold (D1 = 10-1) and thousandfold (D3 = 10-3) dilutions] impacted soil enzyme activities (ß-glycosidase and acid phosphatase) involved in nutrient cycles and glyphosate mineralization. Soils were collected from a long-term experimental area (35 years) and compared to its native forest soil (NF). Glyphosate was selected due to its intensive use in agriculture worldwide and in the study area, as well as its recalcitrance in the environment by forming inner sphere complexes. Bacterial communities played a more important role than the fungi in glyphosate degradation. For this function, the role of microbial diversity was more critical than land use and soil management. Our study also revealed that conservation tillage systems, such as no-tillage, regardless of nitrogen fertilizer use, mitigates the negative effects of microbial diversity depletion, being more efficient and resilient regarding glyphosate degradation than conventional tillage systems. No-tilled soils also presented much higher ß-glycosidase and acid phosphatase activities as well as higher bacterial diversity indexes than those under conventional tillage. Consequently, conservation tillage is a key component for sustaining soil health and its functionality, providing critical ecosystem functions, such as soil detoxification in tropical agroecosystems.


Assuntos
Ecossistema , Solo , Microbiologia do Solo , Agricultura , Bactérias/genética , Bactérias/metabolismo , Glifosato
2.
Arch Microbiol ; 204(2): 136, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35024967

RESUMO

A novel Gram-stain positive, aerobic, motile, rod-shaped bacterium, designated strain LAM7116T was isolated from a sulfonylurea herbicides degrading consortium enriched with birch forest soil from Xinjiang. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain LAM7116T was closely related to the members of the genus Microbacterium, with the highest similarity to Microbacterium flavescens DSM 20643T (98.48%) and Microbacterium kitamiense Kitami C2T (98.48%). Strain LAM7116T formed a distinct subclade with M. flavescens DSM 20643T within the genus Microbacterium in the 16S rRNA gene phylogenetic trees. The genomic DNA G + C content of LAM7116T was 69.9 mol%. The digital DNA-DNA hybridization (dDDH) value between strain LAM7116T and M. flavescens DSM 20643T was 27.20%. The average nucleotide identity (ANI) value was 83.96% by comparing the draft genome sequences of strain LAM7116T and M. flavescens DSM 20643T. The major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C17:0, and iso-C16:0. The respiratory menaquinones of strain LAM7116T were MK-13 and MK-14. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, an unidentified lipid, and an unidentified glycolipid. The peptidoglycan contained the amino acids glycine, lysine, alanine, and glutamic acid. Based on the phenotypic characteristics and genotypic analyses, we consider that strain LAM7116T represents a novel species, for which the name Microbacterium sulfonylureivorans sp. nov. was proposed. The type strain is LAM7116T (= CGMCC 1.16620T = JCM 32823T). Strain LAM7116T secreted auxin IAA and grew well in Ashby nitrogen-free culture medium. Genomic results showed that strain LAM7116T carried the nitrogenase iron protein (nifU and nifR3) gene, which indicated that strain LAM7116T has the potential to fix nitrogen and promote plant growth. At same time, strain LAM7116T can degrade nicosulfuron (a kind of sulfonylurea herbicides) using glucose as carbon source. Microbacterium sulfonylureivorans sp. nov. LAM7116T is a potential candidate for the biofertilizers of organic agriculture areas, and may possess potential to be used in bioremediation of nicosulfuron-contaminated environments.


Assuntos
Herbicidas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos , Microbacterium , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Rev Environ Contam Toxicol ; 255: 1-65, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33895876

RESUMO

Glyphosate is the most used herbicide globally. It is a unique non-selective herbicide with a mode of action that is ideal for vegetation management in both agricultural and non-agricultural settings. Its use was more than doubled by the introduction of transgenic, glyphosate-resistant (GR) crops. All of its phytotoxic effects are the result of inhibition of only 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), but inhibition of this single enzyme of the shikimate pathway results in multiple phytotoxicity effects, both upstream and downstream from EPSPS, including loss of plant defenses against pathogens. Degradation of glyphosate in plants and microbes is predominantly by a glyphosate oxidoreductase to produce aminomethylphosphonic acid and glyoxylate and to a lesser extent by a C-P lyase to produce sarcosine and phosphate. Its effects on non-target plant species are generally less than that of many other herbicides, as it is not volatile and is generally sprayed in larger droplet sizes with a relatively low propensity to drift and is inactivated by tight binding to most soils. Some microbes, including fungal plant pathogens, have glyphosate-sensitive EPSPS. Thus, glyphosate can benefit GR crops by its activity on some plant pathogens. On the other hand, glyphosate can adversely affect some microbes that are beneficial to agriculture, such as Bradyrhizobium species, although GR crop yield data indicate that such an effect has been minor. Effects of glyphosate on microbes of agricultural soils are generally minor and transient, with other agricultural practices having much stronger effects.


Assuntos
Resistência a Herbicidas , Herbicidas , Agricultura , Produtos Agrícolas , Glicina/análogos & derivados , Herbicidas/toxicidade , Organofosfonatos , Glifosato
4.
J Environ Sci Health B ; 56(6): 523-531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33979272

RESUMO

This study describes the experimental design and optimization of application TiO2 catalysts doped with 0.5, 1, 1.5, 2.0% of Fe. The catalysts were prepared using the impregnation method applied in Paraquat herbicide degradation. The catalysts were characterized by the following techniques: specific surface area and volume, mean pore diameter (BET method), scanning electron microscopy and photoacoustic spectroscopy. The characterization presented results indicating that both calcination temperature and the increase nominal metallic load affected by the structure of catalysts, changing the textural properties, as well as the band gap. The catalyst that presented the best herbicide removal percentage was TiO2 calcined at 773 K with removal of 90.2%. However, according to the experimental design and optimization, both variables (calcination temperature and Fe percentage) are significant in the process. In addition, a positive effect was found in the interaction between the two variables. The values show that a third order kinetic model better described the Paraquat photocatalytic degradation.


Assuntos
Herbicidas/química , Ferro/efeitos da radiação , Paraquat/química , Titânio/efeitos da radiação , Raios Ultravioleta , Catálise , Ferro/química , Microscopia Eletrônica de Varredura , Fotólise , Temperatura , Titânio/química
5.
J Hazard Mater ; 471: 134336, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640665

RESUMO

Microbial herbicide degradation is an efficient bioremediation method. In this study, a strain of Streptomyces nigra, LM01, which efficiently degrades atrazine and nicosulfuron, was isolated from a corn field using a direct isolation method. The degradation effects of the identified strain on two herbicides were investigated and optimized using an artificial neural network. The maximum degradation rates of S. nigra LM01 were 58.09 % and 42.97 % for atrazine and nicosulfuron, respectively. The degradation rate of atrazine in the soil reached 67.94 % when the concentration was 108 CFU/g after 5 d and was less effective than that of nicosulfuron. Whole genome sequencing of strain LM01 helped elucidate the possible degradation pathways of atrazine and nicosulfuron. The protein sequences of strain LM01 were aligned with the sequences of the degraded proteins of the two herbicides by using the National Center for Biotechnology Information platform. The sequence (GE005358, GE001556, GE004212, GE005218, GE004846, GE002487) with the highest query cover was retained and docked with the small-molecule ligands of the herbicides. The results revealed a binding energy of - 6.23 kcal/mol between GE005358 and the atrazine ligand and - 6.66 kcal/mol between GE002487 and the nicosulfuron ligand.


Assuntos
Atrazina , Biodegradação Ambiental , Herbicidas , Piridinas , Streptomyces , Compostos de Sulfonilureia , Atrazina/metabolismo , Atrazina/química , Streptomyces/metabolismo , Streptomyces/genética , Herbicidas/metabolismo , Herbicidas/química , Compostos de Sulfonilureia/metabolismo , Compostos de Sulfonilureia/química , Piridinas/metabolismo , Piridinas/química , Poluentes do Solo/metabolismo , Genes Bacterianos , Redes Neurais de Computação
6.
Environ Sci Pollut Res Int ; 31(36): 49413-49426, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39075183

RESUMO

The evaluation of the photocatalytic properties of electrospun TiO2 nanofibres (TiO2-NFs) synthesised in the same experimental conditions using two distinct precursors, tetraisopropyl orthotitanate (TTIP) and tetrabutyl orthotitanate (TNBT), with morphology and crystalline structure controlled by annealing at 460 °C for 3 h is presented. The presence of circular-shaped TiO2-NFs was corroborated by scanning electron microscopy (SEM). By using X-ray photoelectron spectroscopy (XPS), the chemical binding energies and their interactions of the TiO2 with the different incorporated impurities were determined; the most intense photoelectronic transitions of Ti 2p3/2 (458.39 eV), O 1 s (529.65 eV) and C 1 s (284.51 eV) were detected for TTIP and slightly blue-shifted for TNBT. By using energy-dispersive X-ray spectroscopy (EDS), the chemical element percentages in TiO2 were determined. Using X-ray diffraction, it was found that the annealed electrospun TiO2-NFs presented the anatase crystalline phase and confirmed by Raman scattering. Bandgap energies were determined by diffuse reflectance spectroscopy at room temperature. The photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide under exposure to ultraviolet light was studied using the TiO2-NFs obtained with the two molecular precursors. The results showed that the catalyst, prepared with the TTIP precursor, turned out to be the one that presented the highest photocatalytic activity with a half-life time (t1/2) of 28 min and a degradation percentage of 93%. The total organic carbon (TOC) in the solutions resulting from the 2,4-D degradation by the TiO2-NFs was measured, which showed a TOC removal of 50.67% for the TTIP sample and 36.14% for the TNBT sample. Finally, by using FTIR spectroscopy, the final chemical compounds of the degradation were identified as H2O and CO2.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Nanofibras , Titânio , Titânio/química , Nanofibras/química , Ácido 2,4-Diclorofenoxiacético/química , Catálise
7.
Gene ; 866: 147333, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-36871671

RESUMO

The long-term use of isoproturon may threaten food security and human health. Cytochrome P450 (CYP or P450) can catalyze the biosynthetic metabolism, and play a crucial role in the modification of plant secondary metabolites. Therefore, it is of great importance to explore the genetic resources for isoproturon degradation. This research focused on a phase I metabolism gene (OsCYP1) with significant differential expression in rice under isoproturon pressure. Specifically, the high-throughput sequencing results of rice seedling transcriptome in response to isoproturon stress were analyzed. The molecular information and tobacco subcellular localization of OsCYP1 were studied. The subcellular localization of OsCYP1 in tobacco was assessed, where it is located in the endoplasmic reticulum. To analyze the expression of OsCYP1 in rice, the wild-type rice was treated with 0-1 mg/L isoproturon for 2 and 6 days, and qRT-PCR assays were conducted to detect the transcription levels. Compared with the control group, the expression of OsCYP1 in shoots was progressively upregulated after exposure to isoproturon, with 6.2-12.7-fold and 2.8-7.9-fold increases in transcription levels, respectively. Moreover, treatment with isoproturon upregulated the expression of OsCYP1 in roots, but the upregulation of transcripts was not significant except for 0.5 and 1 mg/L isoproturon at day 2. To confirm the role of OsCYP1 in enhancing isoproturon degradation, the vectors overexpressing OsCYP1 were transformed into recombinant yeast cells. After exposure to isoproturon, the growth of OsCYP1-transformed cells was better than the control cells, especially at higher stress levels. Furthermore, the dissipation rates of isoproturon were increased by 2.1-, 2.1- and 1.9-fold at 24, 48 and 72 h, respectively. These results further verified that OsCYP1 could enhance the degradation and detoxification of isoproturon. Collectively, our findings imply that OsCYP1 plays vital role in isoproturon degradation. This study provides a fundamental basis for the detoxification and regulatory mechanisms of OsCYP1 in crops via enhancing the degradation and/or metabolism of herbicide residues.


Assuntos
Herbicidas , Oryza , Humanos , Oryza/genética , Oryza/metabolismo , Herbicidas/farmacologia , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/análise , Compostos de Fenilureia/metabolismo , Transcriptoma
8.
Artigo em Inglês | MEDLINE | ID: mdl-38044706

RESUMO

The production of sugarcane bioethanol generates large volumes of vinasse, an effluent whose final disposal can produce an environmental impact that is of concern. The long-term disposal of vinasse in sugarcane fields could challenge crop management, such as the performance of traditional herbicides, by changing soil properties. This study aimed to evaluate the effect of long-term vinasse application on the field and the dissipation of atrazine and ametryn herbicides in a subtropical sugarcane agroecosystem, and to discuss the potential processes involved in it. Vinasse affected soil properties by increasing pH (12%), electrical conductivity (160%), and soil organic carbon (25%) at 0-10 cm depth of soil. Differences in the herbicide calculated sorption coefficient (Kd) varied according to the pedotransfer function applied and the herbicide type (atrazine or ametryn). During the first seven days after herbicide application, the soil underwent long-term vinasse application and increased atrazine and ametryn dissipation 45% and 33%, respectively, compared with the conventional fertilization scheme (control). The Pesticide Root Zone Model revealed that dissipation was mediated mainly by the degradation process rather than transport or other processes. The long-term application of vinasse in a typical sugarcane field of Tucumán, Argentina decreased the potential groundwater pollution of triazines and, adversely, reduced their bioavailability for weed control. For this, the present study presents original information about how long-term treatment with vinasse may require an adaptation of conventional management practices such as the application of herbicides in Argentina and other sugarcane-producing regions. Integr Environ Assess Manag 2023;00:1-12. © 2023 SETAC.

9.
Sci Total Environ ; 892: 164652, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37295514

RESUMO

A challenge to successfully implementing an injection-based remedial treatment in aquifers is to ensure that the oxidative reaction is efficient and lasts long enough to contact the contaminated plume. Our objective was to determine the efficacy of zinc ferrite nanocomposites (ZnFe2O4) and sulfur-containing reductants (SCR) (i.e., dithionite; DTN and bisulfite; BS) to co-activate persulfate (S2O82-; PS) and treat herbicide-contaminated water. We also evaluated the ecotoxicity of the treated water. While both SCRs delivered excellent PS activation in a 1:0.4 ratio (PS:SCR), the reaction was relatively short-lived. By including ZnFe2O4 in the PS/BS or PS/DTN activations, herbicide degradation rates dramatically increased by factors of 2.5 to 11.3. This was due to the SO4- and OH reactive radical species that formed. Radical scavenging experiments and ZnFe2O4 XPS spectra results revealed that SO4- was the dominant reactive species that originated from S(IV)/PS activation in solution and from the Fe(II)/PS activation that occurred on the ZnFe2O4 surface. Based on liquid chromatography mass spectrometry (LC-MS), atrazine and alachlor degradation pathways are proposed that involve both dehydration and hydroxylation. In 1-D column experiments, five different treatment scenarios were run using 14C-labeled and unlabeled atrazine, and 3H2O to quantify changes in breakthrough curves. Our results confirmed that ZnFe2O4 successfully prolonged the PS oxidative treatment despite the SCR being completely dissociated. Toxicity testing showed treated 14C-atrazine was more biodegradable than the parent compound in soil microcosms. Post-treatment water (25 %, v/v) also had less impact on both Zea Mays L. and Vigna radiata L. seedling growth, but more impact on root anatomies, while ≤4 % of the treated water started to exert cytotoxicity (<80 % viability) on ELT3 cell lines. Overall, the findings confirm that ZnFe2O4/SCR/PS reaction is efficient and relatively longer lasting in treating herbicide-contaminated groundwater.


Assuntos
Compostos Férricos , Água Subterrânea , Herbicidas , Substâncias Redutoras , Compostos de Enxofre , Poluentes Químicos da Água , Purificação da Água , Compostos de Zinco , Herbicidas/química , Herbicidas/metabolismo , Água Subterrânea/química , Compostos de Zinco/química , Compostos de Enxofre/química , Substâncias Redutoras/química , Compostos Férricos/química , Atrazina/química , Atrazina/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Linhagem Celular , Recuperação e Remediação Ambiental , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Nanoestruturas/química , Purificação da Água/métodos , Sobrevivência Celular/efeitos dos fármacos
10.
Ultrason Sonochem ; 91: 106236, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36442410

RESUMO

Metribuzin is an herbicide that easily contaminates ground and surface water. Herein, La-doped ZnFe layered double hydroxide (LDH) was synthesized for the first time and used for the degradation of metribuzin via ultrasonic (US) assisted peroxydisulfate (PDS) activation. The synthesized LDH had a lamellar structure, an average thickness of 26 nm, and showed mesoporous characteristics, including specific surface area 110.93 m2 g-1, pore volume 0.27 cm3 g-1, and pore diameter 9.67 nm. The degradation efficiency of the US/La-doped ZnFe LDH/PDS process (79.1 %) was much greater than those of the sole processes, and the synergy factor was calculated as 3.73. The impact of the reactive species on the sonocatalytic process was evaluated using different scavengers. After four consecutive cycles, 10.8 % loss occurred in the sonocatalytic activity of the La-doped LDH. Moreover, the efficiency of the US/La-doped LDH/PDS process was studied with respect to the degradation of metribuzin in a wastewater matrix. According to GC-MS analysis, six by-products were detected during the degradation of metribuzin. Our results indicate that the US/La-doped ZnFe LDH/PDS process has great potential for efficient degradation of metribuzin-contaminated water and wastewater.


Assuntos
Ultrassom , Água
11.
Front Microbiol ; 12: 673211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239509

RESUMO

Agriculture uses many food production chains, and herbicides participate in this process by eliminating weeds through different biochemical strategies. However, herbicides can affect non-target organisms such as bacteria, which can suffer damage if there is no efficient control of reactive oxygen species. It is not clear, according to the literature, whether the efficiency of this control needs to be selected by the presence of xenobiotics. Thus, the Pseudomonas sp. CMA 6.9 strain, collected from biofilms in an herbicide packaging washing tank, was selected for its tolerance to pesticides and analyzed for activities of different antioxidative enzymes against the herbicides Boral®, absent at the isolation site, and Heat®, present at the site; both herbicides have the same mode of action, the inhibition of the enzyme protoporphyrinogen oxidase. The strain showed tolerance to both herbicides in doses up to 45 times than those applied in agriculture. The toxicity of these herbicides, which is greater for Boral®, was assessed by means of oxidative stress indicators, growth kinetics, viability, and amounts of peroxide and malondialdehyde. However, the studied strain showed two characteristic antioxidant response systems for each herbicide: glutathione-s-transferase acting to control malondialdehyde in treatments with Boral®; and catalase, ascorbate peroxidase, and guaiacol peroxidase in the control of peroxide induced by Heat®. It is possible that this modulation of the activity of different enzymes independent of previous selection characterizes a system of metabolic plasticity that may be more general in the adaptation of microorganisms in soil and water environments subjected to chemical contaminants. This is relevant to the impact of pesticides on the diversity and abundance of microbial species as well as a promising line of metabolic studies in microbial consortia for use in bioremediation.

12.
Plants (Basel) ; 8(11)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766148

RESUMO

Glyphosate-based herbicide products are the most widely used broad-spectrum herbicides in the world for postemergent weed control. There are ever-increasing concerns that glyphosate, if not used judiciously, may cause adverse nontarget impacts in agroecosystems. The purpose of this brief review is to present and discuss the state of knowledge with respect to its persistence in the environment, possible effects on crop health, and impacts on crop nutrition.

13.
J Agric Food Chem ; 67(31): 8431-8440, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067047

RESUMO

Glufosinate-resistant Lolium perenne L. spp. multiflorum biotypes from Oregon exhibited resistance levels up to 2.8-fold the field rate. One resistant biotype (MG) had an amino acid substitution in glutamine synthetase 2 (GS2), whereas the other (OR) exhibited the wild-type genotype. We hypothesized that the amino acid substitution in GS2 is involved in the resistance mechanism in MG and that non-target site resistance mechanisms are present in OR. OR metabolized glufosinate faster than the other two biotypes, with >75% of the herbicide metabolized in comparison to 50% in MG and the susceptible biotype. A mutation in GS2 co-segregating with resistance in MG did not reduce the enzyme activity, with results further supported by our enzyme homology models. This research supports the conclusion that a metabolism mechanism of glufosinate resistance is present in OR and that glufosinate resistance in MG is not due to an altered target site.


Assuntos
Aminobutiratos/metabolismo , Glutamato-Amônia Ligase/metabolismo , Resistência a Herbicidas , Herbicidas/metabolismo , Lolium/enzimologia , Proteínas de Plantas/metabolismo , Substituição de Aminoácidos , Aminobutiratos/farmacologia , Glutamato-Amônia Ligase/genética , Herbicidas/farmacologia , Isoenzimas/genética , Isoenzimas/metabolismo , Lolium/efeitos dos fármacos , Lolium/genética , Lolium/metabolismo , Mutação , Oregon , Proteínas de Plantas/genética
14.
Environ Sci Pollut Res Int ; 24(1): 644-658, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27743329

RESUMO

The aim of this study was to monitor the sediment, soil and surface water contamination with selected popular triketone herbicides (mesotrione (MES) and sulcotrione(SUL)), atrazine (ATR) classified as a possible carcinogen and endocrine disrupting chemical, as well as their degradation products, in Silesia (Poland). Seventeen sediment samples, 24 soil samples, and 64 surface water samples collected in 2014 were studied. After solid-liquid extraction (SLE) and solid phase extraction (SPE), analytes were determined by high-performance liquid chromatography (HPLC) with diode array detection (DAD). Ten years after the withdrawal from the use, ATR was not detected in any of the collected samples; however, its degradation products are still present in 41 % of sediment, 71 % of soil, and 8 % of surface water samples. SUL was determined in 85 % of soil samples; its degradation product (2-chloro-4-(methylosulfonyl) benzoic acid (CMBA)) was present in 43 % of soil samples. In 17 % of sediment samples, CMBA was detected. Triketones were detected occasionally in surface water samples. The chemometric analysis (clustering analysis (CA), single-factor analysis of variance (ANOVA), N-Way ANOVA) was applied to find relations between selected soil and sediment parameters and herbicides concentration. In neither of the studied cases a statistically significant relationship between the concentrations of examined herbicides, their degradation products and soil parameters (organic carbon (OC), pH) was observed.


Assuntos
Sedimentos Geológicos/análise , Herbicidas/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Atrazina/análise , Cromatografia Líquida de Alta Pressão , Cicloexanonas/análise , Mesilatos/análise , Polônia , Extração em Fase Sólida
15.
Water Air Soil Pollut ; 228(6): 216, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28603318

RESUMO

Biochar amendment can alter soil properties, for instance, the ability to adsorb and degrade different chemicals. However, ageing of the biochar, due to processes occurring in the soil over time, can influence such biochar-mediated effects. This study examined how biochar affected adsorption and degradation of two herbicides, glyphosate (N-(phosphonomethyl)-glycine) and diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) in soil and how these effects were modulated by ageing of the biochar. One sandy and one clayey soil that had been freshly amended with a wood-based biochar (0, 1, 10, 20 and 30% w/w) were studied. An ageing experiment, in which the soil-biochar mixtures were aged for 3.5 months in the laboratory, was also performed. Adsorption and degradation were studied in these soil and soil-biochar mixtures, and compared to results from a soil historically enriched with charcoal. Biochar amendment increased the pH in both soils and increased the water-holding capacity of the sandy soil. Adsorption of diuron was enhanced by biochar amendment in both soils, while glyphosate adsorption was decreased in the sandy soil. Ageing of soil-biochar mixtures decreased adsorption of both herbicides in comparison with freshly biochar-amended soil. Herbicide degradation rates were not consistently affected by biochar amendment or ageing in any of the soils. However, glyphosate half-lives correlated with the Freundlich Kf values in the clayey soil, indicating that degradation was limited by availability there.

16.
Environ Sci Pollut Res Int ; 24(12): 11017-11030, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27335015

RESUMO

The frequency and mass concentrations of 13 herbicide micropollutants (triazines, phenylureas, chloroacetanilides and trifluralin) were investigated during 2014 in surface, ground and drinking waters in the area of the city of Zagreb and its suburbs. Herbicide compounds were accumulated from water by solid-phase extraction using either octadecylsilica or styrene-divinylbenzene sorbent cartridges and analysed either by high-performance liquid chromatography with UV-diode array detector or gas chromatography with mass spectrometric detection. Atrazine was the most frequently detected herbicide in drinking (84 % of samples) and ground (61 % of samples) waters in mass concentrations of 5 to 68 ng L-1. It was followed by metolachlor and terbuthylazine, the former being detected in 54 % of drinking (up to 15 ng L-1) and 23 % of ground (up to 100 ng L-1) waters, and the latter in 45 % of drinking (up to 20 ng L-1) and 26 % of ground (up to 25 ng L-1) water samples. Acetochlor was the fourth most abundant herbicide in drinking waters, detected in 32 % of samples. Its mass concentrations of 107 to 117 ng L-1 in three tap water samples were the highest of all herbicides measured in the drinking waters. The most frequently (62 % of samples) and highly (up to 887 ng L-1) detected herbicide in surface waters was metolachlor, followed by terbuthylazine detected in 49 % of samples in mass concentrations of up to 690 ng L-1, and atrazine detected in 30 % of samples in mass concentrations of up to 18 ng L-1. The seasonal variations in herbicide concentrations in surface waters were observed for terbuthylazine, metolachlor, acetochlor, chlortoluron and isoproturon with the highest concentrations measured from April to August.


Assuntos
Água Potável/análise , Água Subterrânea/análise , Herbicidas/análise , Poluentes Químicos da Água/análise , Acetamidas/análise , Atrazina/análise , Croácia , Compostos de Fenilureia/análise , Triazinas/análise
17.
Beilstein J Nanotechnol ; 8: 915-926, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28546886

RESUMO

Two series of Fe2O3/TiO2 samples were prepared via impregnation and photodeposition methods. The effect of preparation method on the properties and performance of Fe2O3/TiO2 for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under UV light irradiation was examined. The Fe2O3/TiO2 nanocomposites prepared by impregnation showed lower activity than the unmodified TiO2, mainly due to lower specific surface area caused by heat treatment. On the other hand, the Fe2O3/TiO2 nanocomposites prepared by photodeposition showed higher photocatalytic activity than the unmodified TiO2. Three times higher photocatalytic activity was obtained on the best photocatalyst, Fe2O3(0.5)/TiO2. The improved activity of TiO2 after photodeposition of Fe2O3 was contributed to the formation of a heterojunction between the Fe2O3 and TiO2 nanoparticles that improved charge transfer and suppressed electron-hole recombination. A further investigation on the role of the active species on Fe2O3/TiO2 confirmed that the crucial active species were both holes and superoxide radicals. The Fe2O3(0.5)/TiO2 sample also showed good stability and reusability, suggesting its potential for water purification applications.

18.
AMB Express ; 6(1): 104, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27815917

RESUMO

Herbicides cause environmental concerns because they are toxic and accumulate in the environment, food products and water supplies. There is a need to develop safe, efficient and economical methods to remove them from the environment, often by biodegradation. Atrazine is such herbicide. White-rot fungi have the ability to degrade herbicides of potential utility. This study formulated a novel pelletized support to immobilize the white-rot fungus Anthracophyllum discolor to improve its capability to degrade the atrazine using a biopurification system (BS). Different proportions of sawdust, starch, corn meal and flaxseed were used to generate three pelletized supports (F1, F2 and F3). In addition, immobilization with coated and uncoated pelletized supports (CPS and UPS, respectively) was assessed. UPS-F1 was determined as the most effective system as it provided high level of manganese peroxidase activity and fungal viability. The half-life (t1/2) of atrazine decreased from 14 to 6 days for the control and inoculated samples respectively. Inoculation with immobilized A. discolor produced an increase in the fungal taxa assessed by DGGE and on phenoloxidase activity determined. The treatment improves atrazine degradation and reduces migration to surface and groundwater.

19.
AMB Express ; 6(1): 70, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27620734

RESUMO

Callisto(®), containing the active ingredient mesotrione (2-[4-methylsulfonyl-2-nitrobenzoyl]1,3-cyclohenanedione), is a selective herbicide that controls weeds in corn crops and is a potential environmental contaminant. The objective of this work was to evaluate enzymatic and structural changes in Pantoea ananatis, a strain isolated from water, in response to exposure to this herbicide. Despite degradation of mesotrione, probably due a glutathione-S-transferase (GST) pathway in Pantoea ananatis, this herbicide induced oxidative stress by increasing hydrogen peroxide production. Thiol fragments, eventually produced after mesotrione degradation, could be involved in increased GST activity. Nevertheless, there was no peroxidation damage related to this production, as malondialdehyde (MDA) synthesis, which is due to lipid peroxidation, was highest in the controls, followed by the mesotrione- and Callisto(®)-treated cultures at log growth phase. Therefore, P. ananatis can tolerate and grow in the presence of the herbicide, probably due an efficient control of oxidative stress by a polymorphic catalase system. MDA rates depend on lipid saturation due to a pattern change to a higher level of saturation. These changes are likely related to the formation of GST-mesotrione conjugates and mesotrione degradation-specific metabolites and to the presence of cytotoxic adjuvants. These features may shift lipid membrane saturation, possibly providing a protective effect to bacteria through an increase in membrane impermeability. This response system in P. ananatis provides a novel model for bacterial herbicide tolerance and adaptation in the environment.

20.
Environ Toxicol Chem ; 35(2): 485-93, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26313564

RESUMO

High-latitude regions experience unique conditions that affect the degradation rate of agrochemicals in the environment. In the present study, data collected from 2 field sites in Alaska, USA (Palmer and Delta) were used to generate a kinetic model for aminopyralid and clopyralid degradation and to describe the microbial community response to herbicide exposure. Field plots were sprayed with herbicides and sampled over the summer of 2013. Quantification was performed via liquid chromatrography/tandem mass spectrometry, and microbial diversity was assessed via next-generation sequencing of bacterial 16S ribosomal ribonucleic acid (rRNA) genes. Both compounds degraded rapidly via pseudo-first-order degradation kinetics between 0 d and 28 d (t1/2 = 9.1-23.0 d), and then degradation slowed thereafter through 90 d. Aminopyralid concentration was 0.048 µg/g to 0.120 µg/g at 90 d post application, whereas clopyralid degraded rapidly at the Palmer site but was recovered in Delta soil at a concentraction of 0.046 µg/g. Microbial community diversity was moderately impacted by herbicide treatment, with the effect more pronounced at Delta. These data predict reductions in crop yield when sensitive plants (potatoes, tomatoes, marigolds, etc.) are rotated onto treated fields. Agricultural operations in high-latitude regions, both commercial and residential, rely heavily on cultivation of such crops and care must be taken when rotating.


Assuntos
Biodegradação Ambiental , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/toxicidade , Herbicidas/metabolismo , Herbicidas/toxicidade , Ácidos Picolínicos/metabolismo , Ácidos Picolínicos/toxicidade , Piridinas/metabolismo , Piridinas/toxicidade , Microbiologia do Solo , Poluentes do Solo/metabolismo , Alaska , Biodiversidade , Produtos Agrícolas , Cinética , Resíduos de Praguicidas/análise , Plantas , RNA Ribossômico 16S/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA