Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(6): 145, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918292

RESUMO

The objective of the current research was to develop abietic acid (AA)-loaded hybrid polymeric nanoparticles (HNPs) for anti-inflammatory and antioxidant activity after oral administration. AAHNPs were developed by microinjection technique and optimized by 3-factor 3-level Box-Behnken design. The AAHNPs were evaluated for morphology, FTIR, X-ray diffraction, in-vitro release, ex-vivo permeation, in-vitro antioxidant, and in-vivo anti-inflammatory activity. The optimized AAHNPs (AAHNPsopt) displayed 384.5 ± 6.36nm of PS, 0.376 of PDI, 23.0 mV of ZP, and 80.01 ± 1.89% of EE. FTIR and X-ray diffraction study results revealed that AA was encapsulated into a HNPs matrix. The AAHNPsopt showed significant (P < 0.05) high and sustained release of AA (86.72 ± 4.92%) than pure AA (29.87 ± 3.11%) in 24h. AAHNPsopt showed an initial fast release of AA (20.12 ± 3.07% in 2h), which succeeded in reaching the therapeutic concentration. The AAHNPsopt showed 2.49-fold higher ex-vivo gut permeation flux than pure AA due to the presence of lipid and surfactant. The AAHNPsopt exhibited significantly (P < 0.05, P < 0.01, P < 0.001) higher antioxidant activity as compared to pure AA at each concentration. AAHNPsopt formulation displayed a significantly (P < 0.05) higher anti-inflammatory effect (21.51 ± 2.23% swelling) as compared to pure AA (46.51 ± 1.74% swelling). From the in-vitro and in-vivo finding, it was concluded that HNPs might be a suitable carrier for the improvement of the therapeutic efficacy of the drug.


Assuntos
Abietanos , Anti-Inflamatórios , Antioxidantes , Portadores de Fármacos , Lipídeos , Nanopartículas , Polímeros , Nanopartículas/química , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Ratos , Polímeros/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Lipídeos/química , Portadores de Fármacos/química , Abietanos/farmacologia , Abietanos/administração & dosagem , Abietanos/química , Difração de Raios X/métodos , Liberação Controlada de Fármacos , Administração Oral , Masculino , Tamanho da Partícula , Ratos Wistar , Química Farmacêutica/métodos
2.
Nanomedicine ; 49: 102659, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822335

RESUMO

Boron neutron capture therapy shows is a promising approach to cancer therapy, but the delivery of effective boron agents is challenging. To address the requirements for efficient boron delivery, we used a hybrid nanoparticle comprising a carborane = bearing pullulan nanogel and hydrophobized boron oxide nanoparticle (HBNGs) enabling the preparation of highly concentrated boron agents for efficient delivery. The HBNGs showed better anti-cancer effects on Colon26 cells than a clinically boron agent, L-BPA/fructose complex, by enhancing the accumulation and retention amount of the boron agent within cells in vitro. The accumulation of HBNGs in tumors, due to the enhanced permeation and retention effect, enabled the delivery of boron agents with high tumor selectivity, meeting clinical demands. Intravenous injection of boron neutron capture therapy (BNCT) using HBNGs decreased tumor volume without significant body weight loss, and no regrowth of tumor was observed three months after complete regression. The therapeutic efficacy of HBNGs was better than that of L-BPA/fructose complex. BNCT with HBNGs is a promising approach to cancer therapeutics.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Nanogéis , Boro , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Compostos de Boro , Frutose
3.
Pharm Dev Technol ; 28(9): 843-855, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37773031

RESUMO

Poly (D, L Lactic-co-Glycolic acid) (PLGA) is an FDA-approved polymer. It is distinguished from other biocompatible polymers by its feasibility of production and safety for intravenous cancer tumor targeting. Curcumin (CUR) is a natural molecule with versatile bioactivities including inhibiting the nuclear Factor kappa B (Nf-kB) levels in cancer cells, increased by chemotherapy agents. Our group previously reported a successful decrease in the p65 (RelA) subunit of Nf-kB using 125 µg/ml CUR loaded into PLGA nano-micelles. However, this amount was insufficient to reduce all Nf-kB subunits. This study aimed to increase the hydrophobic capacity of PLGA toward CUR using 1,2-Distearoyl-sn-glycerol-3-phosphoethanolamine (DSPE), an FDA-approved phospholipid. PLGA-DSPE hybrid nano-micelles (HNM) were prepared using two different methods, oil-in-water (OiWa) and film preparation-rehydration (FiRe). The encapsulated CUR was successfully increased to 250 µg/ml using the FiRe method. Physicochemical characterization of CUR-loaded HNM was performed using DLS FT-IR, DSC, and HPLC. In HNM with a size of 156.6 nm, DSPE, incorporated with all functional groups of PLGA, and CUR was trapped in the core of this structure. The release profile of CUR was suitable for targeted cancer therapy and the Encapsulation Efficacy was 92%.


Assuntos
Curcumina , Nanopartículas , Neoplasias , Fosfatidiletanolaminas , Humanos , Micelas , Portadores de Fármacos/química , NF-kappa B , Espectroscopia de Infravermelho com Transformada de Fourier , Polímeros/química , Ácido Láctico/química , Nanopartículas/química , Tamanho da Partícula
4.
Luminescence ; 37(6): 944-952, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35338676

RESUMO

Inorganic-organic hybrid nanoparticles formed by lanthanide-doped nanostructures and organic ligands have been intensively studied, which could greatly increase their photoluminescence performance as a result of the energy transfer process from organic ligands to Ln3+ ions. However, the photoluminescence intensity and excitation spectral width are still quite limited on coordinating with a single type of organic ligand. In this work, Eu3+ -doped LaF3 (LaF3 :Eu3+ ) nanoparticles were prepared using a hydrothermal method, and were then hybridized with benzoic acid and thenoyltrifluoroacetone to form the hybrid nanostructures. After that, the hybrid nanostructures were mixed with 2,2'-azobisisobutyronitrile and methyl methacrylate to prepare the composites. The sample obtained by hybridization and composite doping with 5% Eu3+ exhibited the best photoluminescence performance. The excitation peak width and luminescence intensity of the hybrid nanostructures were significantly increased. The excitation spectral width of the inorganic-organic mixed hybrid nanostructures was particularly enhanced, and covered the whole ultraviolet band region of solar light on Earth. The prepared composites exhibited good optical properties.

5.
Sensors (Basel) ; 22(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214260

RESUMO

Breast cancer is the most common cancer in females and ranked second after skin cancer. The use of natural compounds is a good alternative for the treatment of breast cancer with less toxicity than synthetic drugs. The aim of the present study is to develop and characterize hybrid Apigenin (AN) Nanoparticles (NPs) for oral delivery (AN-NPs). The hybrid AN-NPs were prepared by the self-assembly method using lecithin, chitosan and TPGS. Further, the NPs were optimized by Box-Behnken design (3-factor, 3-level). The hybrid NPs were evaluated for particle size (PS), entrapment efficiency (EE), zeta potential (ZP), and drug release. The optimized hybrid NPs (ON2), were further evaluated for solid state characterization, permeation, antioxidant, cytotoxicity and antimicrobial study. The formulation (ON2) exhibited small PS of 192.6 ± 4.2 nm, high EE 69.35 ± 1.1%, zeta potential of +36.54 mV, and sustained drug release (61.5 ± 2.5% in 24 h), as well as significantly (p < 0.05) enhanced drug permeation and antioxidant activity. The IC50 of pure AN was found to be significantly (p < 0.05) lower than the formulation (ON2). It also showed significantly greater (p < 0.05) antibacterial activity than pure AN against Bacillus subtilis and Salmonella typhimurium. From these findings, it revealed that a hybrid AN polymeric nanoparticle is a good carrier for the treatment of breast cancer.


Assuntos
Quitosana , Nanopartículas , Antioxidantes/farmacologia , Apigenina/farmacologia , Quitosana/química , Portadores de Fármacos/química , Feminino , Humanos , Nanopartículas/química , Tamanho da Partícula
6.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563077

RESUMO

Developing photoactivatable theranostic platforms with integrated functionalities of biocompatibility, targeting, imaging contrast, and therapy is a promising approach for cancer diagnosis and therapy. Here, we report a theranostic agent based on a hybrid nanoparticle comprising fullerene nanocrystals and gold nanoparticles (FGNPs) for photoacoustic imaging and photothermal therapy. Compared to gold nanoparticles and fullerene crystals, FGNPs exhibited stronger photoacoustic signals and photothermal heating characteristics by irradiating light with an optimal wavelength. Our studies demonstrated that FGNPs could kill cancer cells due to their photothermal heating characteristics in vitro. Moreover, FGNPs that are accumulated in tumor tissue via the enhanced permeation and retention effect can visualize tumor tissue due to their photoacoustic signal in tumor xenograft model mice. The theranostic agent with FGNPs shows promise for cancer therapy.


Assuntos
Fulerenos , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Animais , Linhagem Celular Tumoral , Fulerenos/química , Ouro/química , Humanos , Nanopartículas Metálicas/uso terapêutico , Camundongos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Terapia Fototérmica , Medicina de Precisão , Nanomedicina Teranóstica/métodos
7.
Mol Pharm ; 18(3): 1293-1304, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497574

RESUMO

Nicotine vaccine was considered a promising therapy against smoking addiction. The level of immune response that a nicotine vaccine can induce is pivotal to its efficacy. In this study, Toll-like receptor 9 agonists, namely, CpG ODN 1555 and CpG ODN 1826, were incorporated into a nanoparticle-based nicotine vaccine (NanoNicVac) to enhance its immunogenicity. The results showed that NanoNicVac containing either CpG ODN 1555 or CpG ODN 1826 could be rapidly internalized by dendritic cells. In mice trials, it was found that NanoNicVac with CpG ODN 1555 and CpG ODN 1826 induced 3.3- and 3.2-fold higher anti-nicotine antibody titer than that by the native NanoNicVac after two injections, respectively. Instead of enhancing the immunogenicity of the vaccine, however, mixtures of the two CpG ODNs were observed to exert an immune-suppressing effect on NanoNicVac. Finally, the histopathological examination on major organs of the mice immunized with the NanoNicVacs proved that NanoNicVac with either CpG ODN 1555 or CpG ODN 1826 as adjuvants did not cause detectable toxicity to the mice.


Assuntos
Nanopartículas/química , Nicotina/imunologia , Receptor Toll-Like 9/agonistas , Vacinas/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos/farmacologia , Animais , Feminino , Imunização/métodos , Camundongos , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/imunologia , Receptor Toll-Like 9/imunologia , Vacinação/métodos
8.
Pharm Res ; 38(11): 1897-1914, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34655006

RESUMO

PURPOSE: Chemotherapy for glioblastoma multiforme (GBM) remains ineffective due to insufficient penetration of therapeutic agents across the blood-brain barrier (BBB) and into the GBM tumor. Herein, is described, the optimization of the lipid composition and fabrication conditions for a BBB- and tumor penetrating terpolymer-lipid-hybrid nanoparticle (TPLN) for delivering doxorubicin (DOX) to GBM. METHODS: The composition of TPLNs was first screened using different lipids based on nanoparticle properties and in vitro cytotoxicity by using 23 full factorial experimental design. The leading DOX loaded TPLNs (DOX-TPLN) were prepared by further optimization of conditions and used to study cellular uptake mechanisms, in vitro cytotoxicity, three-dimensional (3D) glioma spheroid penetration, and in vivo biodistribution in a murine orthotopic GBM model. RESULTS: Among various lipids studied, ethyl arachidate (EA) was found to provide excellent nanoparticle properties e.g., size, polydispersity index (PDI), zeta potential, encapsulation efficiency, drug loading, and colloidal stability, and highest anticancer efficacy for DOX-TPLN. Further optimized EA-based TPLNs were prepared with an optimal particle size (103.8 ± 33.4 nm) and PDI (0.208 ± 0.02). The resultant DOX-TPLNs showed ~ sevenfold higher efficacy than free DOX against human GBM U87-MG-RED-FLuc cells in vitro. The interaction between the TPLNs and the low-density lipoprotein receptors also facilitated cellular uptake, deep penetration into 3D glioma spheroids, and accumulation into the in vivo brain tumor regions of DOX-TPLNs. CONCLUSION: This work demonstrated that the TPLN system can be optimized by rational selection of lipid type, lipid content, and preparation conditions to obtain DOX-TPLN with enhanced anticancer efficacy and GBM penetration and accumulation.


Assuntos
Antineoplásicos/administração & dosagem , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Sistemas de Liberação de Fármacos por Nanopartículas/química , Animais , Antineoplásicos/farmacocinética , Barreira Hematoencefálica , Neoplasias Encefálicas , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Glioblastoma/patologia , Humanos , Lipossomos/química , Camundongos , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Esferoides Celulares , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Pharm ; 17(10): 3990-4003, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32808785

RESUMO

The objective of the present study was to develop long-acting efavirenz (Efa)-enfuvirtide (Enf) Co-loaded polymer-lipid hybrid nanoparticles (PLN) with improved intracellular delivery to target T-cells and macrophage cells located in multiple human immunodeficiency virus sanctuaries. The Box-Behnken design was utilized to optimize three high-risk factors, namely, Efa amount, sonication time for primary emulsion, and sonication time for aqueous nanodispersion obtained from preliminary studies. Lyophilized Efa-Enf Co-loaded PLN using trehalose elicited spherical morphology, drug amorphization on incorporation, and absence of drug-excipient interaction. In vitro release studies revealed an sustained release of both the drugs from PLN with the differential release profile. Efa-Enf Co-loaded PLN exhibited low hemolytic, platelet and leukocyte aggregation as well as low cytotoxicity in Jurkat E6.1 T-cells and U937 macrophage cells. Circular dichroism spectra confirmed the presence of an α-helix form of Enf after encapsulation in PLN. Coumarin-6-loaded PLN exhibited enhanced cellular uptake in Jurkat E6.1 T-cells and U937 macrophage cells in comparison to free coumarin-6, as evidenced by fluorescence microscopy and flow cytometry. In vivo biodistribution studies after intravenous administration of near-infrared dye-loaded PLN (surrogate for Efa-Enf PLN) revealed non-uniform distribution within 2 h in the order of spleen ≥ liver > lymph node > thymus > lungs > female reproductive tract (FRT) > heart > kidneys > brain. However, subcutaneous administration caused non-uniform biodistribution after 3 days, eliciting a long-acting slow release from the injection site depot until day 5 in the infection-spread site (lymph nodes and FRT), reservoir sites (liver and spleen) and the difficult-to-access site (brain). Furthermore, it presents a vital illustration of the available tissue-specific drug concentration prediction from simulated surrogate PLN.


Assuntos
Alcinos/administração & dosagem , Benzoxazinas/administração & dosagem , Ciclopropanos/administração & dosagem , Portadores de Fármacos/química , Infecções por HIV/tratamento farmacológico , Inibidores da Transcriptase Reversa/administração & dosagem , Internalização do Vírus/efeitos dos fármacos , Alcinos/farmacocinética , Animais , Benzoxazinas/farmacocinética , Ciclopropanos/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Células Jurkat , Lipídeos/química , Camundongos , Modelos Animais , Nanopartículas/química , Peptídeos/química , Polímeros/química , Ratos , Inibidores da Transcriptase Reversa/farmacocinética , Distribuição Tecidual
10.
Artigo em Inglês | MEDLINE | ID: mdl-31642370

RESUMO

Mercury pollution is a rampant problem in many economically significant Philippine freshwater ecosystems. Communities dependent on these freshwater sources are therefore at risk for exposure to harmful levels of mercury. Various formulations of a novel gold-graphene oxide-iron oxide (Au-GO-Fe3O4) hybrid nanoparticle system were created and subjected to UV-Vis spectroscopy to determine optimal formulations that would best serve as potential substrates for Surface-Enhanced Raman Spectroscopy (SERS) detection of mercury. Optimal formulations of Au-GO-Fe3O4 were also introduced into mercury-polluted environments to evaluate its ability to remove mercury from both water and biological tissues. Spectroscopic analysis revealed that Fe3O4-rich formulations of Au-GO-Fe3O4 had the greatest potential to boost Raman signal intensities of mercury due to red shifting of absorbance peaks and overall increased absorbance across visible wavelengths resulting in the inclusion of greater areas underneath absorbance peaks. Mercury remediation experiments likewise demonstrated Au-GO-Fe3O4 to significantly reduce average concentrations of mercury from 1.67 to 0.82 ppm in polluted water samples - corresponding to a mercury removal efficiency of 50.9% and a mercury adsorption capacity of 5.89 mg/g. The results highlight the viability of Au-GO-Fe3O4 to function as both substrate for SERS detection of mercury and as effective adsorbent for mercury remediation.


Assuntos
Óxido Ferroso-Férrico/química , Ouro/química , Grafite/química , Mercúrio/isolamento & purificação , Nanopartículas Metálicas/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Mercúrio/química , Análise Espectral Raman , Poluentes Químicos da Água/química , Purificação da Água/métodos
11.
Nanomedicine ; 20: 102023, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181264

RESUMO

The treatment efficacy of a nicotine vaccine largely relies on its ability to induce high titers of nicotine-specific antibodies. Due to its strong immune-potentiating effects, aluminum salt (Alum) has been commonly used as an adjuvant in various nicotine vaccine formulations. In this study, we attempted to improve the immunological performance of a hybrid nanoparticle-based nicotine vaccine (NanoNicVac) by co-administering it with Alum. It was found that Alum severely restricted the release of NanoNicVac at the site of injection. Moreover, Alum damaged the hybrid structure of the vaccine. In the animal trial, mice immunized with NanoNicVac alone achieved an anti-nicotine IgG titer of 3.5 ±â€¯0.2 × 104 after three injections. Unexpectedly, Alum with quantities of 125, 250, 500, and 1000 µg did not enhance the immunogenicity of NanoNicVac. In addition, Alum did not improve the ability of the vaccine to reduce the entry of nicotine into the brain.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/química , Nanopartículas/química , Nicotina/imunologia , Vacinas/imunologia , Animais , Células Dendríticas/metabolismo , Endocitose , Feminino , Lipossomos , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Fatores de Tempo
12.
Small ; 14(7)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251426

RESUMO

Various strategies for combination therapy to overcome current limitations in cancer therapy have been actively investigated. Among them, simultaneous delivery of multiple drugs is a subject of high interest due to anticipated synergistic effect, but there have been difficulties in designing and developing effective nanomaterials for this purpose. In this work, dual-pore coexisting hybrid porous silica nanoparticles are developed through Volmer-Weber growth pathway for efficient co-delivery of gene and anticancer drug. Based on the different pore sizes (2-3 and 40-45 nm) and surface modifications of the core and branch domains, loading and controlled release of gene and drug are achieved by appropriate strategies for each environment. With excellent loading capacity and low cytotoxicity of the present platform, the combinational cancer therapy is successfully demonstrated against human cervical cancer cell line. Through a series of quantitative analyses, the excellent gene-chemo combinational therapeutic efficiency is successfully demonstrated. It is expected that the present nanoparticle will be applicable to various biomedical fields that require co-delivery of small molecule and nucleic acid.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , Nanopartículas/química , Dióxido de Silício/química , Humanos
13.
Mol Pharm ; 15(5): 1778-1790, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29616555

RESUMO

Second generation antiandrogens have improved overall survival for men with metastatic castrate resistant prostate cancer; however, the antiandrogens result in suppression of androgen receptor (AR) activity in all tissues resulting in dose limiting toxicity. We sought to overcome this limitation through encapsulation in a prostate specific membrane antigen (PSMA)-conjugated nanoparticle. We designed and characterized a novel nanoparticle containing an antiandrogen, enzalutamide. Selectivity and enhanced efficacy was achieved through coating the particle with PSMA. The PSMA-conjugated nanoparticle was internalized selectively in AR expressing prostate cancer cells. It did not elicit an inflammatory effect. The efficacy of enzalutamide was not compromised through insertion into the nanoparticle; in fact, lower systemic drug concentrations of enzalutamide resulted in comparable clinical activity. Normal muscle cells were not impacted by the PSMA-conjugated containing antiandrogen. This approach represents a novel strategy to increase the specificity and effectiveness of antiandrogen treatment for men with castrate resistant prostate cancer. The ability to deliver higher drug concentrations in prostate cancer cells may translate into improved clinical end points including overall survival.


Assuntos
Antagonistas de Androgênios/química , Antagonistas de Androgênios/farmacologia , Nanopartículas/química , Antígeno Prostático Específico/metabolismo , Receptores Androgênicos/metabolismo , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Células MCF-7 , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo
14.
Pharm Res ; 35(11): 199, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30167890

RESUMO

PURPOSE: In this study, a new modified nanoprecipitation approach that more efficient and simpler than conventional approach was developed to synthesize D-alpha-Tocopheryl polyethylene glycol 1000 succinate stabilized liposome-PLGA hybrid nanoparticle, loaded with simvastatin (ST-TLPN). METHODS: The optimum formulation was screened via investigation of the impact of TPGS mass within polymeric core and lipid shell on the physicochemical properties of nanoparticles respectively. FTIR, and drug release of ST-TLPN were also systematically determined. Finally, the cellular internalization was evaluated using the murine macrophage cell line, in vivo pharmacokinetic behavior and antiatherogenic efficacies were elaborately examined in atherosclerotic rabbit models. RESULTS: With the weight ratio of TPGS-to-PLGA in organic phase of 30% and TPGS-to-lipid in aqueous phase of 35%, ST-TLPN exhibited core-shell structure, sub-100 nm size, EE% of over 90% and a slow release profile. The excellent cellular uptake was displayed in RAW264.7 cell line. Improved pharmacokinetic behavior, and enhanced antiatherogenic efficacy of ST-TLPN in the model animals were also revealed compared with ST-loaded PLGA nanoparticles. CONCLUSION: These findings suggest the modified nanoprecipitation method holds great potential for fabricating LPN, aided by the multiple functions of TPGS. And the prepared TLPN is a promising delivery system for use in the pharmaceutical field.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lipossomos/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Sinvastatina/farmacologia , Vitamina E/química , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Portadores de Fármacos , Liberação Controlada de Fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Células RAW 264.7 , Coelhos , Sinvastatina/química , Sinvastatina/farmacocinética , Propriedades de Superfície
15.
J Nanobiotechnology ; 16(1): 92, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442135

RESUMO

BACKGROUND: Atherosclerosis, a major source of cardiovascular disease, is asymptomatic for decades until the activation of thrombosis and the rupture of enlarged plaques, resulting in acute coronary syndromes and sudden cardiac arrest. Magnetic resonance imaging (MRI) is a noninvasive nuclear imaging technique to assess the degree of atherosclerotic plaque with high spatial resolution and excellent soft tissue contrast. However, MRI lacks sensitivity for preventive medicine, which limits the ability to observe the onset of vulnerable plaques. In this study, we engineered hybrid metal oxide-peptide amphiphile micelles (HMO-Ms) that combine an inorganic, magnetic iron oxide or manganese oxide inner core with organic, fibrin-targeting peptide amphiphiles, consisting of the sequence CREKA, for potential MRI imaging of thrombosis on atherosclerotic plaques. RESULTS: Hybrid metal oxide-peptide amphiphile micelles, consisting of an iron oxide (Fe-Ms) or manganese oxide (Mn-Ms) core with CREKA peptides, were self-assembled into 20-30 nm spherical nanoparticles, as confirmed by dynamic light scattering and transmission electron microscopy. These hybrid nanoparticles were found to be biocompatible with human aortic endothelial cells in vitro, and HMO-Ms bound to human clots three to five times more efficiently than its non-targeted counterparts. Relaxivity studies showed ultra-high r2 value of 457 mM-1 s-1 and r1 value of 0.48 mM-1 s-1 for Fe-Ms and Mn-Ms, respectively. In vitro, MR imaging studies demonstrated the targeting capability of CREKA-functionalized hybrid nanoparticles with twofold enhancement of MR signals. CONCLUSION: This novel hybrid class of MR agents has potential as a non-invasive imaging method that specifically detects thrombosis during the pathogenesis of atherosclerosis.


Assuntos
Aterosclerose/diagnóstico por imagem , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/química , Óxidos/química , Peptídeos/química , Meios de Contraste/química , Células Endoteliais/metabolismo , Humanos , Cinética , Nanopartículas de Magnetita/química , Micelas , Tamanho da Partícula , Placa Aterosclerótica/diagnóstico por imagem , Polietilenoglicóis/química , Propriedades de Superfície
16.
J Nanobiotechnology ; 16(1): 64, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30176941

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a chronic disease that causes excessive hepatic lipid accumulation. Reducing hepatic lipid deposition is a key issue in treatment and inhibition of NAFLD evolution. Silymarin is a potent hepatoprotective agent; however, it has low oral bioavailability due to its poor aqueous solubility and low membrane permeability. Unfortunately, few studies have addressed the development of convenient oral nanocarriers that can efficiently deliver silymarin to the liver and enhance its lipid-lowering effect. We designed silymarin-loaded lipid polymer hybrid nanoparticles containing chitosan (CS-LPNs) to improve silymarin bioavailability and evaluated their lipid-lowering effect in adiponutrin/patatin-like phospholipase-3 I148M transgenic mice, an NAFLD model. RESULTS: Compared to chitosan-free nanoparticles, CS-LPNs showed 1.92-fold higher uptake by fatty liver cells. Additionally, CS-LPNs significantly reduced TG levels in fatty liver cells in an in vitro lipid deposition assay, suggesting their potential lipid-lowering effects. The oral bioavailability of silymarin from CS-LPNs was 14.38-fold higher than that from suspensions in rats. Moreover, compared with chitosan-free nanoparticles, CS-LPNs effectively reduced blood lipid levels (TG), improved liver function (AST and ALT), and reduced lipid accumulation in the livers of mice in vivo. Reduced macrovesicular steatosis in pathological tissue after CS-LPN treatment indicated their protective effect against liver steatosis in NAFLD. CONCLUSIONS: CS-LPNs enhanced oral delivery of silymarin and exhibited a desirable lipid-lowering effect in a mouse model. These findings suggest that CS-LPNs may be a promising oral nanocarrier for NAFLD therapeutics.


Assuntos
Quitosana/química , Ácido Láctico/química , Lipídeos/química , Nanopartículas/química , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ácido Poliglicólico/química , Silimarina/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Preparações de Ação Retardada/síntese química , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Células Hep G2 , Humanos , Fígado , Masculino , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Nanopartículas/uso terapêutico , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Wistar , Silimarina/administração & dosagem , Silimarina/uso terapêutico , Propriedades de Superfície
17.
Nanomedicine ; 14(5): 1655-1665, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29719216

RESUMO

A series of hybrid nanoparticle-based nicotine nanovaccines (NanoNicVac) were engineered in this work by conjugating potent carrier protein candidates (Keyhole limpet hemocyanin (KLH) multimer, KLH subunit, cross-reactive material 197 (CRM197), or tetanus toxoid (TT)) for enhanced immunological efficacy. NanoNicVac with CRM197 or TT were processed by dendritic cells more efficiently than that with KLH multimer or subunit. NanoNicVac carrying CRM197 or TT exhibited a significantly higher immunogenicity against nicotine and a considerably lower immunogenicity against carrier proteins than NanoNicVac carrying KLH multimer or subunit in mice. The in vivo results revealed that NanoNicVac with CRM197 or TT resulted in lower levels of nicotine in the brain of mice after nicotine challenge. All findings suggest that an enhanced immunological efficacy of NanoNicVac can be achieved by using CRM197 or TT instead of KLH or KLH subunit as carrier proteins, making NanoNicVac a promising next-generation immunotherapeutic candidate against nicotine addiction.


Assuntos
Proteínas de Bactérias/imunologia , Nanopartículas/administração & dosagem , Nicotina/imunologia , Toxoide Tetânico/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Animais , Proteínas de Bactérias/química , Encéfalo/imunologia , Encéfalo/metabolismo , Feminino , Hemocianinas/química , Hemocianinas/imunologia , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Toxoide Tetânico/química , Tabagismo/imunologia , Tabagismo/prevenção & controle , Vacinas Sintéticas/química
18.
Proc Natl Acad Sci U S A ; 112(7): 1959-64, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25653336

RESUMO

Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. Here, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell's central cavity. This "quantum rattle" structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, the quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. This innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications.


Assuntos
Ouro/química , Imagem Multimodal , Pontos Quânticos , Dióxido de Silício/química , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Fototerapia
19.
Nano Lett ; 17(12): 7372-7379, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29161051

RESUMO

Lithium titanium oxide (Li4Ti5O12)-based cells are a very promising battery technology for ultrafast-charge-discharge and long-cycle-life batteries. However, the surface reactivity of lithium titanium oxide in the presence of organic electrolytes continues to be a problem that may cause expansion of pouch cells. In this study, we report on the development of a simple and economical grafting method for forming hybrid polymer-Li4Ti15O12 nanoparticles, which can be successfully applied in lithium-ion batteries. This method utilizes a low-cost and scalable hydrophobic polymer that is applicable in industrial processes. The hybrid materials demonstrated exceptional capability for preventing the degradation of cells in accelerated aging and operating over 150 cycles at 1C and 45 °C.

20.
Nanomedicine ; 13(2): 443-454, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27520729

RESUMO

Traditional hapten-protein conjugate nicotine vaccines have shown less than desired immunological efficacy due to their poor recognition and internalization by immune cells. We developed a novel lipid-polymeric hybrid nanoparticle-based nicotine vaccine to enhance the immunogenicity of the conjugate vaccine, and studied the influence of particle size on its immunogenicity and pharmacokinetic efficacy. The results demonstrated that the nanovaccines, regardless of size, could induce a significantly stronger immune response against nicotine compared to the conjugate vaccine. Particularly, a significantly higher anti-nicotine antibody titer was achieved by the 100 compared to the 500nm nanovaccine. In addition, both the 100 and 500nm nanovaccines reduced the distribution of nicotine into the brain significantly. The 100nm nanovaccine exhibited better pharmacokinetic efficacy than the 500nm nanovaccine in the presence of alum adjuvant. These results suggest that a lipid-polymeric nanoparticle-based nicotine vaccine is a promising candidate to treat nicotine dependence.


Assuntos
Nanopartículas , Nicotina/farmacologia , Vacinas , Adjuvantes Imunológicos , Animais , Feminino , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Tabagismo/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA