Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Care ; 27(1): 315, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592288

RESUMO

BACKGROUND: The effects of awake prone position on the breathing pattern of hypoxemic patients need to be better understood. We conducted a crossover trial to assess the physiological effects of awake prone position in patients with acute hypoxemic respiratory failure. METHODS: Fifteen patients with acute hypoxemic respiratory failure and PaO2/FiO2 < 200 mmHg underwent high-flow nasal oxygen for 1 h in supine position and 2 h in prone position, followed by a final 1-h supine phase. At the end of each study phase, the following parameters were measured: arterial blood gases, inspiratory effort (ΔPES), transpulmonary driving pressure (ΔPL), respiratory rate and esophageal pressure simplified pressure-time product per minute (sPTPES) by esophageal manometry, tidal volume (VT), end-expiratory lung impedance (EELI), lung compliance, airway resistance, time constant, dynamic strain (VT/EELI) and pendelluft extent through electrical impedance tomography. RESULTS: Compared to supine position, prone position increased PaO2/FiO2 (median [Interquartile range] 104 mmHg [76-129] vs. 74 [69-93], p < 0.001), reduced respiratory rate (24 breaths/min [22-26] vs. 27 [26-30], p = 0.05) and increased ΔPES (12 cmH2O [11-13] vs. 9 [8-12], p = 0.04) with similar sPTPES (131 [75-154] cmH2O s min-1 vs. 105 [81-129], p > 0.99) and ΔPL (9 [7-11] cmH2O vs. 8 [5-9], p = 0.17). Airway resistance and time constant were higher in prone vs. supine position (9 cmH2O s arbitrary units-3 [4-11] vs. 6 [4-9], p = 0.05; 0.53 s [0.32-61] vs. 0.40 [0.37-0.44], p = 0.03). Prone position increased EELI (3887 arbitrary units [3414-8547] vs. 1456 [959-2420], p = 0.002) and promoted VT distribution towards dorsal lung regions without affecting VT size and lung compliance: this generated lower dynamic strain (0.21 [0.16-0.24] vs. 0.38 [0.30-0.49], p = 0.004). The magnitude of pendelluft phenomenon was not different between study phases (55% [7-57] of VT in prone vs. 31% [14-55] in supine position, p > 0.99). CONCLUSIONS: Prone position improves oxygenation, increases EELI and promotes VT distribution towards dependent lung regions without affecting VT size, ΔPL, lung compliance and pendelluft magnitude. Prone position reduces respiratory rate and increases ΔPES because of positional increases in airway resistance and prolonged expiratory time. Because high ΔPES is the main mechanistic determinant of self-inflicted lung injury, caution may be needed in using awake prone position in patients exhibiting intense ΔPES. Clinical trail registeration: The study was registered on clinicaltrials.gov (NCT03095300) on March 29, 2017.


Assuntos
Insuficiência Respiratória , Vigília , Humanos , Decúbito Ventral , Respiração , Insuficiência Respiratória/terapia , Volume de Ventilação Pulmonar , Estudos Cross-Over
2.
J Surg Res ; 277: 310-318, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35533604

RESUMO

INTRODUCTION: Damage to the thoracic cage is common in the injured patient, both when the injuries are confined to this single cavity and as part of the overall injury burden of a polytraumatized patient. In a subset of these patients, the severity of injury to the intrathoracic viscera is either underappreciated at admission or blossom over the following 48-72 h. The ability to promptly identify these patients and abrogate complications therefore requires triage of such at-risk patients to close monitoring in a critical care environment. At our institution, this triage hinges on the Pain, Inspiratory effort, Cough (PIC) score, which generates a composite unitless score from a nomogram which aggregates several variables-patient-reported Pain visual analog scale, Incentive spirometry effort, and the perceived adequacy of Cough. We thus sought to audit PIC's discriminant power in predicting intensive care unit (ICU) need. METHODS: This retrospective cohort study was performed at an urban, academic, level 1 trauma center. All isolated chest wall injuries (excluded any Abbreviated Injury Score >2 in head or abdomen) from January 2020 to June 2021 were identified in the local trauma registry. The electronic medical record was queried for standard demographics, admission PIC score, postadmission destination, ICU and hospital length of stay (LOS), and any unplanned admissions to the ICU. Chi-squared tests were used to determine differences between PIC score outcomes and the recursive partitioning method correlated admission PIC score to ICU LOS. RESULTS: Two hundred and thirty six isolated chest wall injury patients were identified, of whom 194 were included in the final analysis. The median age was 60 (interquartile range [IQR] 50-74) years, 63.1% were male, and the median (IQR) number of rib fractures was 3.0 (2.0-5.0). A cutoff PIC score of 7 or lower was associated with ICU admission (odds ratio [OR] 95% CI: 8.19 [3.39-22.55], P < 0.001 with a PPV = 41.4%, NPV = 91%), and with ICU admission for greater than 48 h [OR (95% CI): 26.86 (5.5-43.96), P < 0.001, with a PPV = 25.9%, NPV = 98.7%] but not anatomic injury severity score, hospital LOS or ICU, or the requirement for mechanical ventilation. The association between PIC score 7 or below and the presence of bilateral fractures, flail chest, or sternal fracture did not meet statistical significance. The accurate cut point of the PIC score to predict ICU admission over 48 h in our retrospective cohort was calculated as PIC ≤ 7 for P = 0.013 and PIC ≤ 6 for P = 0.001. CONCLUSIONS: Patients with isolated chest wall injuries require effective reproducible triage for ICU-level care. The PIC score appears to be a moderate discriminator of critical care need, per se, as judged by our recorded complication rate requiring critical care intervention. This vigilance may pay dividends in early detection and abrogation of respiratory failure emergencies. Furthermore, PIC score delineation for ICU need appears to be appropriate at 7 or less; this threshold can be used during admission triage to guide care.


Assuntos
Traumatismos Torácicos , Parede Torácica , Idoso , Tosse/complicações , Cuidados Críticos , Feminino , Humanos , Escala de Gravidade do Ferimento , Unidades de Terapia Intensiva , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Dor , Estudos Retrospectivos , Traumatismos Torácicos/complicações , Traumatismos Torácicos/diagnóstico , Traumatismos Torácicos/terapia , Triagem/métodos
3.
Crit Care ; 26(1): 403, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36567319

RESUMO

We aimed to identify the threshold for P0.1 in a breath-by-breath manner measured by the Hamilton C6 on quasi-occlusion for high respiratory drive and inspiratory effort. In this prospective observational study, we analyzed the relationships between airway P0.1 on quasi-occlusion and esophageal pressure (esophageal P0.1 and esophageal pressure swing). We also conducted a linear regression analysis and derived the threshold of airway P0.1 on quasi-occlusion for high respiratory drive and inspiratory effort. We found that airway P0.1 measured on quasi-occlusion had a strong positive correlation with esophageal P0.1 measured on quasi-occlusion and esophageal pressure swing, respectively. Additionally, the P0.1 threshold for high respiratory drive and inspiratory effort were calculated at approximately 1.0 cmH2O from the regression equations. Our calculations suggest a lower threshold of airway P0.1 measured by the Hamilton C6 on quasi-occlusion than that which has been previously reported.


Assuntos
Resistência das Vias Respiratórias , Taxa Respiratória , Humanos , Esôfago , Estudos Prospectivos
4.
Crit Care ; 26(1): 70, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331323

RESUMO

BACKGROUND: Excessive inspiratory effort could translate into self-inflicted lung injury, thus worsening clinical outcomes of spontaneously breathing patients with acute respiratory failure (ARF). Although esophageal manometry is a reliable method to estimate the magnitude of inspiratory effort, procedural issues significantly limit its use in daily clinical practice. The aim of this study is to describe the correlation between esophageal pressure swings (ΔPes) and nasal (ΔPnos) as a potential measure of inspiratory effort in spontaneously breathing patients with de novo ARF. METHODS: From January 1, 2021, to September 1, 2021, 61 consecutive patients with ARF (83.6% related to COVID-19) admitted to the Respiratory Intensive Care Unit (RICU) of the University Hospital of Modena (Italy) and candidate to escalation of non-invasive respiratory support (NRS) were enrolled. Clinical features and tidal changes in esophageal and nasal pressure were recorded on admission and 24 h after starting NRS. Correlation between ΔPes and ΔPnos served as primary outcome. The effect of ΔPnos measurements on respiratory rate and ΔPes was also assessed. RESULTS: ΔPes and ΔPnos were strongly correlated at admission (R2 = 0.88, p < 0.001) and 24 h apart (R2 = 0.94, p < 0.001). The nasal plug insertion and the mouth closure required for ΔPnos measurement did not result in significant change of respiratory rate and ΔPes. The correlation between measures at 24 h remained significant even after splitting the study population according to the type of NRS (high-flow nasal cannulas [R2 = 0.79, p < 0.001] or non-invasive ventilation [R2 = 0.95, p < 0.001]). CONCLUSIONS: In a cohort of patients with ARF, nasal pressure swings did not alter respiratory mechanics in the short term and were highly correlated with esophageal pressure swings during spontaneous tidal breathing. ΔPnos might warrant further investigation as a measure of inspiratory effort in patients with ARF. TRIAL REGISTRATION: NCT03826797 . Registered October 2016.


Assuntos
COVID-19 , Ventilação não Invasiva , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Respiração Artificial/métodos , Insuficiência Respiratória/terapia
5.
Crit Care ; 25(1): 441, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930396

RESUMO

BACKGROUND: Inspiratory patient effort under assisted mechanical ventilation is an important quantity for assessing patient-ventilator interaction and recognizing over and under assistance. An established clinical standard is respiratory muscle pressure [Formula: see text], derived from esophageal pressure ([Formula: see text]), which requires the correct placement and calibration of an esophageal balloon catheter. Surface electromyography (sEMG) of the respiratory muscles represents a promising and straightforward alternative technique, enabling non-invasive monitoring of patient activity. METHODS: A prospective observational study was conducted with patients under assisted mechanical ventilation, who were scheduled for elective bronchoscopy. Airway flow and pressure, esophageal/gastric pressures and sEMG of the diaphragm and intercostal muscles were recorded at four levels of pressure support ventilation. Patient efforts were quantified via the [Formula: see text]-time product ([Formula: see text]), the transdiaphragmatic pressure-time product ([Formula: see text]) and the EMG-time products (ETP) of the two sEMG channels. To improve the signal-to-noise ratio, a method for automatically selecting the more informative of the sEMG channels was investigated. Correlation between ETP and [Formula: see text] was assessed by determining a neuromechanical conversion factor [Formula: see text] between the two quantities. Moreover, it was investigated whether this scalar can be reliably determined from airway pressure during occlusion maneuvers, thus allowing to quantify inspiratory effort based solely on sEMG measurements. RESULTS: In total, 62 patients with heterogeneous pulmonary diseases were enrolled in the study, 43 of which were included in the data analysis. The ETP of the two sEMG channels was well correlated with [Formula: see text] ([Formula: see text] and [Formula: see text] for diaphragm and intercostal recordings, respectively). The proposed automatic channel selection method improved correlation with [Formula: see text] ([Formula: see text]). The neuromechanical conversion factor obtained by fitting ETP to [Formula: see text] varied widely between patients ([Formula: see text]) and was highly correlated with the scalar determined during occlusions ([Formula: see text], [Formula: see text]). The occlusion-based method for deriving [Formula: see text] from ETP showed a breath-wise deviation to [Formula: see text] of [Formula: see text] across all datasets. CONCLUSION: These results support the use of surface electromyography as a non-invasive alternative for monitoring breath-by-breath inspiratory effort of patients under assisted mechanical ventilation.


Assuntos
Diafragma , Respiração Artificial , Eletromiografia , Humanos , Respiração com Pressão Positiva , Ventiladores Mecânicos
6.
Crit Care ; 25(1): 196, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099028

RESUMO

BACKGROUND: The evaluation of patient effort is pivotal during pressure support ventilation, but a non-invasive, continuous, quantitative method to assess patient inspiratory effort is still lacking. We hypothesized that the concavity of the inspiratory flow-time waveform could be useful to estimate patient's inspiratory effort. The purpose of this study was to assess whether the shape of the inspiratory flow, as quantified by a numeric indicator, could be associated with inspiratory effort during pressure support ventilation. METHODS: Twenty-four patients in pressure support ventilation were enrolled. A mathematical relationship describing the decay pattern of the inspiratory flow profile was developed. The parameter hypothesized to estimate effort was named Flow Index. Esophageal pressure, airway pressure, airflow, and volume waveforms were recorded at three support levels (maximum, minimum and baseline). The association between Flow Index and reference measures of patient effort (pressure time product and pressure generated by respiratory muscles) was evaluated using linear mixed effects models adjusted for tidal volume, respiratory rate and respiratory rate/tidal volume. RESULTS: Flow Index was different at the three pressure support levels and all group comparisons were statistically significant. In all tested models, Flow Index was independently associated with patient effort (p < 0.001). Flow Index prediction of inspiratory effort agreed with esophageal pressure-based methods. CONCLUSIONS: Flow Index is associated with patient inspiratory effort during pressure support ventilation, and may provide potentially useful information for setting inspiratory support and monitoring patient-ventilator interactions.


Assuntos
Capacidade Inspiratória , Respiração Artificial/instrumentação , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Respiração Artificial/métodos , Respiração Artificial/estatística & dados numéricos , Mecânica Respiratória/fisiologia , Pesos e Medidas/instrumentação
7.
Crit Care ; 25(1): 427, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911541

RESUMO

BACKGROUND: Flow Index, a numerical expression of the shape of the inspiratory flow-time waveform recorded during pressure support ventilation, is associated with patient inspiratory effort. The aim of this study was to assess the accuracy of Flow Index in detecting high or low inspiratory effort during pressure support ventilation and to establish cutoff values for the Flow index to identify these conditions. The secondary aim was to compare the performance of Flow index,of breathing pattern parameters and of airway occlusion pressure (P0.1) in detecting high or low inspiratory effort during pressure support ventilation. METHODS: Data from 24 subjects was included in the analysis, accounting for a total of 702 breaths. Breaths with high inspiratory effort were defined by a pressure developed by inspiratory muscles (Pmusc) greater than 10 cmH2O while breaths with low inspiratory effort were defined by a Pmusc lower than 5 cmH2O. The areas under the receiver operating characteristic curves of Flow Index and respiratory rate, tidal volume,respiratory rate over tidal volume and P0.1 were analyzed and compared to identify breaths with low or high inspiratory effort. RESULTS: Pmusc, P0.1, Pressure Time Product and Flow Index differed between breaths with high, low and intermediate inspiratory effort, while RR, RR/VT and VT/kg of IBW did not differ in a statistically significant way. A Flow index higher than 4.5 identified breaths with high inspiratory effort [AUC 0.89 (CI 95% 0.85-0.93)], a Flow Index lower than 2.6 identified breaths with low inspiratory effort [AUC 0.80 (CI 95% 0.76-0.83)]. CONCLUSIONS: Flow Index is accurate in detecting high and low spontaneous inspiratory effort during pressure support ventilation.


Assuntos
Respiração com Pressão Positiva , Respiração Artificial , Humanos , Pulmão , Respiração , Volume de Ventilação Pulmonar
8.
J Clin Monit Comput ; 35(4): 913-921, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32617847

RESUMO

Pressure support ventilation (PSV) should be titrated considering the pressure developed by the respiratory muscles (Pmusc) to prevent under- and over-assistance. The esophageal pressure (Pes) is the clinical gold standard for Pmusc assessment, but its use is limited by alleged invasiveness and complexity. The least square fitting method and the end-inspiratory occlusion method have been proposed as non-invasive alternatives for Pmusc assessment. The aims of this study were: (1) to compare the accuracy of Pmusc estimation using the end-inspiration occlusion (Pmusc,index) and the least square fitting (Pmusc,lsf) against the reference method based on Pes; (2) to test the accuracy of Pmusc,lsf and of Pmusc,index to detect overassistance, defined as Pmusc ≤ 1 cmH2O. We studied 18 patients at three different PSV levels. At each PSV level, Pmusc, Pmusc,lsf, Pmusc,index were calculated on the same breaths. Differences among Pmusc, Pmusc,lsf, Pmusc,index were analyzed with linear mixed effects models. Bias and agreement were assessed by Bland-Altman analysis for repeated measures. The ability of Pmusc,lsf and Pmusc,index to detect overassistance was assessed by the area under the receiver operating characteristics curve. Positive and negative predictive values were calculated using cutoff values that maximized the sum of sensitivity and specificity. At each PSV level, Pmusc,lsf was not different from Pmusc (p = 0.96), whereas Pmusc,index was significantly lower than Pmusc. The bias between Pmusc and Pmusc,lsf was zero, whereas Pmusc,index systematically underestimated Pmusc of 6 cmH2O. The limits of agreement between Pmusc and Pmusc,lsf and between Pmusc and Pmusc,index were ± 12 cmH2O across bias. Both Pmusc,lsf ≤ 4 cmH2O and Pmusc,index ≤ 1 cmH2O had excellent negative predictive value [0.98 (95% CI 0.94-1) and 0.96 (95% CI 0.91-0.99), respectively)] to identify over-assistance. The inspiratory effort during PSV could not be accurately estimated by the least square fitting or end-inspiratory occlusion method because the limits of agreement were far above the signal size. These non-invasive approaches, however, could be used to screen patients at risk for absent or minimal respiratory muscles activation to prevent the ventilator-induced diaphragmatic dysfunction.


Assuntos
Respiração com Pressão Positiva , Músculos Respiratórios , Humanos , Análise dos Mínimos Quadrados , Respiração Artificial , Mecânica Respiratória , Trabalho Respiratório
9.
J Clin Monit Comput ; 35(1): 183-188, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31919632

RESUMO

Pressure generated by patient's inspiratory muscles (Pmus) during assisted mechanical ventilation is of significant relevance. However, Pmus is not commonly measured since an esophageal balloon catheter is required. We have previously shown that Pmus can be estimated by measuring the electrical activity of the diaphragm (EAdi) through the Pmus/EAdi index (PEI). We investigated whether PEI could be reliably measured by a brief end-expiratory occlusion maneuver to propose an automated PEI measurement performed by the ventilator. Pmus, EAdi, airway pressure (Paw), and flow waveforms of 12 critically ill patients undergoing assisted mechanical ventilation were recorded. Repeated end-expiratory occlusion maneuvers were performed. PEI was measured at 100 ms (PEI0.1) and 200 ms (PEI0.2) from the start of the occlusion and compared to the PEI measured at the maximum Paw deflection (PEIoccl, reference). PEI0.1 and PEI0.2 tightly correlated with PEIoccl, (p < 0.001, R2 = 0.843 and 0.847). At a patient-level analysis, the highest percentage error was -64% and 50% for PEI0.1 and PEI0.2, respectively, suggesting that PEI0.2 might be a more reliable measurement. After correcting the error bias, the PEI0.2 percentage error was lower than ± 30% in all but one subjects (range - 39 to + 29%). It is possible to calculate PEI over a brief airway occlusion of 200 ms at inspiratory onset without the need for a full patient's inspiratory effort. Automated and repeated brief airway occlusions performed by the ventilator can provide a real time measurement of PEI; combining the automatically measured PEI with the EAdi trace could be used to continuously display the Pmus waveform at the bedside without the need of an esophageal balloon catheter.


Assuntos
Diafragma , Respiração Artificial , Estado Terminal , Humanos , Respiração , Ventiladores Mecânicos
10.
BMC Pulm Med ; 18(1): 100, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898702

RESUMO

BACKGROUND: The chronic and progressive nature of chronic obstructive pulmonary disease (COPD) requires self-administration of inhaled medication. Dry powder inhalers (DPIs) are increasingly being used for inhalation therapy in COPD. Important considerations when selecting DPIs include inhalation effort required and flow rates achieved by patients. Here, we present the comparison of the peak inspiratory flow rate (PIF) values achieved by COPD patients, with moderate to very severe airflow limitation, through the Breezhaler®, the Ellipta® and the HandiHaler® inhalers. The effects of disease severity, age and gender on PIF rate were also evaluated. METHODS: This randomized, open-label, multicenter, cross-over, Phase IV study recruited patients with moderate to very severe airflow limitation (Global Initiative for Obstructive Lung Disease 2014 strategy), aged ≥40 years and having a smoking history of ≥10 pack years. No active drug or placebo was administered during the study. The inhalation profiles were recorded using inhalers fitted with a pressure tap and transducer at the wall of the mouthpiece. For each patient, the inhalation with the highest PIF value, out of three replicate inhalations per device, was selected for analysis. A paired t-test was performed to compare mean PIFs between each combination of devices. RESULTS: In total, 97 COPD patients were enrolled and completed the study. The highest mean PIF value (L/min ± SE) was observed with the Breezhaler® (108 ± 23), followed by the Ellipta® (78 ± 15) and the HandiHaler® (49 ± 9) inhalers and the lowest mean pressure drop values were recorded with the Breezhaler® inhaler, followed by the Ellipta® inhaler and the HandiHaler® inhaler, in the overall patient population. A similar trend was consistently observed in patients across all subgroups of COPD severity, within all age groups and for both genders. CONCLUSIONS: Patients with COPD were able to inhale with the least inspiratory effort and generate the highest mean PIF value through the Breezhaler® inhaler when compared with the Ellipta® and the HandiHaler® inhalers. These results were similar irrespective of patients' COPD severity, age or gender. TRIAL REGISTRATION: The trial was registered with ClinicalTrials.gov NCT02596009 on 4 November 2015.


Assuntos
Resistência das Vias Respiratórias , Inaladores de Pó Seco , Capacidade Inspiratória , Doença Pulmonar Obstrutiva Crônica , Terapia Respiratória/instrumentação , Trabalho Respiratório , Fatores Etários , Idoso , Estudos Cross-Over , Inaladores de Pó Seco/instrumentação , Inaladores de Pó Seco/métodos , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/terapia , Terapia Respiratória/métodos , Autoadministração/instrumentação , Autoadministração/métodos , Índice de Gravidade de Doença , Fatores Sexuais , Fumar/fisiopatologia
11.
Front Med (Lausanne) ; 11: 1390878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737762

RESUMO

Background: The successful implementation of assisted ventilation depends on matching the patient's effort with the ventilator support. Pressure muscle index (PMI), an airway pressure based measurement, has been used as noninvasive monitoring to assess the patient's inspiratory effort. The authors aimed to evaluate the feasibility of pressure support adjustment according to the PMI target and the diagnostic performance of PMI to predict the contribution of the patient's effort during ventilator support. Methods: In this prospective physiological study, 22 adult patients undergoing pressure support ventilation were enrolled. After an end-inspiratory airway occlusion, airway pressure reached a plateau, and the magnitude of change in plateau from peak airway pressure was defined as PMI. Pressure support was adjusted to obtain the PMI which was closest to -1, 0, +1, +2, and + 3 cm H2O. Each pressure support level was maintained for 20 min. Esophageal pressure was monitored. Pressure-time products of respiratory muscle and ventilator insufflation were measured, and the fraction of pressure generated by the patient was calculated to represent the contribution of the patient's inspiratory effort. Results: A total of 105 datasets were collected at different PMI-targeted pressure support levels. The differences in PMI between the target and the obtained value were all within ±1 cm H2O. As targeted PMI increased, pressure support settings decreased significantly from a median (interquartile range) of 11 (10-12) to 5 (4-6) cm H2O (p < 0.001), which resulted in a significant increase in pressure-time products of respiratory muscle [from 2.9 (2.1-5.0) to 6.8 (5.3-8.1) cm H2O•s] and the fraction of pressure generated by the patient [from 25% (19-31%) to 72% (62-87%)] (p < 0.001). The area under receiver operating characteristic curves for PMI to predict 30 and 70% contribution of patient's effort were 0.93 and 0.95, respectively. High sensitivity (all 1.00), specificity (0.86 and 0.78), and negative predictive value (all 1.00), but low positive predictive value (0.61 and 0.43) were obtained to predict either high or low contribution of patient's effort. Conclusion: Our results preliminarily suggested the feasibility of pressure support adjustment according to the PMI target from the ventilator screen. PMI could reliably predict the high and low contribution of a patient's effort during assisted ventilation.Clinical trial registration: ClinicalTrials.gov, identifier NCT05970393.

12.
J Acute Med ; 14(1): 28-38, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38487759

RESUMO

Background: Low-flow extracorporeal CO 2 removal (ECCO 2 R), managed using a renal replacement platform, is useful in achieving lung-protective ventilation with low tidal volume. However, its capacity for CO 2 elimination is limited. Whether this system is valuable in reducing strong inspiratory efforts in respiratory failure is unclear. The combined use of alkaline agents with low-flow ECCO 2 R might be useful in hypercapnic subjects preserving inspiratory efforts. Methods: This study examined the effects of low-flow ECCO 2 R on respiratory status and investigated the effects of NaHCO 3 , trometamol, and saline on respiratory status during low-flow ECCO 2 R in CO 2 inhalation models. Results: Although low-flow ECCO 2 R did not significantly change the respiratory rate (92.2% ± 24.3% [mean ± standard deviation] of that before ECCO 2 R), it reduced minute ventilation (MV) (78.9% ± 13.5% of that before ECCO 2 R). The addition of NaHCO 3 improved acidemia but did not change MV compared with that of the saline group (0.451 ± 0.026 L/min/kg body weight [BW] vs. 0.556 ± 0.138 L/min/kg BW, respectively). The addition of trometamol improved acidemia and reduced MV compared with that of the saline group (0.381 ± 0.050 L/min/kg BW vs. 0.556 ± 0.138 L/min/kg BW, respectively). The total amounts of CO 2 removed during ECCO 2 R in the NaHCO 3 group were lower than those in the saline and trometamol groups. Conclusion: The low-flow ECCO 2 R reduced MV in subjects preserving spontaneous breathing efforts with CO 2 overload. The addition of NaHCO 3 improved acidemia but did not change MV, whereas the addition of trometamol improved acidemia and reduced MV.

13.
Chest ; 165(6): 1392-1405, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38295949

RESUMO

BACKGROUND: Positive end-expiratory pressure (PEEP) can potentially modulate inspiratory effort (ΔPes), which is the major determinant of self-inflicted lung injury. RESEARCH QUESTION: Does high PEEP reduce ΔPes in patients with moderate-to-severe ARDS on assisted ventilation? STUDY DESIGN AND METHODS: Sixteen patients with Pao2/Fio2 ≤ 200 mm Hg and ΔPes ≥ 10 cm H2O underwent a randomized sequence of four ventilator settings: PEEP = 5 cm H2O or PEEP = 15 cm H2O + synchronous (pressure support ventilation [PSV]) or asynchronous (pressure-controlled intermittent mandatory ventilation [PC-IMV]) inspiratory assistance. ΔPes and respiratory system, lung, and chest wall mechanics were assessed with esophageal manometry and occlusions. PEEP-induced alveolar recruitment and overinflation, lung dynamic strain, and tidal volume distribution were assessed with electrical impedance tomography. RESULTS: ΔPes was not systematically different at high vs low PEEP (pressure support ventilation: median, 20 cm H2O; interquartile range (IQR), 15-24 cm H2O vs median, 15 cm H2O; IQR, 13-23 cm H2O; P = .24; pressure-controlled intermittent mandatory ventilation: median, 20; IQR, 18-23 vs median, 19; IQR, 17-25; P = .67, respectively). Similarly, respiratory system and transpulmonary driving pressures, tidal volume, lung/chest wall mechanics, and pendelluft extent were not different between study phases. High PEEP resulted in lower or higher ΔPes, respiratory system driving pressure, and transpulmonary driving pressure according to whether this increased or decreased respiratory system compliance (r = -0.85, P < .001; r = -0.75, P < .001; r = -0.80, P < .001, respectively). PEEP-induced changes in respiratory system compliance were driven by its lung component and were dependent on the extent of PEEP-induced alveolar overinflation (r = -0.66, P = .006). High PEEP caused variable recruitment and systematic redistribution of tidal volume toward dorsal lung regions, thereby reducing dynamic strain in ventral areas (pressure support ventilation: median, 0.49; IQR, 0.37-0.83 vs median, 0.96; IQR, 0.62-1.56; P = .003; pressure-controlled intermittent mandatory ventilation: median, 0.65; IQR, 0.42-1.31 vs median, 1.14; IQR, 0.79-1.52; P = .002). All results were consistent during synchronous and asynchronous inspiratory assistance. INTERPRETATION: The impact of high PEEP on ΔPes and lung stress is interindividually variable according to different effects on the respiratory system and lung compliance resulting from alveolar overinflation. High PEEP may help mitigate the risk of self-inflicted lung injury solely if it increases lung/respiratory system compliance. TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT04241874; URL: www. CLINICALTRIALS: gov.


Assuntos
Estudos Cross-Over , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório , Volume de Ventilação Pulmonar , Humanos , Respiração com Pressão Positiva/métodos , Masculino , Feminino , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/fisiopatologia , Pessoa de Meia-Idade , Volume de Ventilação Pulmonar/fisiologia , Idoso , Mecânica Respiratória/fisiologia , Adulto , Inalação/fisiologia , Manometria/métodos
14.
Intern Emerg Med ; 19(2): 333-342, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158462

RESUMO

High flow nasal oxygen (HFNO) is recommended as a first-line respiratory support during acute hypoxic respiratory failure (AHRF) and represents a proportionate treatment option for patients with do not intubate (DNI) orders. The aim of the study is to assess the effect of HFNO on inspiratory effort as assessed by esophageal manometry in a population of DNI patients suffering from AHRF. Patients with AHRF and DNI orders admitted to Respiratory intermediate Care Unit between January 1st, 2018 and May 31st, 2023 to receive HFNO and subjected to esophageal manometry were enrolled. Esophageal pressure swing (ΔPes), clinical variables before and after 2 h of HFNO and clinical outcome (including HFNO failure) were collected and compared as appropriate. The change in physiological and clinical parameters according to the intensity of baseline breathing effort was assessed and the correlation between baseline ΔPes values and the relative change in breathing effort and clinical variables after 2 h of HFNO was explored. Eighty-two consecutive patients were enrolled according to sample size calculation. Two hours after HFNO start, patients presented significant improvement in ΔPes (12 VS 16 cmH2O, p < 0.0001), respiratory rate (RR) (22 VS 28 bpm, p < 0.0001), PaO2/FiO2 (133 VS 126 mmHg, p < 0.0001), Heart rate, Acidosis, Consciousness, Oxygenation and respiratory rate (HACOR) score, (4 VS 6, p < 0.0001), Respiratory rate Oxygenation (ROX) index (8.5 VS 6.1, p < 0.0001) and BORG (1 VS 4, p < 000.1). Patients with baseline ΔPes below 20 cmH2O where those who improved all the explored variables, while patients with baseline ΔPes above 30 cmH2O did not report significant changes in physiological or clinical features. A significant correlation was found between baseline ΔPes values and after 2 h of HFNO (R2 = 0.9, p < 0.0001). ΔPes change 2 h after HFNO significantly correlated with change in BORG (p < 0.0001), ROX index (p < 0.0001), HACOR score (p < 0.001) and RR (p < 0.001). In DNI patients with AHRF, HFNO was effective in reducing breathing effort and improving respiratory and clinical variables only for those patients with not excessive inspiratory effort.


Assuntos
Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Oxigênio , Insuficiência Respiratória/terapia , Hipóxia/terapia , Gasometria , Manometria , Oxigenoterapia
15.
Ann Intensive Care ; 13(1): 111, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37955842

RESUMO

BACKGROUND: Assessment of the patient's respiratory effort is essential during assisted ventilation. We aimed to evaluate the accuracy of airway pressure (Paw)-based indices to detect potential injurious inspiratory effort during pressure support (PS) ventilation. METHODS: In this prospective diagnostic accuracy study conducted in four ICUs in two academic hospitals, 28 adult acute respiratory failure patients undergoing PS ventilation were enrolled. A downward PS titration was conducted from 20 cmH2O to 2 cmH2O at a 2 cmH2O interval. By performing an end-expiratory airway occlusion maneuver, the negative Paw generated during the first 100 ms (P0.1) and the maximal negative swing of Paw (∆Pocc) were measured. After an end-inspiratory airway occlusion, Paw reached a plateau, and the magnitude of change in plateau from peak Paw was measured as pressure muscle index (PMI). Esophageal pressure was monitored and inspiratory muscle pressure (Pmus) and Pmus-time product per minute (PTPmus/min) were used as the reference standard for the patient's effort. High and low effort was defined as Pmus > 10 and < 5 cmH2O, or PTPmus/min > 200 and < 50 cmH2O s min-1, respectively. RESULTS: A total of 246 levels of PS were tested. The low inspiratory effort was diagnosed in 145 (59.0%) and 136 (55.3%) PS levels using respective Pmus and PTPmus/min criterion. The receiver operating characteristic area of the three Paw-based indices by the respective two criteria ranged from 0.87 to 0.95, and balanced sensitivity (0.83-0.96), specificity (0.74-0.88), and positive (0.80-0.91) and negative predictive values (0.78-0.94) were obtained. The high effort was diagnosed in 34 (13.8%) and 17 (6.9%) support levels using Pmus and PTPmus/min criterion, respectively. High receiver operating characteristic areas of the three Paw-based indices by the two criteria were found (0.93-0.95). A high sensitivity (0.80-1.00) and negative predictive value (0.97-1.00) were found with a low positive predictive value (0.23-0.64). CONCLUSIONS: By performing simple airway occlusion maneuvers, the Paw-based indices could be reliably used to detect low inspiratory efforts. Non-invasive and easily accessible characteristics support their potential bedside use for avoiding over-assistance. More evaluation of their performance is required in cohorts with high effort.

16.
Heliyon ; 9(2): e13610, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36852019

RESUMO

There is a clinical need for monitoring inspiratory effort to prevent lung- and diaphragm injury in patients who receive supportive mechanical ventilation in an Intensive Care Unit. Different pressure-based techniques are available to estimate this inspiratory effort at the bedside, but the accuracy of their effort estimation is uncertain since they are all based on a simplified linear model of the respiratory system, which omits gas compressibility of air, and the viscoelasticity and nonlinearities of the respiratory system. The aim of this in-silico study was to provide an overview of the pressure-based estimation techniques and to evaluate their accuracy using a more sophisticated model of the respiratory system and ventilator. The influence of the following parameters on the accuracy of the pressure-based estimation techniques was evaluated using the in-silico model: 1) the patient's respiratory mechanics 2) PEEP and the inspiratory pressure of the ventilator 3) gas compressibility of air 4) viscoelasticity of the respiratory system 5) the strength of the inspiratory effort. The best-performing technique in terms of accuracy was the whole breath occlusion. The average error and maximum error were the lowest for all patient archetypes. We found that the error was related to the expansion of gas in the breathing set and lungs and respiratory compliance. However, concerns exist that other factors not included in the model, such as a changed muscle-force relation during an occlusion, might influence the true accuracy. The estimation techniques based on the esophageal pressure showed an error related to the viscoelastic element in the model which leads to a higher error than the occlusion. The error of the esophageal pressure-based techniques is therefore highly dependent on the pathology of the patient and the settings of the ventilator and might change over time while a patient recovers or becomes more ill.

17.
Ann Intensive Care ; 13(1): 72, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592166

RESUMO

BACKGROUND: Pulse pressure variation (PPV) is unreliable in predicting fluid responsiveness (FR) in patients receiving mechanical ventilation with spontaneous breathing activity. Whether PPV can be valuable for predicting FR in patients with low inspiratory effort is unknown. We aimed to investigate whether PPV can be valuable in patients with low inspiratory effort. METHODS: This prospective study was conducted in an intensive care unit at a university hospital and included acute circulatory failure patients receiving volume-controlled ventilation with spontaneous breathing activity. Hemodynamic measurements were collected before and after a fluid challenge. The degree of inspiratory effort was assessed using airway occlusion pressure (P0.1) and airway pressure swing during a whole breath occlusion (ΔPocc) before fluid challenge. Patients were classified as fluid responders if their cardiac output increased by ≥ 10%. Areas under receiver operating characteristic (AUROC) curves and gray zone approach were used to assess the predictive performance of PPV. RESULTS: Among the 189 included patients, 53 (28.0%) were defined as responders. A PPV > 9.5% enabled to predict FR with an AUROC of 0.79 (0.67-0.83) in the whole population. The predictive performance of PPV differed significantly in groups stratified by the median value of P0.1 (P0.1 < 1.5 cmH2O and P0.1 ≥ 1.5 cmH2O), but not in groups stratified by the median value of ΔPocc (ΔPocc < - 9.8 cmH2O and ΔPocc ≥ - 9.8 cmH2O). Specifically, in patients with P0.1 < 1.5 cmH2O, PPV was associated with an AUROC of 0.90 (0.82-0.99) compared with 0.68 (0.57-0.79) otherwise (p = 0.0016). The cut-off values of PPV were 10.5% and 9.5%, respectively. Besides, patients with P0.1 < 1.5 cmH2O had a narrow gray zone (10.5-11.5%) compared to patients with P0.1 ≥ 1.5 cmH2O (8.5-16.5%). CONCLUSIONS: PPV is reliable in predicting FR in patients who received controlled ventilation with low spontaneous effort, defined as P0.1 < 1.5 cmH2O. Trial registration NCT04802668. Registered 6 February 2021, https://clinicaltrials.gov/ct2/show/record/NCT04802668.

18.
Diagnostics (Basel) ; 13(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37296817

RESUMO

INTRODUCTION: The clinical features of COVID-19 are highly variable. It has been speculated that the progression across COVID-19 may be triggered by excessive inspiratory drive activation. The aim of the present study was to assess whether the tidal swing in central venous pressure (ΔCVP) is a reliable estimate of inspiratory effort. METHODS: Thirty critically ill patients with COVID-19 ARDS underwent a PEEP trial (0-5-10 cmH2O) during helmet CPAP. Esophageal (ΔPes) and transdiaphragmatic (ΔPdi) pressure swings were measured as indices of inspiratory effort. ΔCVP was assessed via a standard venous catheter. A low and a high inspiratory effort were defined as ΔPes ≤ 10 and >15 cmH2O, respectively. RESULTS: During the PEEP trial, no significant changes in ΔPes (11 [6-16] vs. 11 [7-15] vs. 12 [8-16] cmH2O, p = 0.652) and in ΔCVP (12 [7-17] vs. 11.5 [7-16] vs. 11.5 [8-15] cmH2O, p = 0.918) were detected. ΔCVP was significantly associated with ΔPes (marginal R2 0.87, p < 0.001). ΔCVP recognized both low (AUC-ROC curve 0.89 [0.84-0.96]) and high inspiratory efforts (AUC-ROC curve 0.98 [0.96-1]). CONCLUSIONS: ΔCVP is an easily available a reliable surrogate of ΔPes and can detect a low or a high inspiratory effort. This study provides a useful bedside tool to monitor the inspiratory effort of spontaneously breathing COVID-19 patients.

19.
Diagnostics (Basel) ; 13(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36980329

RESUMO

The measurement of pleural (or intrathoracic) pressure is a key element for a proper setting of mechanical ventilator assistance as both under- and over-assistance may cause detrimental effects on both the lungs and the diaphragm. Esophageal pressure (Pes) is the gold standard tool for such measurements; however, it is invasive and seldom used in daily practice, and easier, bedside-available tools that allow for rapid and continuous monitoring are greatly needed. The tidal swing of central venous pressure (CVP) has long been proposed as a surrogate for pleural pressure (Ppl); however, despite the wide availability of central venous catheters, this variable is very often overlooked in critically ill patients. In the present narrative review, the physiological basis for the use of CVP waveforms to estimate Ppl is presented; the findings of previous and recent papers that addressed this topic are systematically reviewed, and the studies are divided into those reporting positive findings (i.e., CVP was found to be a reliable estimate of Pes or Ppl) and those reporting negative findings. Both the strength and pitfalls of this approach are highlighted, and the current knowledge gaps and direction for future research are delineated.

20.
Diagnostics (Basel) ; 13(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980423

RESUMO

Mechanical ventilation (MV) is a life-saving respiratory support therapy, but MV can lead to diaphragm muscle injury (myotrauma) and induce diaphragmatic dysfunction (DD). DD is relevant because it is highly prevalent and associated with significant adverse outcomes, including prolonged ventilation, weaning failures, and mortality. The main mechanisms involved in the occurrence of myotrauma are associated with inadequate MV support in adapting to the patient's respiratory effort (over- and under-assistance) and as a result of patient-ventilator asynchrony (PVA). The recognition of these mechanisms associated with myotrauma forced the development of myotrauma prevention strategies (MV with diaphragm protection), mainly based on titration of appropriate levels of inspiratory effort (to avoid over- and under-assistance) and to avoid PVA. Protecting the diaphragm during MV therefore requires the use of tools to monitor diaphragmatic effort and detect PVA. Diaphragm ultrasound is a non-invasive technique that can be used to monitor diaphragm function, to assess PVA, and potentially help to define diaphragmatic effort with protective ventilation. This review aims to provide clinicians with an overview of the relevance of DD and the main mechanisms underlying myotrauma, as well as the most current strategies aimed at minimizing the occurrence of myotrauma with special emphasis on the role of ultrasound in monitoring diaphragm function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA