Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018327

RESUMO

This study pioneers the reporting of Se isotopes in marine top predators and represents the most extensive Se isotopic characterization in animals to date. A methodology based on hydride generation─multicollector inductively coupled plasma mass spectrometry─was established for such samples. The study was conducted on various internal organs of giant petrels (Macronectes spp.), encompassing bulk tissues (δ82/78Sebulk), distinct Se-specific fractions such as selenoneine (δ82/78SeSEN), and HgSe nanoparticles (δ82/78SeNPs). The δ82/78Sebulk results (2.0-5.6‰) offer preliminary insights into the fate of Se in key internal organs of seabirds, including the liver, the kidneys, the muscle, and the brain. Notably, the liver of all individuals was enriched in heavier Se isotopes compared to other examined tissues. In nanoparticle fraction, δ82/78Se varies significantly across individuals (δ82/78SeNPs from 0.6 to 5.7‰, n = 8), whereas it exhibits remarkable consistency among tissues and individuals for selenoneine (δ82/78SeSEN, 1.7 ± 0.3‰, n = 8). Significantly, there was a positive correlation between the shift from δ82/78Sebulk to δ82/78SeSEN and the proportion of Se present as selenoneine in the internal organs. This pilot study proves that Se species-specific isotopic composition is a promising tool for a better understanding of Se species fate, sources, and dynamics in animals.

2.
Water Res ; 253: 121311, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367382

RESUMO

The antagonistic effects of mercury (Hg) and selenium (Se) have been extensively studied in higher animals and plants. In this study, the microbial antagonistic effects of Hg and Se were utilized for wastewater treatment. We developed and optimized a new granular sludge approach to efficiently remove Hg(II) and Se(IV) from wastewater. Under anaerobic-oxic-anaerobic (AOA) conditions, the removal rates of Hg(II) and Se(IV) reached up to 99.91±0.07 % and 97.7 ± 0.8 %, respectively. The wastewater Hg(II) was mostly (97.43±0.01 %) converted to an inert mineral called tiemannite (HgSe) in the sludge, and no methylmercury (MeHg) was detected. The HgSe in sludge is less toxic, with almost no risk of secondary release, and it can be recovered with high purity. An inhibition experiment of mercury reduction and the high expression of the mer operon indicated that most Hg(II) (∼71 %) was first reduced to Hg0, and then Hg0 reacted with Se0 to synthesize HgSe. Metagenomic results showed that the final sludge (day 182) was dominated by two unclassified bacteria in the orders Rhodospirillales (27.7 %) and Xanthomonadales (6.3 %). Their metagenome-assembled genomes (MAGs) were recovered, suggesting that both of them can reduce Hg(II) and Se(IV). Metatranscriptomic analyses indicate that they can independently and cooperatively synthesize HgSe. In summary, granular sludge under AOA conditions is an efficient method for removing and recovering Hg from wastewater. The microbial transformation of Hg2+to Hg0 to HgSe may occur widely in both engineering and natural ecosystems.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Selênio , Purificação da Água , Animais , Selênio/metabolismo , Esgotos/microbiologia , Águas Residuárias , Ecossistema , Purificação da Água/métodos
3.
J Hazard Mater ; 431: 128582, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35359111

RESUMO

In the comments reported by A. Manceau [1], relating to our recent paper on mercury (Hg) species-specific isotopic characterization in giant petrel tissues [2] two critical questions were raised. Firstly, according to A. Manceau, our method of extraction and isolation of nanoparticles was not able to efficiently isolate mercury selenide nanoparticles (HgSe NPs) and therefore the δ202Hg values measured are not species-specific, but rather δ202Hg of mixtures of complexes such as MeHgCys, Hg(Sec)4, and HgSe. Secondly, he suggests that our main findings showing that no isotopic fractionation is induced during the HgSe NPs biomineralization step from the precursor-demethylated species is erroneous because it contradicts the conclusion of two recent articles by A. Manceau and co-workers [3,4]. In this reply we defend our scientific findings and respectively respond to the questions and comments raised by A. Manceau.


Assuntos
Mercúrio , Nanopartículas , Animais , Biomineralização , Aves , Humanos , Isótopos , Masculino , Mercúrio/análise
4.
J Hazard Mater ; 425: 127922, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34894503

RESUMO

Tiemannite (HgSe) is considered the end-product of methylmercury (MeHg) demethylation in vertebrates. The biomineralization of HgSe nanoparticles (NPs) is understood to be an efficient MeHg detoxification mechanism; however, the process has not yet been fully elucidated. In order to contribute to the understanding of complex Hg metabolism and HgSe NPs formation, the Hg isotopic signatures of 40 samples of 11 giant petrels were measured. This seabird species is one of the largest avian scavengers in the Southern Ocean, highly exposed to MeHg through their diet, reaching Hg concentrations in the liver up to more than 900 µg g-1. This work constitutes the first species-specific isotopic measurement (δ202Hg, Δ199Hg) of HgSe NPs in seabirds and the largest characterization of this compound in biota. Similar δ202Hg values specifically associated to HgSe (δ202HgHgSe) and tissues (δ202Hgbulk) dominated by inorganic Hg species were found, suggesting that no isotopic fractionation is induced during the biomineralization step from the precursor (demethylated) species. In contrast, the largest variations between δ202Hgbulk and δ202HgHgSe were observed in muscle and brain tissues. This could be attributed to the higher fraction of Hg present as MeHg in these tissues. Hg-biomolecules screening highlights the importance of the isotopic characterization of these (unknown) complexes.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Nanopartículas , Poluentes Químicos da Água , Animais , Biomineralização , Aves , Monitoramento Ambiental , Isótopos , Mercúrio/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA