Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.448
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(10): 2618-2632.e17, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33836156

RESUMO

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.


Assuntos
Tratamento Farmacológico da COVID-19 , DNA Topoisomerases Tipo I/metabolismo , SARS-CoV-2/metabolismo , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Animais , COVID-19/enzimologia , COVID-19/patologia , Chlorocebus aethiops , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/patologia , Inflamação/virologia , Mesocricetus , Camundongos , Camundongos Transgênicos , Células THP-1 , Células Vero
2.
Cell ; 179(2): 373-391.e27, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585079

RESUMO

Cells regulate gene expression in response to salient external stimuli. In neurons, depolarization leads to the expression of inducible transcription factors (ITFs) that direct subsequent gene regulation. Depolarization encodes both a neuron's action potential (AP) output and synaptic inputs, via excitatory postsynaptic potentials (EPSPs). However, it is unclear if distinct types of electrical activity can be transformed by an ITF into distinct modes of genomic regulation. Here, we show that APs and EPSPs in mouse hippocampal neurons trigger two spatially segregated and molecularly distinct induction mechanisms that lead to the expression of the ITF NPAS4. These two pathways culminate in the formation of stimulus-specific NPAS4 heterodimers that exhibit distinct DNA binding patterns. Thus, NPAS4 differentially communicates increases in a neuron's spiking output and synaptic inputs to the nucleus, enabling gene regulation to be tailored to the type of depolarizing activity along the somato-dendritic axis of a neuron.


Assuntos
Potenciais de Ação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Potenciais Pós-Sinápticos Excitadores , Neurônios/metabolismo , Ativação Transcricional , Regiões 3' não Traduzidas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Cell ; 174(1): 72-87.e32, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29861175

RESUMO

Recent reports indicate that hypoxia influences the circadian clock through the transcriptional activities of hypoxia-inducible factors (HIFs) at clock genes. Unexpectedly, we uncover a profound disruption of the circadian clock and diurnal transcriptome when hypoxic cells are permitted to acidify to recapitulate the tumor microenvironment. Buffering against acidification or inhibiting lactic acid production fully rescues circadian oscillation. Acidification of several human and murine cell lines, as well as primary murine T cells, suppresses mechanistic target of rapamycin complex 1 (mTORC1) signaling, a key regulator of translation in response to metabolic status. We find that acid drives peripheral redistribution of normally perinuclear lysosomes away from perinuclear RHEB, thereby inhibiting the activity of lysosome-bound mTOR. Restoring mTORC1 signaling and the translation it governs rescues clock oscillation. Our findings thus reveal a model in which acid produced during the cellular metabolic response to hypoxia suppresses the circadian clock through diminished translation of clock constituents.


Assuntos
Hipóxia Celular , Relógios Circadianos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Aminoácidos Dicarboxílicos/farmacologia , Animais , Proteínas CLOCK/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Relógios Circadianos/efeitos dos fármacos , Meios de Cultura/química , Fatores de Iniciação em Eucariotos , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/citologia , Linfócitos T/metabolismo , Transcriptoma/efeitos dos fármacos , Proteína 2 do Complexo Esclerose Tuberosa/deficiência , Proteína 2 do Complexo Esclerose Tuberosa/genética
4.
Cell ; 169(3): 547-558.e15, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431252

RESUMO

The gut microbiota is implicated in numerous aspects of health and disease, but dissecting these connections is challenging because genetic tools for gut anaerobes are limited. Inducible promoters are particularly valuable tools because these platforms allow real-time analysis of the contribution of microbiome gene products to community assembly, host physiology, and disease. We developed a panel of tunable expression platforms for the prominent genus Bacteroides in which gene expression is controlled by a synthetic inducer. In the absence of inducer, promoter activity is fully repressed; addition of inducer rapidly increases gene expression by four to five orders of magnitude. Because the inducer is absent in mice and their diets, Bacteroides gene expression inside the gut can be modulated by providing the inducer in drinking water. We use this system to measure the dynamic relationship between commensal sialidase activity and liberation of mucosal sialic acid, a receptor and nutrient for pathogens. VIDEO ABSTRACT.


Assuntos
Bacteroides/genética , Microbioma Gastrointestinal , Engenharia Genética/métodos , Animais , Bacteroides/classificação , Expressão Gênica , Humanos , Camundongos , Neuraminidase/metabolismo , Regiões Promotoras Genéticas
5.
Mol Cell ; 83(11): 1872-1886.e5, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172591

RESUMO

Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.


Assuntos
Histonas , Proteínas Serina-Treonina Quinases , Humanos , Histonas/genética , Histonas/metabolismo , Acetilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Citocinas/metabolismo , Inflamação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Physiol Rev ; 103(3): 2231-2269, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731029

RESUMO

Salt-inducible kinases (SIKs), which comprise a family of three homologous serine-threonine kinases, were first described for their role in sodium sensing but have since been shown to regulate multiple aspects of physiology. These kinases are activated or deactivated in response to extracellular signals that are cell surface receptor mediated and go on to phosphorylate multiple targets including the transcription cofactors CRTC1-3 and the class IIa histone deacetylases (HDACs). Thus, the SIK family conveys signals about the cellular environment to reprogram transcriptional and posttranscriptional processes in response. In this manner, SIKs have been shown to regulate metabolic responses to feeding/fasting, cell division and oncogenesis, inflammation, immune responses, and most recently, sleep and circadian rhythms. Sleep and circadian rhythms are master regulators of physiology and are exquisitely sensitive to regulation by environmental light and physiological signals such as the need for sleep. Salt-inducible kinases have been shown to be central to the molecular regulation of both these processes. Here, we summarize the molecular mechanisms by which SIKs control these different domains of physiology and highlight where there is mechanistic overlap with sleep/circadian rhythm control.


Assuntos
Proteínas Serina-Treonina Quinases , Fatores de Transcrição , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Cloreto de Sódio , Ritmo Circadiano , Sono
7.
Immunity ; 54(8): 1715-1727.e7, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34283971

RESUMO

Allergic airway inflammation is driven by type-2 CD4+ T cell inflammatory responses. We uncover an immunoregulatory role for the nucleotide release channel, Panx1, in T cell crosstalk during airway disease. Inverse correlations between Panx1 and asthmatics and our mouse models revealed the necessity, specificity, and sufficiency of Panx1 in T cells to restrict inflammation. Global Panx1-/- mice experienced exacerbated airway inflammation, and T-cell-specific deletion phenocopied Panx1-/- mice. A transgenic designed to re-express Panx1 in T cells reversed disease severity in global Panx1-/- mice. Panx1 activation occurred in pro-inflammatory T effector (Teff) and inhibitory T regulatory (Treg) cells and mediated the extracellular-nucleotide-based Treg-Teff crosstalk required for suppression of Teff cell proliferation. Mechanistic studies identified a Salt-inducible kinase-dependent phosphorylation of Panx1 serine 205 important for channel activation. A genetically targeted mouse expressing non-phosphorylatable Panx1S205A phenocopied the exacerbated inflammation in Panx1-/- mice. These data identify Panx1-dependent Treg:Teff cell communication in restricting airway disease.


Assuntos
Asma/imunologia , Comunicação Celular/imunologia , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Conexinas/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Sistema Respiratório/imunologia
8.
Mol Cell ; 82(19): 3598-3612.e7, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36113480

RESUMO

Gene transcription is a highly regulated process in all animals. In Drosophila, two major transcriptional programs, housekeeping and developmental, have promoters with distinct regulatory compatibilities and nucleosome organization. However, it remains unclear how the differences in chromatin structure relate to the distinct regulatory properties and which chromatin remodelers are required for these programs. Using rapid degradation of core remodeler subunits in Drosophila melanogaster S2 cells, we demonstrate that developmental gene transcription requires SWI/SNF-type complexes, primarily to maintain distal enhancer accessibility. In contrast, wild-type-level housekeeping gene transcription requires the Iswi and Ino80 remodelers to maintain nucleosome positioning and phasing at promoters. These differential remodeler dependencies relate to different DNA-sequence-intrinsic nucleosome affinities, which favor a default ON state for housekeeping but a default OFF state for developmental gene transcription. Overall, our results demonstrate how different transcription-regulatory strategies are implemented by DNA sequence, chromatin structure, and remodeler activity.


Assuntos
Cromatina , Nucleossomos , Animais , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Zeladoria , Nucleossomos/genética , Nucleossomos/metabolismo
9.
Mol Cell ; 82(11): 2032-2049.e7, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35460603

RESUMO

Virus infection modulates both host immunity and host genomic stability. Poly(ADP-ribose) polymerase 1 (PARP1) is a key nuclear sensor of DNA damage, which maintains genomic integrity, and the successful application of PARP1 inhibitors for clinical anti-cancer therapy has lasted for decades. However, precisely how PARP1 gains access to cytoplasm and regulates antiviral immunity remains unknown. Here, we report that DNA virus induces a reactive nitrogen species (RNS)-dependent DNA damage and activates DNA-dependent protein kinase (DNA-PK). Activated DNA-PK phosphorylates PARP1 on Thr594, thus facilitating the cytoplasmic translocation of PARP1 to inhibit the antiviral immunity both in vitro and in vivo. Mechanistically, cytoplasmic PARP1 interacts with and directly PARylates cyclic GMP-AMP synthase (cGAS) on Asp191 to inhibit its DNA-binding ability. Together, our findings uncover an essential role of PARP1 in linking virus-induced genome instability with inhibition of host immunity, which is of relevance to cancer, autoinflammation, and other diseases.


Assuntos
Antivirais , Nucleotidiltransferases , Antivirais/farmacologia , Citoplasma/genética , Citoplasma/metabolismo , DNA , Dano ao DNA , Instabilidade Genômica , Humanos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo
10.
Mol Cell ; 81(12): 2625-2639.e5, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33887196

RESUMO

The Polycomb repressive complex 2 (PRC2) is an essential epigenetic regulator that deposits repressive H3K27me3. PRC2 subunits form two holocomplexes-PRC2.1 and PRC2.2-but the roles of these two PRC2 assemblies during differentiation are unclear. We employed auxin-inducible degradation to deplete PRC2.1 subunit MTF2 or PRC2.2 subunit JARID2 during differentiation of embryonic stem cells (ESCs) to neural progenitors (NPCs). Depletion of either MTF2 or JARID2 resulted in incomplete differentiation due to defects in gene regulation. Distinct sets of Polycomb target genes were derepressed in the absence of MTF2 or JARID2. MTF2-sensitive genes were marked by H3K27me3 in ESCs and remained silent during differentiation, whereas JARID2-sensitive genes were preferentially active in ESCs and became newly repressed in NPCs. Thus, MTF2 and JARID2 contribute non-redundantly to Polycomb silencing, suggesting that PRC2.1 and PRC2.2 have distinct functions in maintaining and establishing, respectively, Polycomb repression during differentiation.


Assuntos
Complexo Repressor Polycomb 2/metabolismo , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Complexo Repressor Polycomb 2/fisiologia , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/fisiologia , Ligação Proteica/genética
11.
Mol Cell ; 81(21): 4413-4424.e5, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34480849

RESUMO

Based on in vitro studies, it has been demonstrated that the DSIF complex, composed of SPT4 and SPT5, regulates the elongation stage of transcription catalyzed by RNA polymerase II (RNA Pol II). The precise cellular function of SPT5 is not clear, because conventional gene depletion strategies for SPT5 result in loss of cellular viability. Using an acute inducible protein depletion strategy to circumvent this issue, we report that SPT5 loss triggers the ubiquitination and proteasomal degradation of the core RNA Pol II subunit RPB1, a process that we show to be evolutionarily conserved from yeast to human cells. RPB1 degradation requires the E3 ligase Cullin 3, the unfoldase VCP/p97, and a novel form of CDK9 kinase complex. Our study demonstrates that SPT5 stabilizes RNA Pol II specifically at promoter-proximal regions, permitting RNA Pol II release from promoters into gene bodies and providing mechanistic insight into the cellular function of SPT5 in safeguarding accurate gene expression.


Assuntos
Proteínas Culina/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Sobrevivência Celular , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Culina/química , Fibroblastos/metabolismo , Humanos , Ácidos Indolacéticos/química , Camundongos , Ubiquitina-Proteína Ligases Nedd4/química , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/química , Proteoma , Proteômica/métodos , Ubiquitina-Proteína Ligases/química , Proteína com Valosina/química , Proteína com Valosina/metabolismo
12.
Genes Dev ; 35(3-4): 273-285, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446572

RESUMO

The regulation of gene expression catalyzed by RNA polymerase II (Pol II) requires a host of accessory factors to ensure cell growth, differentiation, and survival under environmental stress. Here, using the auxin-inducible degradation (AID) system to study transcriptional activities of the bromodomain and extraterminal domain (BET) and super elongation complex (SEC) families, we found that the CDK9-containing BRD4 complex is required for the release of Pol II from promoter-proximal pausing for most genes, while the CDK9-containing SEC is required for activated transcription in the heat shock response. By using both the proteolysis targeting chimera (PROTAC) dBET6 and the AID system, we found that dBET6 treatment results in two major effects: increased pausing due to BRD4 loss, and reduced enhancer activity attributable to BRD2 loss. In the heat shock response, while auxin-mediated depletion of the AFF4 subunit of the SEC has a more severe defect than AFF1 depletion, simultaneous depletion of AFF1 and AFF4 leads to a stronger attenuation of the heat shock response, similar to treatment with the SEC inhibitor KL-1, suggesting a possible redundancy among SEC family members. This study highlights the usefulness of orthogonal acute depletion/inhibition strategies to identify distinct and redundant biological functions among Pol II elongation factor paralogs.


Assuntos
Expressão Gênica/genética , Fatores de Alongamento de Peptídeos/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células HCT116 , Resposta ao Choque Térmico , Humanos , Fatores de Alongamento de Peptídeos/genética , Proteínas/genética , Proteínas/metabolismo , RNA Polimerase II/genética , Fatores de Transcrição/genética
13.
Trends Biochem Sci ; 49(1): 79-92, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036336

RESUMO

Humans and other mammals inhabit hypoxic high-altitude locales. In many of these species, genes under positive selection include ones in the Hypoxia Inducible Factor (HIF) pathway. One is PHD2 (EGLN1), which encodes for a key oxygen sensor. Another is HIF2A (EPAS1), which encodes for a PHD2-regulated transcription factor. Recent studies have provided insights into mechanisms for these high-altitude alleles. These studies have (i) shown that selection can occur on nonconserved, unstructured regions of proteins, (ii) revealed that high altitude-associated amino acid substitutions can have differential effects on protein-protein interactions, (iii) provided evidence for convergent evolution by different molecular mechanisms, and (iv) suggested that mutations in different genes can complement one another to produce a set of adaptive phenotypes.


Assuntos
Adaptação Fisiológica , Altitude , Humanos , Animais , Adaptação Fisiológica/genética , Hipóxia/genética , Fenótipo , Regulação da Expressão Gênica , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Mamíferos/genética
14.
Immunity ; 50(3): 600-615.e15, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30824325

RESUMO

CCR7 chemokine receptor stimulation induces rapid but transient dendritic cell (DC) migration toward draining lymph nodes, which is critical for the initiation of protective immunity and maintenance of immune homeostasis. The mechanisms for terminating CCR7-mediated DC migration remain incompletely understood. Here we have identified a long non-coding RNA lnc-Dpf3 whose feedback restrained CCR7-mediated DC migration. CCR7 stimulation upregulated lnc-Dpf3 via removing N6-methyladenosine (m6A) modification to prevent RNA degradation. DC-specific lnc-Dpf3 deficiency increased CCR7-mediated DC migration, leading to exaggerated adaptive immune responses and inflammatory injuries. Mechanistically, CCR7 stimulation activated the HIF-1α transcription factor pathway in DCs, leading to metabolic reprogramming toward glycolysis for DC migration. lnc-Dpf3 directly bound to HIF-1α and suppressed HIF-1α-dependent transcription of the glycolytic gene Ldha, thus inhibiting DC glycolytic metabolism and migratory capacity. We demonstrate a critical role for CCR7-inducible lnc-Dpf3 in coupling epigenetic and metabolic pathways to feedback-control DC migration and inflammatory responses.


Assuntos
Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Receptores CCR7/genética , Fatores de Transcrição/genética , Imunidade Adaptativa/genética , Animais , Linhagem Celular , Células Dendríticas/patologia , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Inflamação/genética , Inflamação/patologia , Linfonodos/patologia , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica/genética , Regulação para Cima/genética
15.
Genes Dev ; 34(13-14): 965-972, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467225

RESUMO

Graded transcription factors are pivotal regulators of embryonic patterning, but whether their role changes over time is unclear. A light-regulated protein degradation system was used to assay temporal dependence of the transcription factor Dorsal in dorsal-ventral axis patterning of Drosophila embryos. Surprisingly, the high-threshold target gene snail only requires Dorsal input early but not late when Dorsal levels peak. Instead, late snail expression can be supported by action of the Twist transcription factor, specifically, through one enhancer, sna.distal This study demonstrates that continuous input is not required for some Dorsal targets and downstream responses, such as twist, function as molecular ratchets.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Padronização Corporal/efeitos da radiação , Proteínas de Drosophila/genética , Embrião não Mamífero , Luz , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteólise/efeitos da radiação , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/genética , Proteína 1 Relacionada a Twist/genética
16.
EMBO J ; 42(4): e110620, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36637036

RESUMO

Drug resistance contributes to poor therapeutic response in urothelial carcinoma (UC). Metabolomic analysis suggested metabolic reprogramming in gemcitabine-resistant urothelial carcinoma cells, whereby increased aerobic glycolysis and metabolic stimulation of the pentose phosphate pathway (PPP) promoted pyrimidine biosynthesis to increase the production of the gemcitabine competitor deoxycytidine triphosphate (dCTP) that diminishes its therapeutic effect. Furthermore, we observed that gain-of-function of isocitrate dehydrogenase 2 (IDH2) induced reductive glutamine metabolism to stabilize Hif-1α expression and consequently stimulate aerobic glycolysis and PPP bypass in gemcitabine-resistant UC cells. Interestingly, IDH2-mediated metabolic reprogramming also caused cross resistance to CDDP, by elevating the antioxidant defense via increased NADPH and glutathione production. Downregulation or pharmacological suppression of IDH2 restored chemosensitivity. Since the expression of key metabolic enzymes, such as TIGAR, TKT, and CTPS1, were affected by IDH2-mediated metabolic reprogramming and related to poor prognosis in patients, IDH2 might become a new therapeutic target for restoring chemosensitivity in chemo-resistant urothelial carcinoma.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Gencitabina , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Via de Pentose Fosfato , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética
17.
Proc Natl Acad Sci U S A ; 121(26): e2402538121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38905240

RESUMO

Intracellular sensors detect changes in levels of essential metals to initiate homeostatic responses. But, a mammalian manganese (Mn) sensor is unknown, representing a major gap in understanding of Mn homeostasis. Using human-relevant models, we recently reported that: 1) the primary homeostatic response to elevated Mn is upregulation of hypoxia-inducible factors (HIFs), which increases expression of the Mn efflux transporter SLC30A10; and 2) elevated Mn blocks the prolyl hydroxylation of HIFs by prolyl hydroxylase domain (PHD) enzymes, which otherwise targets HIFs for degradation. Thus, the mammalian mechanism for sensing elevated Mn likely relates to PHD inhibition. Moreover, 1) Mn substitutes for a catalytic iron (Fe) in PHD structures; and 2) exchangeable cellular levels of Fe and Mn are comparable. Therefore, we hypothesized that elevated Mn directly inhibits PHD by replacing its catalytic Fe. In vitro assays using catalytically active PHD2, the primary PHD isoform, revealed that Mn inhibited, and Fe supplementation rescued, PHD2 activity. However, a mutation in PHD2 (D315E) that selectively reduced Mn binding without substantially impacting Fe binding or enzymatic activity resulted in complete insensitivity of PHD2 to Mn in vitro. Additionally, hepatic cells expressing full-length PHD2D315E were less sensitive to Mn-induced HIF activation and SLC30A10 upregulation than PHD2wild-type. These results: 1) define a fundamental Mn sensing mechanism for controlling Mn homeostasis-elevated Mn inhibits PHD2, which functions as a Mn sensor, by outcompeting its catalytic Fe, and PHD2 inhibition activates HIF signaling to up-regulate SLC30A10; and 2) identify a unique mode of metal sensing that may have wide applicability.


Assuntos
Homeostase , Prolina Dioxigenases do Fator Induzível por Hipóxia , Manganês , Humanos , Manganês/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células HEK293 , Ferro/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(10): e2309957121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422022

RESUMO

Hypoxia signaling influences tumor development through both cell-intrinsic and -extrinsic pathways. Inhibiting hypoxia-inducible factor (HIF) function has recently been approved as a cancer treatment strategy. Hence, it is important to understand how regulators of HIF may affect tumor growth under physiological conditions. Here we report that in aging mice factor-inhibiting HIF (FIH), one of the most studied negative regulators of HIF, is a haploinsufficient suppressor of spontaneous B cell lymphomas, particular pulmonary B cell lymphomas. FIH deficiency alters immune composition in aged mice and creates a tumor-supportive immune environment demonstrated in syngeneic mouse tumor models. Mechanistically, FIH-defective myeloid cells acquire tumor-supportive properties in response to signals secreted by cancer cells or produced in the tumor microenvironment with enhanced arginase expression and cytokine-directed migration. Together, these data demonstrate that under physiological conditions, FIH plays a key role in maintaining immune homeostasis and can suppress tumorigenesis through a cell-extrinsic pathway.


Assuntos
Linfoma de Células B , Proteínas Repressoras , Animais , Camundongos , Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo , Microambiente Tumoral
19.
Proc Natl Acad Sci U S A ; 121(14): e2315509121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547055

RESUMO

Dysregulation of polyamine metabolism has been implicated in cancer initiation and progression; however, the mechanism of polyamine dysregulation in cancer is not fully understood. In this study, we investigated the role of MUC1, a mucin protein overexpressed in pancreatic cancer, in regulating polyamine metabolism. Utilizing pancreatic cancer patient data, we noted a positive correlation between MUC1 expression and the expression of key polyamine metabolism pathway genes. Functional studies revealed that knockdown of spermidine/spermine N1-acetyltransferase 1 (SAT1), a key enzyme involved in polyamine catabolism, attenuated the oncogenic functions of MUC1, including cell survival and proliferation. We further identified a regulatory axis whereby MUC1 stabilized hypoxia-inducible factor (HIF-1α), leading to increased SAT1 expression, which in turn induced carbon flux into the tricarboxylic acid cycle. MUC1-mediated stabilization of HIF-1α enhanced the promoter occupancy of the latter on SAT1 promoter and corresponding transcriptional activation of SAT1, which could be abrogated by pharmacological inhibition of HIF-1α or CRISPR/Cas9-mediated knockout of HIF1A. MUC1 knockdown caused a significant reduction in the levels of SAT1-generated metabolites, N1-acetylspermidine and N8-acetylspermidine. Given the known role of MUC1 in therapy resistance, we also investigated whether inhibiting SAT1 would enhance the efficacy of FOLFIRINOX chemotherapy. By utilizing organoid and orthotopic pancreatic cancer mouse models, we observed that targeting SAT1 with pentamidine improved the efficacy of FOLFIRINOX, suggesting that the combination may represent a promising therapeutic strategy against pancreatic cancer. This study provides insights into the interplay between MUC1 and polyamine metabolism, offering potential avenues for the development of treatments against pancreatic cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poliaminas/metabolismo , Transdução de Sinais , Acetiltransferases/genética , Acetiltransferases/metabolismo , Mucina-1
20.
Genes Dev ; 33(19-20): 1441-1455, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31467088

RESUMO

Rapid perturbation of protein function permits the ability to define primary molecular responses while avoiding downstream cumulative effects of protein dysregulation. The auxin-inducible degron (AID) system was developed as a tool to achieve rapid and inducible protein degradation in nonplant systems. However, tagging proteins at their endogenous loci results in chronic auxin-independent degradation by the proteasome. To correct this deficiency, we expressed the auxin response transcription factor (ARF) in an improved inducible degron system. ARF is absent from previously engineered AID systems but is a critical component of native auxin signaling. In plants, ARF directly interacts with AID in the absence of auxin, and we found that expression of the ARF PB1 (Phox and Bem1) domain suppresses constitutive degradation of AID-tagged proteins. Moreover, the rate of auxin-induced AID degradation is substantially faster in the ARF-AID system. To test the ARF-AID system in a quantitative and sensitive manner, we measured genome-wide changes in nascent transcription after rapidly depleting the ZNF143 transcription factor. Transcriptional profiling indicates that ZNF143 activates transcription in cis and regulates promoter-proximal paused RNA polymerase density. Rapidly inducible degradation systems that preserve the target protein's native expression levels and patterns will revolutionize the study of biological systems by enabling specific and temporally defined protein dysregulation.


Assuntos
Técnicas Genéticas , Proteínas/metabolismo , Proteólise , Linhagem Celular , Inibidores de Cisteína Proteinase/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ácidos Indolacéticos/farmacologia , Leupeptinas/farmacologia , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA