Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sol Phys ; 298(5): 74, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266352

RESUMO

Remotely sensed interplanetary scintillation (IPS) data from the Institute for Space-Earth Environmental Research (ISEE), Japan, allows a determination of solar-wind parameters throughout the inner heliosphere. We show the 3D analysis technique developed for these data sets that forecast plasma velocity, density, and component magnetic fields at Earth, as well at the other inner heliospheric planets and spacecraft. One excellent coronal mass ejection (CME) example that occurred on the 10 March 2022 was viewed not only in the ISEE IPS analyses, but also by the spacecraft near Earth that measured the CME arrival at one AU. Solar Orbiter, that was nearly aligned along the Earth radial at 0.45 AU, also measured the CME in plasma density, velocity, and magnetic field. BepiColombo at 0.42 AU was also aligned with the STEREO A spacecraft, and viewed this CME. The instruments used here from BepiColombo include: 1) the European-Space-Agency Mercury-Planetary-Orbiter magnetic field measurements; 2) the Japan Aerospace Exploration Agency Mio spacecraft Solar Particle Monitor that viewed the CME Forbush decrease, and the Mercury Plasma Experiment/Mercury Electron Analyzer instruments that measured particles and solar-wind density from below the spacecraft protective sunshield covering. This article summarizes the analysis using ISEE, Japan real-time data for these forecasts: it provides a synopsis of the results and confirmation of the CME event morphology after its arrival, and discusses how future IPS analyses can augment these results.

2.
Sol Phys ; 293(3): 52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568139

RESUMO

The magnetic field structures of two interplanetary coronal mass ejections (ICMEs), each observed by a pair of spacecraft close to radial alignment, have been analysed. The ICMEs were observed in situ by MESSENGER and STEREO-B in November 2010 and November 2011, while the spacecraft were separated by more than 0.6 AU in heliocentric distance, less than 4° in heliographic longitude, and less than 7° in heliographic latitude. Both ICMEs took approximately two days to travel between the spacecraft. The ICME magnetic field profiles observed at MESSENGER have been mapped to the heliocentric distance of STEREO-B and compared directly to the profiles observed by STEREO-B. Figures that result from this mapping allow for easy qualitative assessment of similarity in the profiles. Macroscale features in the profiles that varied on timescales of one hour, and which corresponded to the underlying flux rope structure of the ICMEs, were well correlated in the solar east-west and north-south directed components, with Pearson's correlation coefficients of approximately 0.85 and 0.95, respectively; microscale features with timescales of one minute were uncorrelated. Overall correlation values in the profiles of one ICME were increased when an apparent change in the flux rope axis direction between the observing spacecraft was taken into account. The high degree of similarity seen in the magnetic field profiles may be interpreted in two ways. If the spacecraft sampled the same region of each ICME (i.e. if the spacecraft angular separations are neglected), the similarity indicates that there was little evolution in the underlying structure of the sampled region during propagation. Alternatively, if the spacecraft observed different, nearby regions within the ICMEs, it indicates that there was spatial homogeneity across those different regions. The field structure similarity observed in these ICMEs points to the value of placing in situ space weather monitors well upstream of the Earth.

3.
Sol Phys ; 293(11): 155, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30880846

RESUMO

In the near future, Parker Solar Probe and Solar Orbiter will provide the first comprehensive in-situ measurements of the solar wind in the inner heliosphere since the Helios mission in the 1970s. We describe a reprocessing of the original Helios ion distribution functions to provide reliable and reproducible data to characterise the proton core population of the solar wind in the inner heliosphere. A systematic fitting of bi-Maxwellian distribution functions was performed to the raw Helios ion distribution function data to extract the proton core number density, velocity, and temperatures parallel and perpendicular to the magnetic field. We present radial trends of these derived proton parameters, forming a benchmark to which new measurements in the inner heliosphere will be compared. The new dataset has been made openly available for other researchers to use, along with the source code used to generate it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA