Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 34(19-20): 1359-1372, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32943576

RESUMO

Transcription factor SNAI2 plays key roles during development and has also been known to promote metastasis by inducing invasive phenotype and tumor-initiating activity of cancer cells. However, the post-translational regulation of SNAI2 is less well studied. We performed a dual-luciferase-based, genome-wide E3 ligase siRNA library screen and identified ASB13 as an E3 ubiquitin ligase that targets SNAI2 for ubiquitination and degradation. ASB13 knockout in breast cancer cells promoted cell migration and decreased F-actin polymerization, while overexpression of ASB13 suppressed lung metastasis. Furthermore, ASB13 knockout decreased YAP expression, and such regulation is dependent on an increased protein level of SNAI2, which in turn represses YAP transcription. YAP suppresses tumor progression in breast cancer, as YAP knockout increases tumorsphere formation, anchorage-independent colony formation, cell migration in vitro, and lung metastasis in vivo. Clinical data analysis reveals that ASB13 expression is positively correlated with improved overall survival in breast cancer patients. These findings establish ASB13 as a suppressor of breast cancer metastasis by promoting degradation of SNAI2 and relieving its transcriptional repression of YAP.


Assuntos
Neoplasias da Mama/fisiopatologia , Regulação Neoplásica da Expressão Gênica/genética , Metástase Neoplásica/fisiopatologia , Proteólise , Proteínas Proto-Oncogênicas c-yes/genética , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Metástase Neoplásica/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
2.
FASEB J ; 38(17): e70026, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39215627

RESUMO

Macrophages have been recognized as pivotal players in the progression of MASLD/MASH. However, the molecular mechanisms underlying their multifaceted functions in the disease remain to be further clarified. In the current study, we developed a new mouse model with YAP activation in macrophages to delineate the effect and mechanism of YAP signaling in the pathogenesis of MASLD/MASH. Genetically modified mice, featuring specific depletion of both Mst1 and Mst2 in macrophages/monocytes, were generated and exposed to a high-fat diet for 12 weeks to induce MASLD. Following this period, livers were collected for histopathological examination, and liver non-parenchymal cells were isolated and subjected to various analyses, including single-cell RNA-sequencing, immunofluorescence and immunoblotting and qRT-PCR to investigate the impact of YAP signaling on the progression of MASLD. Our data revealed that Mst1/2 depletion in liver macrophages enhanced liver inflammation and fibrosis in MASLD. Using single-cell RNA-sequencing, we showed that YAP activation via Mst1/2 depletion upregulated the expressions of both pro-inflammatory genes and genes associated with resolution/tissue repair. We observed that YAP activation increases Kupffer cell populations (i.e., Kupffer-2 and Kupffer-3) which are importantly implicated in the pathogenesis of MASLD/MASH. Our data indicate that YAP activation via Mst1/2 deletion enhances both the pro-inflammatory and tissue repairing functions of Kupffer-1 and -2 cells at least in part through C1q. These YAP-regulatory mechanisms control the plasticity of liver macrophages in the context of MASLD/MASH. Our findings provide important evidence supporting the critical regulatory role of YAP signaling in liver macrophage plasticity and the progression of MASLD. Therefore, targeting the Hippo-YAP pathway may present a promising therapeutic strategy for the treatment of MASH.


Assuntos
Cirrose Hepática , Fígado , Macrófagos , Proteínas Serina-Treonina Quinases , Serina-Treonina Quinase 3 , Proteínas de Sinalização YAP , Animais , Camundongos , Proteínas de Sinalização YAP/metabolismo , Macrófagos/metabolismo , Fígado/metabolismo , Fígado/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos Endogâmicos C57BL , Masculino , Transdução de Sinais , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Inflamação/metabolismo , Inflamação/patologia , Células de Kupffer/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/genética
3.
Vet Res ; 55(1): 31, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493147

RESUMO

Pasteurella multocida is an opportunistic zoonotic pathogen that primarily causes fatal respiratory diseases, such as pneumonia and respiratory syndromes. However, the precise mechanistic understanding of how P. multocida disrupts the epithelial barrier in mammalian lung remains largely unknown. In this study, using unbiased RNA-seq analysis, we found that the evolutionarily conserved Hippo-Yap pathway was dysregulated after P. multocida infection. Given the complexity of P. multocida infection associated with lung injury and systemic inflammatory processes, we employed a combination of cell culture models, mouse models, and rabbit models to investigate the dynamics of the Hippo-Yap pathway during P. multocida infection. Our findings reveal that P. multocida infection activates the Hippo-Yap pathway both in vitro and in vivo, by upregulating the upstream factors p-Mst1/2, p-Lats1, and p-Yap, and downregulating the downstream effectors Birc5, Cyr61, and Slug. Conversely, pharmacological inhibition of the Hippo pathway by XMU-MP-1 significantly rescued pulmonary epithelial cell apoptosis in vitro and reduced lung injury, systemic inflammation, and mouse mortality in vivo. Mechanistic studies revealed that P. multocida induced up-regulation of Rassf1 expression, and Rassf1 enhanced Hippo-Yap pathway through phosphorylation. Accordingly, in vitro knockdown of Rassf1 significantly enhanced Yap activity and expression of Yap downstream factors and reduced apoptosis during P. multocida infection. P. multocida-infected rabbit samples also showed overexpression of Rassf1, p-Lats1, and p-Yap, suggesting that P. multocida activates the Rassf1-Hippo-Yap pathway. These results elucidate the pathogenic role of the Rassf1-Hippo-Yap pathway in P. multocida infection and suggest that this pathway has the potential to be a drug target for the treatment of pasteurellosis.


Assuntos
Lesão Pulmonar , Pasteurella multocida , Doenças dos Roedores , Camundongos , Animais , Coelhos , Via de Sinalização Hippo , Transdução de Sinais , Lesão Pulmonar/veterinária , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pulmão/metabolismo , Apoptose , Proliferação de Células , Mamíferos
4.
Gastric Cancer ; 27(2): 292-307, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280128

RESUMO

BACKGROUND: Gastric cancer (GC), the fourth leading cause of cancer-related death worldwide, with most deaths caused by advanced and metastatic disease, has limited curative options. Here, we revealed the importance of proprotein convertases (PCs) in the malignant and metastatic potential of GC cells through the regulation of the YAP/TAZ/TEAD pathway and epithelial-to-mesenchymal transition (EMT) in cancer stem cells (CSC). METHODS: The general PCs inhibitor, decanoyl-RVKR-chloromethyl-ketone (CMK), was used to repress PCs activity in CSCs of various GC cell lines. Their tumorigenic properties, drug resistance, YAP/TAZ/TEAD pathway activity, and invasive properties were then investigated in vitro, and their metastatic properties were explored in a mouse xenograft model. The prognostic value of PCs in GC patients was also explored in molecular databases of GC. RESULTS: Inhibition of PCs activity in CSCs in all GC cell lines reduced tumorsphere formation and growth, drug efflux, EMT phenotype, and invasive properties that are associated with repressed YAP/TAZ/TEAD pathway activity in vitro. In vivo, PCs' inhibition in GC cells reduced their metastatic spread. Molecular analysis of tumors from GC patients has highlighted the prognostic value of PCs. CONCLUSIONS: PCs are overexpressed in GC and associated with poor prognosis. PCs are involved in the malignant and metastatic potential of CSCs via the regulation of EMT, the YAP/TAZ/TEAD oncogenic pathway, and their stemness and invasive properties. Their repression represents a new strategy to target CSCs and impair metastatic spreading in GC.


Assuntos
Neoplasias Gástricas , Fatores de Transcrição , Humanos , Animais , Camundongos , Fatores de Transcrição/genética , Proteínas de Sinalização YAP , Neoplasias Gástricas/patologia , Modelos Animais de Doenças , Pró-Proteína Convertases/metabolismo , Células-Tronco Neoplásicas/metabolismo
5.
Development ; 147(16)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843528

RESUMO

The Hippo-Yap pathway regulates multiple cellular processes in response to mechanical and other stimuli. In Drosophila, the polarity protein Lethal (2) giant larvae [L(2)gl], negatively regulates Hippo-mediated transcriptional output. However, in vertebrates, little is known about its homolog Llgl1. Here, we define a novel role for vertebrate Llgl1 in regulating Yap stability in cardiomyocytes, which impacts heart development. In contrast to the role of Drosophila L(2)gl, Llgl1 depletion in cultured rat cardiomyocytes decreased Yap protein levels and blunted target gene transcription without affecting Yap transcript abundance. Llgl1 depletion in zebrafish resulted in larger and dysmorphic cardiomyocytes, pericardial effusion, impaired blood flow and aberrant valvulogenesis. Cardiomyocyte Yap protein levels were decreased in llgl1 morphants, whereas Notch, which is regulated by hemodynamic forces and participates in valvulogenesis, was more broadly activated. Consistent with the role of Llgl1 in regulating Yap stability, cardiomyocyte-specific overexpression of Yap in Llgl1-depleted embryos ameliorated pericardial effusion and restored blood flow velocity. Altogether, our data reveal that vertebrate Llgl1 is crucial for Yap stability in cardiomyocytes and its absence impairs cardiac development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Coração/embriologia , Miócitos Cardíacos/metabolismo , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Proteínas de Ciclo Celular/genética , Estabilidade Proteica , Transativadores/genética , Proteínas de Sinalização YAP , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Proc Natl Acad Sci U S A ; 117(33): 19994-20003, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747557

RESUMO

The transcriptional regulator YAP, which plays important roles in the development, regeneration, and tumorigenesis, is activated when released from inhibition by the Hippo kinase cascade. The regulatory mechanism of YAP in Hippo-low contexts is poorly understood. Here, we performed a genome-wide RNA interference screen to identify genes whose loss of function in a Hippo-null background affects YAP activity. We discovered that the coatomer protein complex I (COPI) is required for YAP nuclear enrichment and that COPI dependency of YAP confers an intrinsic vulnerability to COPI disruption in YAP-driven cancer cells. We identified MAP2K3 as a YAP regulator involved in inhibitory YAP phosphorylation induced by COPI subunit depletion. The endoplasmic reticulum stress response pathway activated by COPI malfunction appears to connect COPI and MAP2K3. In addition, we provide evidence that YAP inhibition by COPI disruption may contribute to transcriptional up-regulation of PTGS2 and proinflammatory cytokines. Our study offers a resource for investigating Hippo-independent YAP regulation as a therapeutic target for cancers and suggests a link between YAP and COPI-associated inflammatory diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , MAP Quinase Quinase 3/metabolismo , Neoplasias/metabolismo , Interferência de RNA , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Complexo I de Proteína do Envoltório/genética , Regulação Neoplásica da Expressão Gênica , Genoma , Via de Sinalização Hippo , Humanos , MAP Quinase Quinase 3/genética , Camundongos , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
7.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834234

RESUMO

The type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family produces the critical lipid regulator phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in the plasma membrane (PM). Here, we investigated the potential role of PIP5Kγ, a PIP5K isoform, in the Hippo pathway. The ectopic expression of PIP5Kγ87 or PIP5Kγ90, two major PIP5Kγ splice variants, activated large tumor suppressor kinase 1 (LATS1) and inhibited Yes-associated protein (YAP), whereas PIP5Kγ knockdown yielded opposite effects. The regulatory effects of PIP5Kγ were dependent on its catalytic activity and the presence of Merlin and LATS1. PIP5Kγ knockdown weakened the restoration of YAP phosphorylation upon stimulation with epidermal growth factor or lysophosphatidic acid. We further found that PIP5Kγ90 bound to the Merlin's band 4.1/ezrin/radixin/moesin (FERM) domain, forming a complex with PI(4,5)P2 and LATS1 at the PM. Notably, PIP5Kγ90, but not its kinase-deficient mutant, potentiated Merlin-LATS1 interaction and recruited LATS1 to the PM. Consistently, PIP5Kγ knockdown or inhibitor (UNC3230) enhanced colony formation in carcinoma cell lines YAP-dependently. In addition, PIP5Kγ90 interacted with heat shock cognate 71-kDa protein (Hsc70), which also contributed to Hippo pathway activation. Collectively, our results suggest that PIP5Kγ regulates the Hippo-YAP pathway by forming a functional complex with Merlin and LATS1 at the PI(4,5)P2-rich PM and via interplay with Hsc70.


Assuntos
Via de Sinalização Hippo , Neurofibromina 2 , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proliferação de Células/fisiologia , Transdução de Sinais
8.
J Mol Cell Cardiol ; 162: 158-165, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547259

RESUMO

Cells are constantly exposed to various mechanical forces, including hydrostatic pressure, cyclic stretch, fluid shear stress, and extracellular matrix stiffness. Mechanical cues can be translated into the cell-specific transcriptional process by a cellular mechanic-transducer. Evidence suggests that mechanical signals assist activated intracellular signal transduction pathways and the relative phenotypic adaptation to coordinate cell behavior and disease appropriately. The Hippo/yes-associated protein (YAP) signaling pathway is regulated in response to numerous mechanical stimuli. It plays an important role in the mechanotransduction mechanism, which converts mechanical forces to cascades of molecular signaling to modulate gene expression. This review summarizes the recent findings relevant to the Hippo/YAP pathway-based mechanotransduction in cell behavior and maintaining blood vessels, as well as cardiovascular disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Mecanotransdução Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Homeostase , Transdução de Sinais/genética , Proteínas de Sinalização YAP
9.
Gastric Cancer ; 25(2): 299-305, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35106710

RESUMO

IL-6 family cytokine leukaemia inhibitory factor (LIF) study has deciphered a variety of effects, in physiology as well as pathology. Despite the sudden arousal in LIF interest in cancers, its study in the gastric cancer (GC) context has been put aside. Only few related studies can be found in literature, most of them investigating IL-6/STAT3 signalling in GC, and not the particular LIF/LIFRß signalisation. LIF/LIFR has opposing effects depending on the signalling pathways involved. This review relates the pro- and anti-tumorigenic aspects of LIF/LIFR in GC, taking also into account facts from other types of cancer. A better understanding of these issues would undoubtedly help postulate interesting hypotheses and perspectives for future LIF/LIFR study and its use in GC therapies, where options tend to be limited in number and efficiency.


Assuntos
Neoplasias Gástricas , Humanos , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Transdução de Sinais
10.
Oral Dis ; 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35951471

RESUMO

OBJECTIVES: This study aimed to investigate the clinical and prognostic relevance of the Hippo-YAP transactivators YAP1 and TAZ in oral squamous cell carcinoma, and their possible relationship with PI3K/mTOR pathway activation. MATERIALS AND METHODS: Immunohistochemical analysis of YAP1, TAZ, PIK3CA (p110α), p-AKT (Ser473), and p-S6 (Ser235) was performed in paraffin-embedded tissue specimens from 165 OSCC patients. Correlations between protein expression and clinical data were further assessed. RESULTS: YAP1 expression was detected in both cytoplasm and nucleus of tumor cells, whereas TAZ expression was only found in the nucleus. Nuclear YAP1 was significantly associated with tumor size (p = 0.03), neck lymph node metastasis (p = 0.02), TNM stage (p = 0.02), and poor differentiation (p = 0.04). Nuclear TAZ was associated with tobacco (p = 0.03) and alcohol consumption (p = 0.04), and poor tumor differentiation (p = 0.04). There was a positive significant correlation between nuclear and cytoplasmic YAP1, nuclear TAZ, p110α expression, and mTORC1 activation p-S6 (S235). Combined expression of nuclear and cytoplasmic YAP1 was prognostic in both univariate and multivariate analyses. Active nuclear YAP1 was significantly and independently associated with poor disease-specific (p = 0.005, HR = 2.520; 95% CI = 1.319-4.816) and overall survival (p = 0.015, HR = 2.126; 95% CI = 1.155-3.916). CONCLUSION: Nuclear YAP1 is an independent predictor of poor survival in oral squamous cell carcinoma.

11.
Nephrology (Carlton) ; 27(8): 712-723, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35608936

RESUMO

AIM: Hypertensive nephropathy is embodied by kidney tissue fibrosis and glomerular sclerosis, as well as renal inflammation. The Hippo/YAP (yes-associated protein, YAP) axis has been reported to promote inflammation and fibrosis and may participate in the pathogenesis of heart, vascular and renal injuries. However, the role of the Hippo/YAP pathway in hypertensive renal injury has not been reported so far. We explored the role of the Hippo/YAP signalling pathway in hypertensive renal injury and the effect of peptide 17 on its effects. METHODS: Histopathological analyses were performed based on the Masson and Haematoxylin/eosin (HE) staining approaches. Biochemical indexes were determined and immunofluorescence and western blotting were used to detect protein expression levels. The mRNA expression levels were determined by qRT-PCR. RESULTS: Our results showed that peptide 17 reduced the systolic blood pressure (SBP) and urine protein/creatinine ratio in hypertensive rats. In addition, peptide 17 reduced the histopathological damage of kidneys in spontaneously hypertensive rats (SHRs). Moreover, peptide 17 downregulated genes in the Hippo/Yap pathway in kidney tissue of SHRs and Ang II-treated kidney cells. The expression levels of inflammatory factors TNF-α, IL-1ß and MCP-1 and the pro-fibrotic factors TGF-ß1, fibronectin, and CTGF were increased in the kidney of hypertensive rats, but reversed by peptide 17 treatment. Silencing of YAP had effect similar to that of peptide 17 in vivo and in vitro. CONCLUSION: Peptide 17 alleviates early renal injury in hypertension by regulating the Hippo/YAP signalling pathway. These findings may be useful in the treatment of hypertensive renal injury.


Assuntos
Hipertensão Renal , Hipertensão , Animais , Fibrose , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Hipertensão Renal/tratamento farmacológico , Inflamação/metabolismo , Rim/patologia , Ratos
12.
Cancer Sci ; 112(10): 4303-4316, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289205

RESUMO

Yes-associated protein 1 (YAP1) and its paralogue PDZ-binding motif (TAZ) play pivotal roles in cell proliferation, migration, and invasion, and abnormal activation of these TEAD transcriptional coactivators is found in diverse cancers in humans and mice. Targeting YAP1/TAZ signaling is thus a promising therapeutic avenue but, to date, few selective YAP1/TAZ inhibitors have been effective against cancer cells either in vitro or in vivo. We screened chemical libraries for potent YAP1/TAZ inhibitors using a highly sensitive luciferase reporter system to monitor YAP1/TAZ-TEAD transcriptional activity in cells. Among 29 049 low-molecular-weight compounds screened, we obtained nine hits, and the four of these that were the most effective shared a core structure with the natural product alantolactone (ALT). We also tested 16 other structural derivatives of ALT and found that natural ALT was the most efficient at increasing ROS-induced LATS kinase activities and thus YAP1/TAZ phosphorylation. Phosphorylated YAP1/TAZ proteins were subject to nuclear exclusion and proteosomic degradation such that the growth of ALT-treated tumor cells was inhibited both in vitro and in vivo. Our data show for the first time that ALT can be used to target the ROS-YAP pathway driving tumor cell growth and so could be a potent anticancer drug.


Assuntos
Aciltransferases/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Lactonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos de Eudesmano/farmacologia , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Auranofina/farmacologia , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular , Proteínas de Ligação a DNA/metabolismo , Descoberta de Drogas , Feminino , Inula/química , Luciferases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Fatores de Transcrição de Domínio TEA , Neoplasias da Língua/induzido quimicamente , Neoplasias da Língua/prevenção & controle , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas de Sinalização YAP
13.
Cancer Sci ; 112(1): 51-60, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33159406

RESUMO

The Hippo-YAP pathway regulates organ size, tissue homeostasis, and tumorigenesis in mammals. In response to cell density, external mechanical pressure, and/or other stimuli, the Hippo core complex controls the translocation of YAP1/TAZ proteins to the nucleus and thereby regulates cell growth. Abnormal upregulation or nuclear localization of YAP1/TAZ occurs in many human malignancies and promotes their formation, progression, and metastasis. A key example is squamous cell carcinoma (SCC) genesis. Many risk factors and crucial signals associated with SCC development in various tissues accelerate YAP1/TAZ accumulation, and mice possessing constitutively activated YAP1/TAZ show immediate carcinoma in situ (CIS) formation in these tissues. Because CIS onset is so rapid in these mutants, we propose that many SCCs initiate and progress when YAP1 activity is sustained and exceeds a certain oncogenic threshold. In this review, we summarize the latest findings on the roles of YAP1/TAZ in several types of SCCs. We also discuss whether targeting aberrant YAP1/TAZ activation might be a promising strategy for SCC treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Carcinoma de Células Escamosas/patologia , Proliferação de Células/fisiologia , Humanos
14.
J Bioenerg Biomembr ; 53(5): 541-551, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34251583

RESUMO

Acute myocardial infarction (AMI) is the main cause of death in the whole world. This study aimed to investigate whether forkhead box O4 (FoxO4) could negatively modulate ubiquitin specific peptidase 10 (USP10) transcription to aggravate the apoptosis and oxidative stress of hypoxia/reoxygenation (H/R)-induced cardiomyocytes through Hippo/YAP pathway. mRNA expression as well as protein expressions of USP10 and FoxO4 in H9C2 cells after H/R induction or transfection were respectively detected by Reverse transcription-quantitative (RT-q) PCR analysis and Western blot. The viability and apoptosis of H9C2 cells after H/R induction or transfection were respectively detected by CCK-8 and TUNEL assays. The expressions of lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in H9C2 cells after H/R induction or transfection were analyzed using appropriate kits and intracellular reactive oxygen species (ROS) levels were detected using a ROS Assay Kit. Dual luciferase reporter assay and Chromatin Immunoprecipitation (ChIP) have adopted to confirm the combination of USP10 and FoxO4. Western blot was also used to analyze the expression of apoptosis-related proteins and Hippo/YAP pathway-related proteins. As a result, USP10 expression was decreased in H/R-induced H9C2 cells in a time-dependent manner. USP10 overexpression increased the viability and suppressed the apoptosis and oxidative stress of H/R-induced H9C2 cells. In addition, FoxO4 modulated USP10 transcription. FoxO4 expression was increased in H9C2 cells induced by H/R. FoxO4 overexpression could reverse the protective effects of USP10 overexpression on H/R-induced H9C2 cells by regulating the Hippo/YAP signaling pathway. In conclusion, FoxO4 negatively modulated USP10 transcription to aggravate the apoptosis and oxidative stress of H/R-induced H9C2 cells via blocking Hippo/YAP pathway.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Via de Sinalização Hippo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas de Sinalização YAP/metabolismo , Doença Aguda , Animais , Apoptose/fisiologia , Hipóxia Celular/fisiologia , Linhagem Celular , Fatores de Transcrição Forkhead/genética , Infarto do Miocárdio/genética , Estresse Oxidativo/fisiologia , Ratos , Ubiquitina Tiolesterase/genética
15.
Virol J ; 18(1): 214, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717661

RESUMO

BACKGROUND: Human cytomegalovirus (HCMV) infection in utero is very common during pregnancy, which can lead to adverse outcomes in both pregnancy and progeny, but its pathogenesis has not been fully clarified. The decrease of extravillous cytotrophoblasts (EVT) invasion is an essential pathophysiological process of some pregnancy complications. Hippo-YAP signaling pathway plays an important role in regulating cell proliferation and apoptosis. However, whether YAP is involved in HCMV uterine infection remains to be studied. METHODS: The primary EVT was cultured and infected by the HCMV strain AD169 virus in vitro. Immunofluorescence staining of HCMVpp65 antigen was conducted afterward to confirm the establishment of an infection model. The optimal virus infection dose was determined by the EVT proliferation status in vitro. Real-time PCR was performed to examine the mRNA level of major genes involved in the Hippo pathway in EVT after HCMV infection. The effect of HCMV on the expression of YAP protein in EVT was evaluated by Immunofluorescence staining and Western blot. An in vitro cell invasion assay was carried out to analyze the influence of HCMV on EVT invasion. The changes of EVT invasion was accessed by establishing YAP silencing and over-expression models using YAP1 specific siRNA and plasmid pcDH. RESULTS: The optimal HCMV infection dose was 282.5TCID50/ml. Compared to the control group, the infection of HCMV significantly reduced the mRNA expression of Mst1, Mst2, SAV, Lats1, Lats2, Mob1, YAP1, TAZ, TEAD1-4 genes and YAP protein expression in the Hippo-YAP pathway. HCMV infection also decreased the EVT invasion. In non-infected EVT, the number of transmembrane EVT cells was significantly reduced when YAP1 gene was silenced, while it was significantly increased when YAP1 gene was over-expressed. In the HCMV-infected EVT, the number of transmembrane EVT cells significantly increased when over-expressed and eventually recovered to the level of NC. CONCLUSIONS: HCMV may decrease EVT invasion by inhibiting the expression of mRNA and protein of YAP in the Hippo-YAP signaling pathway. HCMV eventually reduces the invasion ability of EVT by inhibiting multiple genes in the Hippo-YAP signaling pathway, especially inhibiting YAP which serves as the downstream effector.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Proliferação de Células , Citomegalovirus/fisiologia , Feminino , Via de Sinalização Hippo , Humanos , Gravidez , Proteínas Serina-Treonina Quinases , Trofoblastos , Proteínas Supressoras de Tumor/metabolismo
16.
Pharmacol Res ; 169: 105635, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33930530

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterised by an inexorable decline in lung function. The development of IPF involves multiple positive feedback loops; and a strong support role of the Hippo/YAP signalling pathway, which is essential for regulating cell proliferation and organ size, in IPF pathogenesis has been unveiled recently in cell and animal models. YAP/TAZ contributes to both pulmonary fibrosis and alveolar regeneration via the conventional Hippo/YAP signalling pathway, G protein-coupled receptor signalling, and mechanotransduction. Selectively inhibiting YAP/TAZ in lung fibroblasts may inhibit fibroblast proliferation and extracellular matrix deposition, while activating YAP/TAZ in alveolar epithelial cells may promote alveolar regeneration. In this review, we explore, for the first time, the bidirectional and cell-specific regulation of the Hippo/YAP pathway in IPF pathogenesis and discuss recent research progress and future prospects of IPF treatment based on Hippo/YAP signalling, thus providing a basis for the development of new therapeutic strategies to alleviate or even reverse IPF.


Assuntos
Via de Sinalização Hippo , Fibrose Pulmonar Idiopática/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Sinalização YAP/metabolismo , Animais , Via de Sinalização Hippo/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Sinalização YAP/fisiologia
17.
Can J Physiol Pharmacol ; 99(10): 1000-1006, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33852804

RESUMO

The Hippo/YAP (yes-associated protein) pathway is an important signaling pathway to control organ development and tissue homeostasis. YAP is a downstream effector of the Hippo pathway and a critical mediator of mechanic stress. Hypertensive nephropathy is characterized with glomerular sclerosis stiffness and renal fibrosis. The present study investigated the role of YAP pathway in angiotensin (Ang) II hypertensive renal injury by using YAP activation inhibitor verteporfin. Ang II increased the protein expression of YAP in renal nucleus fraction, decreased phospho-YAP, and phospho-LATS1/2 (large tumor suppressors 1 and 2) expressions in renal cytoplasmic fraction, suggesting Ang II activation of renal YAP. Ang II significantly increased systolic blood pressure (SBP), proteinuria, glomerular sclerosis, and fibrosis; treatment with verteporfin attenuated Ang II-induced proteinuria and renal injury with a mild reduction in SBP. Moreover, Ang II increased the protein expressions of inflammatory factors including tumor necrosis factor α, interleukin 1ß, and monocyte chemoattractant protein-1, and profibrotic factors including transforming growth factor ß, phospho-Smad3 and fibronectin. Verteporfin reversed abovementioned Ang II-induced molecule expressions. Our results for the first time demonstrate that the activation of the YAP pathway promotes hypertensive renal inflammation and fibrosis, which may promote hypertensive renal injury. YAP may be a new target for prevention and treatment of hypertensive renal diseases.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Angiotensina II/toxicidade , Hipertensão Renal/tratamento farmacológico , Hipertensão/metabolismo , Nefrite/tratamento farmacológico , Verteporfina/farmacologia , Proteínas de Sinalização YAP/antagonistas & inibidores , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Pressão Sanguínea , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Fibrose , Hipertensão/induzido quimicamente , Hipertensão/patologia , Hipertensão Renal/etiologia , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrite/etiologia , Nefrite/metabolismo , Nefrite/patologia , Fármacos Fotossensibilizantes/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Vasoconstritores/toxicidade
18.
J Appl Toxicol ; 41(4): 561-571, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33058278

RESUMO

The presence of metal ions, such as titanium (Ti) ions, is toxic to adjacent tissues of implants. Indeed, Ti ions may induce an inflammatory response through the NF-κB pathway, thus causing damage to soft and hard tissues. The involvement of Yes-associated protein (YAP), a key factor of the Hippo pathway, in an immuno-inflammatory response has been confirmed, whereas its role in Ti ion-mediated inflammation has not been elucidated. Therefore, this study aimed to investigate the role of signal crosstalk between the Hippo/YAP and NF-κB signaling pathways in the pro-inflammatory effect of Ti ions on macrophages. In our work, RAW264.7 cells were cocultured with Ti ions. The migration capacity of macrophages under Ti ion exposure was measured by transwell assay. Western blot analysis was used to detect the expressions of related proteins. Polymerase chain reaction was used to evaluate the expression of pro-inflammatory cytokines. The nucleus translocation of YAP and P65 was visualized and analyzed via immunofluorescence staining. The results showed that the migration of macrophages was promoted under Ti ion exposure. Ten parts per million Ti ions induced nuclear expression of YAP and activated the NF-κB pathway, which finally upregulated the expression of pro-inflammatory cytokines in macrophages. Moreover, the inhibition of the NF-κB pathway rescued the reduction of YAP expression under Ti ion exposure. Most importantly, the overexpression of YAP exacerbated the inflammatory response mediated by Ti ions through the NF-κB pathway. In summary, this study explored the mechanism of Hippo-YAP/NF-κB pathway crosstalk involved in the regulation of macrophage behaviors under Ti ion exposure.


Assuntos
Via de Sinalização Hippo/efeitos dos fármacos , Via de Sinalização Hippo/genética , Mediadores da Inflamação/metabolismo , Inflamação/etiologia , Inflamação/genética , Macrófagos/efeitos dos fármacos , Titânio/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
19.
Proc Natl Acad Sci U S A ; 115(29): E6760-E6769, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967145

RESUMO

Zyxin is a member of the focal adhesion complex and plays a critical role in actin filament polymerization and cell motility. Several recent studies showed that Zyxin is a positive regulator of Yki/YAP (Yes-associated protein) signaling. However, little is known about the mechanisms by which Zyxin itself is regulated and how Zyxin affects Hippo-YAP activity. We first showed that Zyxin is phosphorylated by CDK1 during mitosis. Depletion of Zyxin resulted in significantly impaired colon cancer cell proliferation, migration, anchorage-independent growth, and tumor formation in xenograft animal models. Mitotic phosphorylation is required for Zyxin activity in promoting growth. Zyxin regulates YAP activity through the colon cancer oncogene CDK8. CDK8 knockout phenocopied Zyxin knockdown in colon cancer cells, while ectopic expression of CDK8 substantially restored the tumorigenic defects of Zyxin-depletion cells. Mechanistically, we showed that CDK8 directly phosphorylated YAP and promoted its activation. Fully activated YAP is required to support the growth in CDK8-knockout colon cancer cells in vitro and in vivo. Together, these observations suggest that Zyxin promotes colon cancer tumorigenesis in a mitotic-phosphorylation-dependent manner and through CDK8-mediated YAP activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Mitose , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Zixina/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Quinase 8 Dependente de Ciclina/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Proteínas de Neoplasias/genética , Fosfoproteínas/genética , Fosforilação/genética , Fatores de Transcrição , Proteínas de Sinalização YAP , Zixina/genética
20.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068565

RESUMO

Pancreatic cancer is one of the most malignant cancers with high mortality. Therefore, it is of great urgency to develop new agents that could improve the prognosis of Pancreatic cancer patients. Chinese propolis (CP), a flavonoid-rich beehive product, has been reported to have an anticancer effect. In this study, we applied CP to the human Pancreatic cancer cell line Panc-1 to verify its impact on tumor development. CP induced apoptosis in Panc-1 cells from 12.5 µg/mL in a time- and dose-dependent manner with an IC50 value of approximately 50 µg/mL. Apoptosis rate induced by CP was examined by Annexing FITC/PI assay. We found that 48 h treatment with 50 µg/mL CP resulted in 34.25 ± 3.81% apoptotic cells, as compared to 9.13 ± 1.76% in the control group. We further discovered that the Panc-1 cells tended to be arrested at G2/M phase after CP treatment, which is considered to contribute to the anti-proliferation effect of CP. Furthermore, our results demonstrated that CP suppressed Panc-1 cell migration by regulating epithelial-mesenchymal transition (EMT). Interestingly, the Hippo pathway was activated in Panc-1 cells after CP treatment, serving as a mechanism for the anti-pancreatic cancer effect of CP. These findings provide a possibility of beehive products as an alternative treatment for pancreatic cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Própole/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Via de Sinalização Hippo , Humanos , Padrões de Referência , Transdução de Sinais/efeitos dos fármacos , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA