Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 65(2): 199-215, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951591

RESUMO

Previous studies on the intricate interactions between plants and microorganisms have revealed that fungal volatile compounds (VCs) can affect plant growth and development. However, the precise mechanisms underlying these actions remain to be delineated. In this study, we discovered that VCs from the soilborne fungus Tolypocladium inflatum GT22 enhance the growth of Arabidopsis. Remarkably, priming Arabidopsis with GT22 VCs caused the plant to display an enhanced immune response and mitigated the detrimental effects of both pathogenic infections and copper stress. Transcriptomic analyses of Arabidopsis seedlings treated with GT22 VCs for 3, 24 and 48 h revealed that 90, 83 and 137 genes were differentially expressed, respectively. The responsive genes are known to be involved in growth, hormone regulation, defense mechanisms and signaling pathways. Furthermore, we observed the induction of genes related to innate immunity, hypoxia, salicylic acid biosynthesis and camalexin biosynthesis by GT22 VCs. Among the VCs emitted by GT22, exposure of Arabidopsis seedlings to limonene promoted plant growth and attenuated copper stress. Thus, limonene appears to be a key mediator of the interaction between GT22 and plants. Overall, our findings provide evidence that fungal VCs can promote plant growth and enhance both biotic and abiotic tolerance. As such, our study suggests that exposure of seedlings to T. inflatum GT22 VCs may be a means of improving crop productivity. This study describes a beneficial interaction between T. inflatun GT22 and Arabidopsis. Our investigation of microorganism function in terms of VC activities allowed us to overcome the limitations of traditional microbial application methods. The importance of this study lies in the discovery of T. inflatun GT22 as a beneficial microorganism. This soilborne fungus emits VCs with plant growth-promoting effects and the ability to alleviate both copper and pathogenic stress. Furthermore, our study offers a valuable approach to tracking the activities of fungal VC components via transcriptomic analysis and sheds light on the mechanisms through which VCs promote plant growth and induce resistance. This research significantly advances our knowledge of VC applications and provides an example for further investigations within this field.


Assuntos
Arabidopsis , Hypocreales , Arabidopsis/genética , Cobre/farmacologia , Cobre/metabolismo , Limoneno/metabolismo , Limoneno/farmacologia , Hypocreales/metabolismo , Plantas/metabolismo , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas
2.
New Phytol ; 243(5): 1899-1916, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38946157

RESUMO

Fusarium diseases pose a severe global threat to major cereal crops, particularly wheat. Existing biocontrol strains against Fusarium diseases are believed to primarily rely on antagonistic mechanisms, but not widely used under field conditions. Here, we report an endophytic fungus, Purpureocillium lilacinum YZ1, that shows promise in combating wheat Fusarium diseases. Under glasshouse conditions, YZ1 inoculation increased the survival rate of Fusarium graminearum (Fg)-infected wheat seedlings from 0% to > 60% at the seedling stage, and reduced spikelet infections by 70.8% during anthesis. In field trials, the application of YZ1 resulted in an impressive 89.0% reduction in Fg-susceptible spikelets. While a slight antagonistic effect of YZ1 against Fg was observed on plates, the induction of wheat systemic resistance by YZ1, which is distantly effective, non-specific, and long-lasting, appeared to be a key contributor to YZ1's biocontrol capabilities. Utilizing three imaging methods, we confirmed YZ1 as a potent endophyte capable of rapid colonization of wheat roots, and systematically spreading to the stem and leaves. Integrating dual RNA-Seq, photosynthesis measurements and cell wall visualization supported the link between YZ1's growth-promoting abilities and the activation of wheat systemic resistance. In conclusion, endophytes such as YZ1, which exhibits non-antagonistic mechanisms, hold significant potential for industrial-scale biocontrol applications.


Assuntos
Resistência à Doença , Endófitos , Fusarium , Doenças das Plantas , Triticum , Fusarium/fisiologia , Fusarium/patogenicidade , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Endófitos/fisiologia , Hypocreales/fisiologia , Hypocreales/patogenicidade , Raízes de Plantas/microbiologia , Plântula/microbiologia , Regulação da Expressão Gênica de Plantas
3.
Arch Microbiol ; 206(6): 282, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806859

RESUMO

Plant growth-promoting rhizobacteria (PGPR) offer an eco-friendly alternative to agrochemicals for better plant growth and development. Here, we evaluated the plant growth promotion abilities of actinobacteria isolated from the tea (Camellia sinensis) rhizosphere of Darjeeling, India. 16 S rRNA gene ribotyping of 28 isolates demonstrated the presence of nine different culturable actinobacterial genera. Assessment of the in vitro PGP traits revealed that Micrococcus sp. AB420 exhibited the highest level of phosphate solubilization (i.e., 445 ± 2.1 µg/ml), whereas Kocuria sp. AB429 and Brachybacterium sp. AB440 showed the highest level of siderophore (25.8 ± 0.1%) and IAA production (101.4 ± 0.5 µg/ml), respectively. Biopriming of maize seeds with the individual actinobacterial isolate revealed statistically significant growth in the treated plants compared to controls. Among them, treatment with Paenarthrobacter sp. AB416 and Brachybacterium sp. AB439 exhibited the highest shoot and root length. Biopriming has also triggered significant enzymatic and non-enzymatic antioxidative defense reactions in maize seedlings both locally and systematically, providing a critical insight into their possible role in the reduction of reactive oxygen species (ROS) burden. To better understand the role of actinobacterial isolates in the modulation of plant defense, three selected actinobacterial isolates, AB426 (Brevibacterium sp.), AB427 (Streptomyces sp.), and AB440 (Brachybacterium sp.) were employed to evaluate the dynamics of induced systemic resistance (ISR) in maize. The expression profile of five key genes involved in SA and JA pathways revealed that bio-priming with actinobacteria (Brevibacterium sp. AB426 and Brachybacterium sp. AB440) preferably modulates the JA pathway rather than the SA pathway. The infection studies in bio-primed maize plants resulted in a delay in disease progression by the biotrophic pathogen Ustilago maydis in infected maize plants, suggesting the positive efficacy of bio-priming in aiding plants to cope with biotic stress. Conclusively, this study unravels the intrinsic mechanisms of PGPR-mediated ISR dynamics in bio-primed plants, offering a futuristic application of these microorganisms in the agricultural fields as an eco-friendly alternative.


Assuntos
Actinobacteria , Camellia sinensis , Rizosfera , Sementes , Microbiologia do Solo , Zea mays , Zea mays/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Camellia sinensis/microbiologia , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/genética , Camellia sinensis/metabolismo , Índia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais , RNA Ribossômico 16S/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo
4.
Biometals ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615113

RESUMO

Cadmium (Cd) is a widely distributed pollutant that adversely affects plants' metabolism and productivity. Phytohormones play a vital role in the acclimation of plants to metal stress. On the other hand, phytohormones trigger systemic resistances, including systemic acquired resistance (SAR) and induced systemic resistance (ISR), in plants in response to biotic interactions. The present study aimed to investigate the possible induction of SAR and ISR pathways in relation to the hormonal alteration of barley seedlings in response to Cd stress. Barley seedlings were exposed to 1.5 mg g-1 Cd in the soil for three days. The nutrient content, oxidative status, phytohormones profile, and expression of genes involved in SAR and ISR pathways of barley seedlings were examined. Cd accumulation resulted in a reduction in the nutrient content of barley seedlings. The specific activity of superoxide dismutase and the hydrogen peroxide content significantly increased in response to Cd toxicity. Abscisic acid, jasmonic acid, and ethylene content increased under Cd exposure. Cd treatment resulted in the upregulation of NPR1, PR3, and PR13 genes in SAR pathways. The transcripts of PAL1 and LOX2.2 genes in the ISR pathway were also significantly increased in response to Cd treatment. These findings suggest that hormonal-activated systemic resistances are involved in the response of barley to Cd stress.

5.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599633

RESUMO

AIMS: This study explores the biocontrol potential of Pseudomonas putida Z13 against Botrytis cinerea in tomato plants, addressing challenges posed by the pathogen's fungicide resistance. The aims of the study were to investigate the in vitro and in silico biocontrol traits of Z13, identify its plant-colonizing efficacy, evaluate the efficacy of different application strategies against B. cinerea in planta, and assess the capacity of Z13 to trigger induced systemic resistance (ISR) in plants. METHODS AND RESULTS: The in vitro experiments revealed that Z13 inhibits the growth of B. cinerea, produces siderophores, and exhibits swimming and swarming activity. Additionally, the Z13 genome harbors genes that encode compounds triggering ISR, such as pyoverdine and pyrroloquinoline quinone. The in planta experiments demonstrated Z13's efficacy in effectively colonizing the rhizosphere and leaves of tomato plants. Therefore, three application strategies of Z13 were evaluated against B. cinerea: root drenching, foliar spray, and the combination of root drenching and foliar spray. It was demonstrated that the most effective treatment of Z13 against B. cinerea was the combination of root drenching and foliar spray. Transcriptomic analysis showed that Z13 upregulates the expression of the plant defense-related genes PR1 and PIN2 upon B. cinerea inoculation. CONCLUSION: The results of the study demonstrated that Z13 possesses significant biocontrol traits, such as the production of siderophores, resulting in significant plant protection against B. cinerea when applied as a single treatment to the rhizosphere or in combination with leaf spraying. Additionally, it was shown that Z13 root colonization primes plant defenses against the pathogen.


Assuntos
Botrytis , Doenças das Plantas , Pseudomonas putida , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Pseudomonas putida/fisiologia , Pseudomonas putida/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Sideróforos/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Agentes de Controle Biológico/farmacologia , Folhas de Planta/microbiologia , Resistência à Doença
6.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503565

RESUMO

AIMS: This study aimed to assess the impact of rocket (Eruca sativa) extract on Verticillium wilt in eggplants, explore rhizospheric microorganisms for disease biocontrol, and evaluate selected strains' induced systemic resistance (ISR) potential while characterizing their genomic and biosynthetic profiles. METHODS AND RESULTS: Rocket extract application led to a significant reduction in Verticillium wilt symptoms in eggplants compared to controls. Isolated microorganisms from treated soil, including Paraburkholderia oxyphila EP1, Pseudomonas citronellolis EP2, Paraburkholderia eburnea EP3, and P. oxyphila EP4 and EP5, displayed efficacy against Verticillium dahliae, decreasing disease severity and incidence in planta. Notably, strains EP3 and EP4 triggered ISR in eggplants against V. dahliae. Genomic analysis unveiled shared biosynthetic gene clusters, such as ranthipeptide and non-ribosomal peptide synthetase-metallophore types, among the isolated strains. Additionally, metabolomic profiling of EP2 revealed the production of metabolites associated with amino acid metabolism, putative antibiotics, and phytohormones. CONCLUSIONS: The application of rocket extract resulted in a significant reduction in Verticillium wilt symptoms in eggplants, while the isolated microorganisms displayed efficacy against V. dahliae, inducing systemic resistance and revealing shared biosynthetic gene clusters, with metabolomic profiling highlighting potential disease-suppressing metabolites.


Assuntos
Verticillium , Verticillium/metabolismo , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Gossypium , Resistência à Doença
7.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449374

RESUMO

Botrytis cinerea poses a recurring threat to viticulture, causing significant yield losses each year. The study explored the biocontrol capabilities of commercially used winemaking yeasts as a strategy to manage B. cinerea in grape berries. The winemaking yeast strains-Saccharomyces cerevisiae ES181, Saccharomyces pastorianus KBG6, S. cerevisiae BCS103, Lachancea thermotolerans Omega, and Torulaspora delbrueckii TD291-reduced B. cinerea growth and conidiation in vitro. Furthermore, they demonstrated a decreased disease severity and number of conidia in grape berries. Among these strains, S. cerevisiae BCS103 was the most effective, inducing the expression of the defense-related gene PR4 in berries. Its diffusible compounds and volatile organic compounds also reduced the expression of BcLTF2, a positive regulator of B. cinerea conidiogenesis. The examined winemaking yeast strains, especially S. cerevisiae BCS103, demonstrated effective inhibition of B. cinerea in vitro and in grape berries, influencing key defense genes and reducing BcLTF2 expression, offering potential solutions for disease management in viticulture. The study underscores the promise of commercially available winemaking yeast strains as eco-friendly tools against B. cinerea in viticulture. Leveraging their safety and existing use in winemaking offers a potential avenue for sustainable disease management.


Assuntos
Vitis , Vinho , Saccharomyces cerevisiae/metabolismo , Botrytis/genética , Vinho/análise
8.
Pestic Biochem Physiol ; 204: 106071, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277416

RESUMO

Synthetic plant activators represent a promising novel class of green pesticides that can triggering endogenous plant immunity against pathogen invasion. In our previous study, we developed a series of fluorinated compounds capable of eliciting disease resistance in plants; however, the underlying regulatory mechanisms remained unclear. In this study, we systematically investigated the mechanism of plant immune activation using four synthetic plant activators in Arabidopsis thaliana (A. thaliana), including two fluorine-substituted and two non­fluorine-substituted molecules. Our findings revealed that the fluorinated compounds exhibited superior disease resistance activity compared to the non-fluorinated molecules. Gene expression analysis in systemic acquired resistance (SAR)- and induced systemic resistance (ISR)-related pathways demonstrated that fluorine substitution effectively regulated both SAR- and ISR-pathway activation, highlighting the distinct roles of fluorine in modulating the plant immune system. Notably, the prolonged ROS burst was observed in chloroplasts following treatment with all four plant activators, contrasting with the transient ROS burst induced by natural elicitors. These results provide insights into the unique mechanisms underlying synthetic plant activator-induced plant immunity. Furthermore, comprehensive proteomic analysis revealed a robust immune response mediated by fluorine-substituted plant activators. These findings offer novel insights into the role of fluorine substitution in SAR- and ISR-associated immune signaling pathways and their distinct impact on ROS production within chloroplasts.


Assuntos
Arabidopsis , Cloroplastos , Espécies Reativas de Oxigênio , Transdução de Sinais , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/imunologia , Imunidade Vegetal/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Halogenação , Doenças das Plantas/imunologia
9.
Plant Dis ; 108(3): 700-710, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37580883

RESUMO

Strawberry is a popular fruit with valuable nutrition and an attractive fragrance, but its production and propagation are limited by various diseases, including anthracnose and gray mold. For disease management, biological control measures are environmentally friendly and good alternatives to fungicides to avoid crop losses, reduce carbon emissions, and improve food safety. In this study, Paenibacillus polymyxa TP3, which originated from the strawberry phyllosphere, was shown to antagonize the anthracnose fungal pathogen Colletotrichum siamense and reduce leaf symptoms on strawberry plants. Several mass spectra corresponding to fusaricidin were detected in the confrontation assay of P. polymyxa TP3 and C. siamense by image mass spectrometry. The transcription of fusA and fusG in the fusaricidin biosynthesis gene cluster increased while P. polymyxa TP3 was cultured in the medium containing the culture filtrate of C. siamense, as detected by reverse-transcription polymerase chain reaction, indicating the involvement of fusaricidins in P. polymyxa TP3 antagonism against the anthracnose pathogen. Further disease control assays demonstrated the time frame and spatial mode of P. polymyxa TP3-induced systemic resistance of strawberry against C. siamense. The transcript level of the marker gene FaPDF1.2 of the jasmonic acid pathway increased in strawberry leaves after drenching treatment with P. polymyxa TP3, and the callose deposition was enhanced by further flg22 treatment. In addition, P. polymyxa TP3 treatments of the strawberry mother plants reduced C. siamense infection in the daughter plants, which would be a potent feature for the application of P. polymyxa TP3 in strawberry nurseries and fields to reduce the impact of diseases, especially anthracnose.


Assuntos
Fragaria , Fungicidas Industriais , Paenibacillus polymyxa , Fragmentos de Peptídeos , Timopoietinas , Paenibacillus polymyxa/genética , Fragaria/microbiologia , Fungicidas Industriais/farmacologia
10.
Plant Dis ; 108(6): 1533-1543, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38105459

RESUMO

Biopesticide fungicides are naturally derived compounds that offer protection from plant diseases through various modes of action, including antimicrobial activity and upregulation of defense responses in host plants. These plant protectants provide a sustainable and safe alternative to conventional pesticides in integrated disease management programs and are especially salient in the management of high-risk and economically important diseases such as late blight of tomato and potato, for which host resistance options are limited. In this study, a commercially available biopesticide, EF400 comprised of clove (8.2%), rosemary (8.1%), and peppermint oils (6.7%) (Anjon AG, Corcoran, CA), was investigated for its effects on the Phytophthora infestans-tomato pathosystem. Specifically, we evaluated the impact of EF400 on P. infestans growth in culture, disease symptoms in planta, and activation of host defenses through monitoring transcript accumulation of defense-related genes. The application timing and use rate of EF400 were further investigated for managing tomato late blight. EF400 delayed the onset of tomato late blight symptoms, although not as effectively as the copper hydroxide fungicide Champ WG (Nufarm Americas Inc., Alsip, IL). Pathogen mycelial growth and sporangial quantity on late blight-susceptible tomato leaves were significantly reduced with EF400. The biopesticide also had an enhancing or suppressing effect on the transcript accumulation of three defense-related genes: Pin2, PR1a, and PR1b. Our work in exploring a commercially available horticultural oil biopesticide meaningfully contributed to the essential knowledge base for optimizing recommendations for the management of tomato late blight.


Assuntos
Phytophthora infestans , Doenças das Plantas , Óleos de Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Phytophthora infestans/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Óleos de Plantas/farmacologia , Fungicidas Industriais/farmacologia , Agentes de Controle Biológico/farmacologia , Mentha piperita/química , Interações Hospedeiro-Patógeno/efeitos dos fármacos
11.
World J Microbiol Biotechnol ; 40(11): 331, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358574

RESUMO

Phytonematodes are responsible for causing significant harm and reducing yields in various agricultural crops. To minimize losses caused by phytonematodes and meet the high demand for agricultural production, it is important to develop effective strategies with minimal environmental impact to manage this biotic stress. Due to the adverse environmental effects associated with synthetic pesticides, it is imperative to use beneficial bacteria, such as Bacillus and Pseudomonas spp., for biocontrol purposes to control phytonematode infestation in agricultural settings. This approach has gained considerable attraction, as there is a promising market for eco-friendly biopesticides based on bacteria that can effectively manage phytonematodes. Furthermore, biocontrol strains of Bacillus and Pseudomonas have the potential to enhance crop productivity by producing various substances that promote plant growth and development. This review aims to explore the role of Bacillus and Pseudomonas spp. in phytonematode management, elucidate different mechanisms by which these bacteria suppress nematode populations, and discuss the future prospects of utilizing these bacteria in agriculture.


Assuntos
Bacillus , Produtos Agrícolas , Controle Biológico de Vetores , Doenças das Plantas , Pseudomonas , Pseudomonas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Controle Biológico de Vetores/métodos , Animais , Nematoides/microbiologia , Agricultura/métodos , Agentes de Controle Biológico
12.
World J Microbiol Biotechnol ; 40(3): 80, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281212

RESUMO

Pseudomonas fluorescens complex consists of environmental and some human opportunistic pathogenic bacteria. It includes mainly beneficial and few phytopathogenic species that are common inhabitants of soil and plant rhizosphere. Many members of the group are in fact known as effective biocontrol agents of plant pathogens and as plant growth promoters and for these attitudes they are of great interest for biotechnological applications. The antagonistic activity of fluorescent Pseudomonas is mainly related to the production of several antibiotic compounds, lytic enzymes, lipopeptides and siderophores. Several volatile organic compounds are also synthesized by fluorescent Pseudomonas including different kinds of molecules that are involved in antagonistic interactions with other organisms and in the induction of systemic responses in plants. This review will mainly focus on the volatile compounds emitted by some members of P. fluorescens complex so far identified, with the aim to highlight the role played by these molecules in the interaction of the bacteria with phytopathogenic micro and macro-organisms and plants.


Assuntos
Pseudomonas fluorescens , Pseudomonas , Humanos , Plantas/microbiologia , Rizosfera , Desenvolvimento Vegetal/fisiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
13.
Mol Plant Microbe Interact ; 36(8): 516-528, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37188493

RESUMO

Gibberella stalk rot (GSR) caused by the fungus Fusarium graminearum is a devastating disease of maize (Zea mays L.), but we lack efficient methods to control this disease. Biological control agents, including beneficial microorganisms, can be used as an effective and eco-friendly approach to manage crop diseases. For example, Bacillus velezensis SQR9, a bacterial strain isolated from the rhizosphere of cucumber plants, promotes growth and suppresses diseases in several plant species. However, it is not known whether and how SQR9 affects maize resistance to GSR. In this study, we found that treatment with SQR9 increased maize resistance to GSR by activating maize induced systemic resistance (ISR). RNA-seq and quantitative reverse transcription-PCR analysis showed that phenylpropanoid biosynthesis, amino acid metabolism, and plant-pathogen interaction pathways were enriched in the root upon colonization by SQR9. Also, several genes associated with calcium signaling pathways were up-regulated by SQR9 treatment. However, the calcium signaling inhibitor LaCl3 weakened the SQR9-activated ISR. Our data suggest that the calcium signaling pathway contributes to maize GSR resistance via the activation of ISR induced by SQR9. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Cucumis sativus , Fusarium , Gibberella , Gibberella/fisiologia , Zea mays/microbiologia , Sinalização do Cálcio , Resistência Sistêmica Adquirida da Planta , Fusarium/fisiologia , Doenças das Plantas/microbiologia
14.
BMC Plant Biol ; 23(1): 460, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37789272

RESUMO

BACKGROUND: In nature, beneficial bacteria triggering induced systemic resistance (ISR) may protect plants from potential diseases, reducing yield losses caused by diverse pathogens. However, little is known about how the host plant initially responds to different beneficial bacteria. To reveal the impact of different bacteria on barley (Hordeum vulgare), bacterial colonization patterns, gene expression, and composition of seed endophytes were explored. RESULTS: This study used the soil-borne Ensifer meliloti, as well as Pantoea sp. and Pseudomonas sp. isolated from barley seeds, individually. The results demonstrated that those bacteria persisted in the rhizosphere but with different colonization patterns. Although root-leaf translocation was not observed, all three bacteria induced systemic resistance (ISR) against foliar fungal pathogens. Transcriptome analysis revealed that ion- and stress-related genes were regulated in plants that first encountered bacteria. Iron homeostasis and heat stress responses were involved in the response to E. meliloti and Pantoea sp., even if the iron content was not altered. Heat shock protein-encoding genes responded to inoculation with Pantoea sp. and Pseudomonas sp. Furthermore, bacterial inoculation affected the composition of seed endophytes. Investigation of the following generation indicated that the enhanced resistance was not heritable. CONCLUSIONS: Here, using barley as a model, we highlighted different responses to three different beneficial bacteria as well as the influence of soil-borne Ensifer meliloti on the seed microbiome. In total, these results can help to understand the interaction between ISR-triggering bacteria and a crop plant, which is essential for the application of biological agents in sustainable agriculture.


Assuntos
Hordeum , Hordeum/genética , Hordeum/microbiologia , Pseudomonas , Endófitos/fisiologia , Bactérias , Ferro/metabolismo , Solo , Raízes de Plantas/microbiologia
15.
Planta ; 257(3): 50, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757472

RESUMO

MAIN CONCLUSION: FO12 strain enhances Fe deficiency responses in cucumber plants, probably through the production of ethylene and NO in the subapical regions of the roots. Rhizosphere microorganisms can elicit induced systemic resistance (ISR) in plants. This type of resistance involves complex mechanisms that confer protection to the plant against pathogen attack. Additionally, it has been reported by several studies that ISR and Fe deficiency responses are modulated by common pathways, involving some phytohormones and signaling molecules, like ethylene and nitric oxide (NO). The aim of this study was to determine whether the nonpathogenic strain of Fusarium oxysporum FO12 can induce Fe deficiency responses in cucumber (Cucumis sativus L.) plants. Our results demonstrate that the root inoculation of cucumber plants with the FO12 strain promotes plant growth after several days of cultivation, as well as rhizosphere acidification and enhancement of ferric reductase activity. Moreover, Fe-related genes, such as FRO1, IRT1 and HA1, are upregulated at certain times after FO12 inoculation either upon Fe-deficiency or Fe-sufficient conditions. Furthermore, it has been found that this fungus colonizes root cortical tissues, promoting the upregulation of ethylene synthesis genes and NO production in the root subapical regions. To better understand the effects of the FO12 strain on field conditions, cucumber plants were inoculated and cultivated in a calcareous soil under greenhouse conditions. The results obtained show a modification of some physiological parameters in the inoculated plants, such as flowering and reduction of tissue necrosis. Overall, the results suggest that the FO12 strain could have a great potential as a Fe biofertilizer and biostimulant.


Assuntos
Cucumis sativus , Fusarium , Cucumis sativus/genética , Raízes de Plantas/metabolismo , Ferro/metabolismo , Etilenos/metabolismo
16.
BMC Microbiol ; 23(1): 175, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407947

RESUMO

BACKGROUND: Microorganisms that activate plant immune responses are useful for application as biocontrol agents in agriculture to minimize crop losses. The present study was conducted to identify and characterize plant immunity-activating microorganisms in Brassicaceae plants. RESULTS: A total of 25 bacterial strains were isolated from the interior of a Brassicaceae plant, Raphanus sativus var. hortensis. Ten different genera of bacteria were identified: Pseudomonas, Leclercia, Enterobacter, Xanthomonas, Rhizobium, Agrobacterium, Pantoea, Rhodococcus, Microbacterium, and Plantibacter. The isolated strains were analyzed using a method to detect plant immunity-activating microorganisms that involves incubation of the microorganism with tobacco BY-2 cells, followed by treatment with cryptogein, a proteinaceous elicitor of tobacco immune responses. In this method, cryptogein-induced production of reactive oxygen species (ROS) in BY-2 cells serves as a marker of immune activation. Among the 25 strains examined, 6 strains markedly enhanced cryptogein-induced ROS production in BY-2 cells. These 6 strains colonized the interior of Arabidopsis plants, and Pseudomonas sp. RS3R-1 and Rhodococcus sp. RS1R-6 selectively enhanced plant resistance to the bacterial pathogens Pseudomonas syringae pv. tomato DC3000 and Pectobacterium carotovorum subsp. carotovorum NBRC 14082, respectively. In addition, Pseudomonas sp. RS1P-1 effectively enhanced resistance to both pathogens. We also comprehensively investigated the localization (i.e., cellular or extracellular) of the plant immunity-activating components produced by the bacteria derived from R. sativus var. hortensis and the components produced by previously isolated bacteria derived from another Brassicaceae plant species, Brassica rapa var. perviridis. Most gram-negative strains enhanced cryptogein-induced ROS production in BY-2 cells via the presence of cells themselves rather than via extracellular components, whereas many gram-positive strains enhanced ROS production via extracellular components. Comparative genomic analyses supported the hypothesis that the structure of lipopolysaccharides in the outer cell envelope plays an important role in the ROS-enhancing activity of gram-negative Pseudomonas strains. CONCLUSIONS: The assay method described here based on elicitor-induced ROS production in cultured plant cells enabled the discovery of novel plant immunity-activating bacteria from R. sativus var. hortensis. The results in this study also suggest that components involved in the ROS-enhancing activity of the bacteria may differ depending largely on genus and species.


Assuntos
Arabidopsis , Brassicaceae , Espécies Reativas de Oxigênio , Pseudomonas syringae/genética , Imunidade Vegetal , Doenças das Plantas/microbiologia
17.
J Exp Bot ; 74(6): 2016-2028, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575905

RESUMO

Beneficial interactions between plant roots and Trichoderma species lead to both local and systemic enhancements of the plant immune system through a mechanism known as priming of defenses. Previously, we have reported a number of genes and proteins that are differentially regulated in distant tissues of maize plants following inoculation with Trichoderma atroviride. To further investigate the mechanisms involved in the systemic activation of plant responses, here we have further evaluated the regulatory aspects of a selected group of genes when priming is triggered in maize plants. Time-course experiments from the beginning of the interaction between T. atroviride and maize roots followed by leaf infection with Colletotrichum graminicola allowed us to identify a gene set regulated by priming in the leaf tissue. In the same experiment, phytohormone measurements revealed a decrease in jasmonic acid concentration while salicylic acid increased at 2 d and 6 d post-inoculation. In addition, chromatin structure and modification assays showed that chromatin was more open in the primed state compared with unprimed control conditions, and this allowed for quicker gene activation in response to pathogen attack. Overall, the results allowed us to gain insights on the interplay between the phytohormones and epigenetic regulatory events in the systemic and long-lasting regulation of maize plant defenses following Trichoderma inoculation.


Assuntos
Trichoderma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Ácido Salicílico/metabolismo , Folhas de Planta/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/metabolismo
18.
Arch Microbiol ; 205(2): 77, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720740

RESUMO

In the present work, Amycolatopsis sp. SND-1 (SND-1) was isolated from Cleome chellidonii Linn. (C. chellidonii) was performed as biocontrol and resistance elicitor in Vigna radiata (L.) R. Wilczek (mung bean) plants against Cercospora leaf spot causing pathogen Cercospora canescens (C. canescens). The SND-1 isolate showed 74% of inhibition against C. canescens in dual culture and GC-MS analysis revealed the presence of antifungal compounds. Molecular characterization through 16S rRNA showed that the isolated SND-1 belongs to Amycolatopsis sp. The in vitro plant growth trials exhibited production of indole acetic acid, gibberellic acid, cytokinin, ammonia, hydrogen cyanide, and siderophore and phosphate solubilization. In vivo study with talcum formulation of SND-1 revealed a significant increase in plant root length, shoots length, root and shoot fresh weight, and reduced the disease severity in treated mung bean plants. Triggering of resistance by SND-1 formulation was studied by histochemical depositions and biochemical defense enzymes that resulted in the acceleration in defense response in comparison with control plants. The bioactive endophytic Amycolatopsis sp. SND-1 enhanced the defense against C. canescens infection; hence, it can be used as a biological control agent in mung bean cultivars.


Assuntos
Vigna , Amycolatopsis , Endófitos , Cercospora , RNA Ribossômico 16S
19.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822621

RESUMO

Several studies have described the potential use of volatile organic compounds (VOCs) emitted by soil microorganisms, specifically of the genus Bacillus, as a sustainable solution for disease management in plants. The Bacillus species have been extensively studied as biocontrol agents (BCAs) due to their ability to inhibit pathogens, trigger induced systemic resistance (ISR) in plants, and enhance plant growth. The ability of the Bacillus species to produce long-lasting resting structures, such as endospores, makes them particularly appealing as BCAs. In recent years, there has been a growing body of research on the effects of Bacillus-emitted VOCs on plant pathogen growth and the triggering of ISR. This review aims to highlight recent advances in the understanding of the biological activities of Bacillus-emitted VOCs, identify new subjects for VOCs research, and stimulate interest in the academic and agri-business sectors for developing pre- and post-harvest application methods.


Assuntos
Bacillus , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/farmacologia , Plantas , Esporos Bacterianos , Doenças das Plantas
20.
Environ Res ; 216(Pt 1): 114498, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209791

RESUMO

The fungal symbiosis with the plant root system is importantly recognized as a plant growth promoting fungi (PGPFs), as well as elicitor of plant defence against different biotic and abiotic stress conditions. Thus PGPFs are playing as a key trouper in enhancing agricultural quality and increased crop production and paving a way towards a sustainable agriculture. Due to increased demand of food production, the over and unscientific usage of chemical fertilizers has led to the contamination of soil by organic and inorganic wastes impacting on soil quality, crops quality effecting on export business of agricultural products. The application of microbial based consortium like plant growth promoting fungi is gaining worldwide importance due to their multidimensional activity. These activities are through plant growth promotion, induction of systemic resistance, disease combating and detoxification of organic and inorganic toxic chemicals, a heavy metal tolerance ability. The master key behind these properties exhibited by PGPFs are attributed towards various secretory biomolecules (secondary metabolites or enzymes or metabolites) secreted by the fungi during interaction mechanism. The present review is focused on the multidimensional role PGPFs as elicitors of Induced systemic resistance against phytopathogens as well as heavy metal detoxifier through seed biopriming and biofortification methods. The in-sights on PGPFs and their probable mechanistic nature contributing towards plants to withstand heavy metal stress and stress alleviation by activating of various stress regulatory pathways leading to secretion of low molecular weight compounds like organic compounds, glomalin, hydrophobins, etc,. Thus projecting the importance of PGPFs and further requirement of research in developing PGPFs based molecules and combining with trending Nano technological approaches for enhanced heavy metal stress alleviations in plant and soil as well as establishing a sustainable agriculture.


Assuntos
Metais Pesados , Solo , Biodegradação Ambiental , Secretoma , Metais Pesados/toxicidade , Produtos Agrícolas/metabolismo , Sementes/metabolismo , Fungos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA