RESUMO
The capability of amyloid-like peptide fibers to emit intrinsic-fluorescence enables the study of their formation, stability and hardening through time-resolved fluorescence analysis, without the need for additional intercalating dyes. This approach allows the monitoring of amyloid-like peptides aggregation kinetics using minimal sample volumes, and the simultaneous testing of numerous experimental conditions and analytes, offering rapid and reproducible results. The analytical procedure applied to the aromatic hexapeptide F6, alone or derivatized with PEG (polyethylene glycol) moiety of different lengths, suggests that aggregation into large anisotropic structures negatively correlates with initial monomer concentration and relies on the presence of charged N- and C-termini. PEGylation reduces the extent of aggregates hardening, possibly by retaining water, and overall impacts the final structural properties of the aggregates.
Assuntos
Amiloide , Peptídeos , Polietilenoglicóis , Cinética , Amiloide/química , Polietilenoglicóis/química , Peptídeos/química , Espectrometria de Fluorescência , Agregados Proteicos , FluorescênciaRESUMO
The widespread ability of proteins and peptides to self-assemble by forming cross-ß structure is one of the most significant discoveries in structural biology. Intriguingly, the cross-ß association of proteins/peptides may generate intricate supramolecular architectures with uncommon spectroscopic properties. We have recently characterized self-assembled peptides extracted from the PREP1 protein that are endowed with interesting structural/spectroscopic properties. We here demonstrate that the green fluorescence emission of the peptide PREP1[117-132] (λem ~520â nm), can be induced by excitation with UV radiation. The associated unusually large Stokes shift (Δλ ~150â nm) represents, to the best of our knowledge, the first evidence of an internal resonance energy transfer in amyloid-like structures, where the blue emission of some assemblies becomes the excitation radiation for others. Moreover, the characterization of PREP1[117-132] variants provides insights into the sequence/structure and structure/spectroscopic properties relationships. Our data suggests that the green fluorescence is plausibly associated with antiparallel ß-sheet states of the peptide whereas parallel ß-sheet assemblies are only endowed with blue fluorescence. Notably, the different PREP1[117-132] variants also form assemblies characterized by distinct morphologies. Indeed, the parent peptide and single mutants form compact but structured aggregates whereas most of the double mutants exhibit elongated and highly extended fibers.
Assuntos
Amiloide , Peptídeos , Peptídeos/química , Amiloide/química , Espectrometria de Fluorescência , Sequência de AminoácidosRESUMO
G-quadruplex (G4) structures formed by the guanine-rich DNA regions exhibit several distinctive optical properties, including UV absorption and circular dichroism spectra. Some G4 DNA possess intrinsic UV fluorescence whose origin is not completely clear to date. In this work, we study the effect of TMPyP4 and Methylene Blue on the intrinsic fluorescence of the dimeric G4 DNA structure formed by two d(G3T)4 sequences. We demonstrate that binding of the ligands results in quenching of the intrinsic fluorescence, although the conformation of the G4 DNA and its dimeric structure remain preserved. The binding sites of the ligands were suggested by the photoinduced oxidation of guanines and analysis of binding isoterms. We discuss how DNA-ligand complexes can affect the intrinsic fluorescence of G4 DNA.
Assuntos
Quadruplex G , Ligantes , DNA/química , Dicroísmo Circular , Sítios de LigaçãoRESUMO
The nucleotide-binding domain (N-domain) of the Na+, K+-ATPase (NKA) is physicochemically characterized by a high content of Glu and Asp residues, resulting in a low isoelectric point (pI = 5.0). Acidic proteins are known to interact with cations. The analysis in silico revealed potential cation interaction sites in the NKA N-domain structure. The interaction with cations was tested in vitro by using a recombinant NKA N-domain. The N-domain contains two Trp residues at the protein surface, as determined by acrylamide-mediated fluorescence quenching, that are useful for structural studies through fluorescence changes. Intrinsic fluorescence of the N-domain was decreased by the presence of cations (Na+, K+, Ca2+) indicating an effect on the protein structure. ATP binding also decreased the N-domain intrinsic fluorescence, which allowed nucleotide affinity determination. In the presence of cations, the N-domain affinity for ATP was increased. Molecular docking of fluorescein isothiocyanate (FITC) with the N-domain showed two binding modes with the isothiocyanate group located 5-6 Å close to Lys485 and Lys506 in the nucleotide-binding site. The presence of ATP prevented the FITC covalent labeling of the N-domain demonstrating the competitive behavior for the binding site. It is proposed that cations interact with the N-domain structure and thereby modulate nucleotide (ATP) affinity and possibly affecting NKA catalysis.
RESUMO
BACKGROUND: Interferon regulatory factor 6 (IRF6) has a key function in palate fusion during palatogenesis during embryonic development, and mutations in IRF6 cause orofacial clefting disorders. METHODS AND RESULTS: The in silico analysis of IRF6 is done to obtain leads for the domain boundaries and subsequently the sub-cloning of the N-terminal domain of IRF6 into the pGEX-2TK expression vector and successfully optimized the overexpression and purification of recombinant glutathione S-transferase-fused NTD-IRF6 protein under native conditions. After cleavage of the GST tag, NTD-IRF6 was subjected to protein folding studies employing Circular Dichroism and Intrinsic fluorescence spectroscopy at variable pH, temperature, and denaturant. CD studies showed predominantly alpha-helical content and the highest stability of NTD-IRF6 at pH 9.0. A comparison of native and renatured protein depicts loss in the secondary structural content. Intrinsic fluorescence and quenching studies have identified that tryptophan residues are majorly present in the buried areas of the protein and a small fraction was on or near the protein surface. Upon the protein unfolding with a higher concentration of denaturant urea, the peak of fluorescence intensity decreased and red shifted, confirming that tryptophan residues are majorly present in a more polar environment. While regulating IFNß gene expression during viral infection, the N-terminal domain binds to the promoter region of Virus Response Element-Interferon beta (VRE-IFNß). Along with the protein folding analysis, this study also aimed to identify the DNA-binding activity and determine the binding affinities of NTD-IRF6 with the VRE-IFNß promoter region. The protein-DNA interaction is specific as demonstrated by gel retardation assay and the kinetics of molecular interactions as quantified by Biolayer Interferometry showed a strong affinity with an affinity constant (KD) value of 7.96 × 10-10 M. CONCLUSION: NTD-IRF6 consists of a mix of α-helix and ß-sheets that show temperature-dependent cooperative unfolding between 40 °C and 55 °C. Urea-induced unfolding shows moderate tolerance to urea as the mid-transition concentration of urea (Cm) is 3.2 M. The tryptophan residues are majorly buried as depicted by fluorescence quenching studies. NTD-IRF6 has a specific and high affinity toward the promoter region of VRE-IFNß.
Assuntos
Fatores Reguladores de Interferon , Dobramento de Proteína , Triptofano , Humanos , DNA , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/fisiologia , Triptofano/metabolismo , UreiaRESUMO
Diabetes mellitus is a metabolic disease characterized by hyperglycemia, which can be counteracted by the inhibition of α-glucosidase (α-Glu) and α-amylase (α-Amy), enzymes responsible for the hydrolysis of carbohydrates. In recent decades, many natural compounds and their bioinspired analogues have been studied as α-Glu and α-Amy inhibitors. However, no studies have been devoted to the evaluation of α-Glu and α-Amy inhibition by the neolignan obovatol (1). In this work, we report the synthesis of 1 and a library of new analogues. The synthesis of these compounds was achieved by implementing methodologies based on: phenol allylation, Claisen/Cope rearrangements, methylation, Ullmann coupling, demethylation, phenol oxidation and Michael-type addition. Obovatol (1) and ten analogues were evaluated for their in vitro inhibitory activity towards α-Glu and α-Amy. Our investigation highlighted that the naturally occurring 1 and four neolignan analogues (11, 22, 26 and 27) were more effective inhibitors than the hypoglycemic drug acarbose (α-Amy: 34.6 µM; α-Glu: 248.3 µM) with IC5O value of 6.2-23.6 µM toward α-Amy and 39.8-124.6 µM toward α-Glu. Docking investigations validated the inhibition outcomes, highlighting optimal compatibility between synthesized neolignans and both the enzymes. Concurrently circular dichroism spectroscopy detected the conformational changes in α-Glu induced by its interaction with the studied neolignans. Detailed studies through fluorescence measurements and kinetics of α-Glu and α-Amy inhibition also indicated that 1, 11, 22, 26 and 27 have the greatest affinity for α-Glu and 1, 11 and 27 for α-Amy. Surface plasmon resonance imaging (SPRI) measurements confirmed that among the compounds studied, the neolignan 27 has the greater affinity for both enzymes, thus corroborating the results obtained by kinetics and fluorescence quenching. Finally, in vitro cytotoxicity of the investigated compounds was tested on human colon cancer cell line (HCT-116). All these results demonstrate that these obovatol-based neolignan analogues constitute promising candidates in the pursuit of developing novel hypoglycemic drugs.
Assuntos
Inibidores de Glicosídeo Hidrolases , Lignanas , alfa-Amilases , alfa-Glucosidases , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Lignanas/farmacologia , Lignanas/química , Lignanas/síntese química , Relação Estrutura-Atividade , Humanos , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/químicaRESUMO
Fluorescence in biological systems is usually associated with the presence of aromatic groups. Here, by employing a combined experimental and computational approach, we show that specific hydrogen bond networks can significantly affect fluorescence. In particular, we reveal that the single amino acid L-glutamine, by undergoing a chemical transformation leading to the formation of a short hydrogen bond, displays optical properties that are significantly enhanced compared with L-glutamine itself. Ab initio molecular dynamics simulations highlight that these short hydrogen bonds prevent the appearance of a conical intersection between the excited and the ground states and thereby significantly decrease nonradiative transition probabilities. Our findings open the door to the design of new photoactive materials with biophotonic applications.
Assuntos
Amônia/química , Glutamina/química , Peptídeos/química , Teoria da Densidade Funcional , Fluorescência , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Óptica e Fotônica/métodosRESUMO
Proteins are large biomolecules with a specific structure that is composed of one or more long amino acid chains. Correct protein structures are directly linked to their correct function, and many environmental factors can have either positive or negative effects on this structure. Thus, there is a clear need for methods enabling the study of proteins, their correct folding, and components affecting protein stability. There is a significant number of label-free methods to study protein stability. In this review, we provide a general overview of these methods, but the main focus is on fluorescence-based low-instrument and -expertise-demand techniques. Different aspects related to thermal shift assays (TSAs), also called differential scanning fluorimetry (DSF) or ThermoFluor, are introduced and compared to isothermal chemical denaturation (ICD). Finally, we discuss the challenges and comparative aspects related to these methods, as well as future opportunities and assay development directions.
Assuntos
Aminoácidos , Proteínas , Estabilidade Proteica , Proteínas/química , Fluorometria/métodos , Bioensaio , Desnaturação ProteicaRESUMO
In this article, Fluorescence spectroscopy has been employed for the assessment of microbial load and it has been compared with the gold standard colony forming unit (CFU) and optical density (OD) methods. In order to develop a correlation between three characterization techniques, water samples of different microbial loads have been prepared by UVC disinfection method through an indigenously developed NUVWater sterilizer, which operates in close cycle flow configuration. A UV dose of 58.9 mJ/cm2 has been determined for 99.99% disinfection for a flow rate of 0.8 l/min. The water samples were excited at 270 nm which results in the tryptophan like fluorescence at 360 nm that decreases gradually with increase of UVC dose, indicating the bacterial degradation and it has been confirmed by OD and CFU methods. In addition, it has been proved that a close cycle water flow around UV lamp is imperative so that an appropriate dose must be delivered to microorganisms for an efficient disinfection. It has been found that due to the sensitive nature of Fluorescence spectroscopy, it yields immediate results, whereas, for CFU and OD methods, water samples needs to be inoculated for 24 h. Fluorescence spectroscopy, therefore, provide a fast, online, reliable and sensitive method for the monitoring of pathogenic quantification in drinking water.
Assuntos
Água Potável , Raios Ultravioleta , Espectrometria de Fluorescência , Bactérias , Desinfecção/métodosRESUMO
Human stefin B, a member of the cystatin family of cysteine protease inhibitors, tends to form amyloid fibrils under relatively mild conditions, which is why it is used as a model protein to study amyloid fibrillation. Here, we show for the first time that bundles of amyloid fibrils, i.e., helically twisted ribbons, formed by human stefin B exhibit birefringence. This physical property is commonly observed in amyloid fibrils when stained with Congo red. However, we show that the fibrils arrange in regular anisotropic arrays and no staining is required. They share this property with anisotropic protein crystals, structured protein arrays such as tubulin and myosin, and other anisotropic elongated materials, such as textile fibres and liquid crystals. In certain macroscopic arrangements of amyloid fibrils, not only birefringence is observed, but also enhanced emission of intrinsic fluorescence, implying a possibility to detect amyloid fibrils with no labels by using optical microscopy. In our case, no enhancement of intrinsic tyrosine fluorescence was observed at 303 nm; instead, an additional fluorescence emission peak appeared at 425 to 430 nm. We believe that both phenomena, birefringence and fluorescence emission in the deep blue, should be further explored with this and other amyloidogenic proteins. This may allow the development of label-free detection methods for amyloid fibrils of different origins.
Assuntos
Amiloide , Cistatinas , Humanos , Cistatina B , Amiloide/metabolismo , Cistatinas/metabolismo , Vermelho Congo , Inibidores de Cisteína ProteinaseRESUMO
Fibrillar amyloids exhibit a fascinating range of mechanical, optical, and electronic properties originating from their characteristic ß-sheet-rich structure. Harnessing these functionalities in practical applications has so far been hampered by a limited ability to control the amyloid self-assembly process at the macroscopic scale. Here, we use core-shell electrospinning with microconfinement to assemble amyloid-hybrid fibers, consisting of densely aggregated fibrillar amyloids stabilized by a polymer shell. Up to centimeter-long hybrid fibers with micrometer diameter can be arranged into aligned and ordered arrays and deposited onto substrates or produced as free-standing networks. Properties that are characteristic of amyloids, including their high elastic moduli and intrinsic fluorescence signature, are retained in the hybrid fiber cores, and we show that they fully persist through the macroscopic fiber patterns. Our findings suggest that microlevel confinement is key for the guided assembly of amyloids from monomeric proteins.
Assuntos
Amiloide , PolímerosRESUMO
The reliable, readily accessible and label-free measurement of aptamer binding remains a challenge in the field. Recent reports have shown large changes in the intrinsic fluorescence of DNA upon the formation of G-quadruplex and i-motif structures. In this work, we examined whether DNA intrinsic fluorescence can be used for studying aptamer binding. First, DNA hybridization resulted in a drop in the fluorescence, which was observed for A30/T30 and a 24-mer random DNA sequence. Next, a series of DNA aptamers were studied. Cortisol and Hg2+ induced fluorescence increases for their respective aptamers. For the cortisol aptamer, the length of the terminal stem needs to be short to produce a fluorescence change. However, caffeine and adenosine failed to produce a fluorescence change, regardless of the stem length. Overall, using the intrinsic fluorescence of DNA may be a reliable and accessible method to study a limited number of aptamers that can produce fluorescence changes.
Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Hidrocortisona , Aptâmeros de Nucleotídeos/química , DNA , Hibridização de Ácido NucleicoRESUMO
The publication deals with polymeric pAâpT and oligomeric A20âT20 DNA duplexes whose fluorescence is studied by time-correlated single photon counting. It is shown that their emission on the nanosecond timescale is largely dominated by high-energy components peaking at a wavelength shorter than 305 nm. Because of their anisotropy (0.02) and their sensitivity to base stacking, modulated by the duplex size and the ionic strength of the solution, these components are attributed to mixed ππ*/charge transfer excitons. As high-energy long-lived excited states may be responsible for photochemical reactions, their identification via theoretical studies is an important challenge.
Assuntos
Adenina , Timina , DNA , Fenômenos Físicos , Raios UltravioletaRESUMO
The hemp seed contains protein fractions that could serve as useful ingredients for food product development. However, utilization of hemp seed protein fractions in the food industry can only be successful if there is sufficient information on their levels and functional properties. Therefore, this work provides a comparative evaluation of the structural and functional properties of hemp seed protein isolate (HPI) and fractions that contain 2S, 7S, or 11S proteins. HPI and protein fractions were isolated at pH values of least solubility. Results showed that the dominant protein was 11S, with a yield of 72.70 ± 2.30%, while 7S and 2S had values of 1.29 ± 0.11% and 3.92 ± 0.15%, respectively. The 2S contained significantly (p < 0.05) higher contents of sulfhydryl groups at 3.69 µmol/g when compared to 7S (1.51 µmol/g), 11S (1.55 µmol/g), and HPI (1.97 µmol/g). The in vitro protein digestibility of the 2S (72.54 ± 0.52%) was significantly (p < 0.05) lower than those of the other isolated proteins. The intrinsic fluorescence showed that the 11S had a more rigid structure at pH 3.0, which was lost at higher pH values. We conclude that the 2S fraction has superior solubility, foaming capacity, and emulsifying activity when compared to the 7S, 11S, and HPI.
Assuntos
Cannabis/química , Emulsificantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Emulsificantes/química , Concentração de Íons de Hidrogênio , Proteínas de Plantas/química , Proteínas de Armazenamento de Sementes/química , SolubilidadeRESUMO
The lectins are carbohydrate-binding proteins that are highly specific to sugar groups associated to other molecules. In addition to interacting with carbohydrates, a number of studies have reported the ability of these proteins to modulate the activity of several antibiotics against multidrug-resistant (MDR) strains. In this study, we report the enhanced antibacterial activity of the gentamicin against MDR strains when complexed with a lectin from Canavalia ensiformis seeds (ConA). Hemagglutination activity test and intrinsic fluorescence spectroscopy revealed that the gentamicin can interact with ConA most likely via the carbohydrate recognition domain (CRD) with binding constant (Kb) value estimated of (0.44 ± 0.04) x 104 M-1. Furthermore, the minimum inhibitory concentrations (MIC) obtained for ConA against all strains studied were not clinically relevant (MIC ≥ 1024 µg/mL). However, when ConA was combined with gentamicin, a significant increase in antibiotic activity was observed against Staphylococcus aureus and Escherichia coli. The present study showed that ConA has an affinity for gentamicin and modulates its activity against MDR strains. These results indicate that ConA improves gentamicin performance and is a promising candidate for structure/function analyses.
Assuntos
Canavalia , Gentamicinas , Antibacterianos/farmacologia , Gentamicinas/farmacologia , Lectinas , Testes de Sensibilidade MicrobianaRESUMO
Analysis of the intrinsic UV-visible fluorescence exhibited by self-assembling amyloid-like peptides in solution and in solid the state highlights that their physical state has a profound impact on the optical properties. In the solid state, a linear dependence of the fluorescence emission peaks as a function of excitation wavelength is detected. On the contrary, an excitation-independent emission is observed in solution. The present findings constitute a valuable benchmark for current and future explanations of the fluorescence emission by amyloids.
Assuntos
Amiloide/química , Fluorescência , Peptídeos/química , Soluções , Raios UltravioletaRESUMO
PURPOSE: Introduction of the activation energy (Ea) as a kinetic parameter to describe and discriminate monoclonal antibody (mAb) stability. METHODS: Ea is derived from intrinsic fluorescence (IF) unfolding thermograms. An apparent irreversible three-state fit model based on the Arrhenius integral is developed to determine Ea of respective unfolding transitions. These activation energies are compared to the thermodynamic parameter of van´t Hoff enthalpies (∆Hvh). Using a set of 34 mAbs formulated in four different formulations, both the apparent thermodynamic and kinetic parameters together with apparent melting temperatures are correlated collectively with each other to storage stabilities to evaluate its predictive power with respect to long-term effects potentially reflected in shelf-life. RESULTS: Ea allows for the discrimination of (i) different parent mAbs, (ii) different variants that originate from parent mAbs, and (iii) different formulations. Interestingly, we observed that the Ea of the CH2 unfolding transition shows strongest correlations with monomer and aggregate content after storage at accelerated and stress conditions when collectively compared to ∆Hvh and Tm of the CH2 transition. Moreover, the predictive parameters determined for the CH2 domain show generally stronger correlations with monomer and aggregate content than those derived for the Fab. Qualitative assessment by ranking Ea of the Fab domain showed good agreement with monomer content in storage stabilities of individual mAb sub-sets. CONCLUSION: Ea from IF unfolding transitions can be used in addition to other commonly used thermodynamic predictive parameters to discriminate and characterize thermal stability of different mAbs in different formulations. Hence, it shows great potential for antibody engineering and formulation scientists.
Assuntos
Anticorpos Monoclonais/química , Modelos Químicos , Química Farmacêutica , Cinética , Desnaturação Proteica , Estabilidade Proteica , TermodinâmicaRESUMO
Type 2 Diabetes mellitus is a chronic disease considered one of the most severe global health emergencies. Chlorogenic acid (1) has been shown to delay intestinal glucose absorption by inhibiting the activity of α-glucosidase (α-Glu) and α-amylase (α-Amy). In the present work, eleven chlorogenic acid amides have been synthesized and evaluated for their antioxidant properties (as DPPH and ORAC) and inhibition activity towards the two enzymes and, with the aim to obtain dual-action antidiabetic agents. The two most promising hypoglycemic compounds, bearing a tertiary amine function on an alkyl chain (8) and a benzothiazole scaffold (11), showed IC50 values lower than that of (1) (45.5 µM α-Glu; 105.2 µM α-Amy). Amides 8 and 11 were by far more potent α-Glu inhibitors than the antidiabetic drug acarbose (IC50 = 268.4 µM) and about twice less active toward α-Amy than acarbose (IC50 = 34.4 µM). Kinetics experiments on amides 8 and 11 indicated these compounds as mixed-type inhibitors of α-Glu with K'i values of 13.3 and 6.3 µM, respectively. The amylase inhibition occurred with a competitive mechanism in the presence of 8 (Ki = 79.7 µM) and with a mixed-type mechanism with 11 (Ki = 19.1 µM; K'i = 93.6 µM). Molecular docking analyses supported these results, highlighting the presence of additional binding sites in both enzymes. Fluorescence experiments confirmed the grater affinity of amides 8 and 11 towards the two enzymes respect to (1). Moreover, a significant enhancement in acarbose efficacy was observed when inhibition assays were performed adding acarbose and amide 11. The above outcomes pinpointed the benzothiazole-based amide 11 as a promising candidate for further studies on type 2 diabetes treatment, both alone or combined with acarbose.
Assuntos
Acarbose/farmacologia , Amidas/farmacologia , Antioxidantes/farmacologia , Ácido Clorogênico/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Acarbose/química , Amidas/síntese química , Amidas/química , Animais , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Ácido Clorogênico/síntese química , Ácido Clorogênico/química , Diabetes Mellitus Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Pâncreas/enzimologia , Picratos/antagonistas & inibidores , Saccharomyces cerevisiae/enzimologia , Relação Estrutura-Atividade , Suínos , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismoRESUMO
Triple-negative breast cancer (TNBC) is a highly diverse group of cancers with limited treatment options, responsible for about 15% of all breast cancers. TNBC cells differ from each other in many ways such as gene expression, metabolic activity, tumorigenicity, and invasiveness. Recently, many research and clinical efforts have focused on metabolically targeted therapy for TNBC. Metabolic characterization of TNBC cell lines can facilitate the assessment of therapeutic effects and assist in metabolic drug development. Herein, we used optical redox imaging (ORI) techniques to characterize TNBC subtypes metabolically. We found that various TNBC cell lines had differing redox statuses (levels of reduced nicotinamide adenine dinucleotide (NADH), oxidized flavin adenine dinucleotide (FAD), and the redox ratio (FAD/(NADH+FAD)). We then metabolically perturbed the cells with mitochondrial inhibitors and an uncoupler and performed ORI accordingly. As expected, we observed that these TNBC cell lines had similar response patterns to the metabolic perturbations. However, they exhibited differing redox plasticity. These results suggest that subtypes of TNBC cells are different metabolically and that ORI can serve as a sensitive technique for the metabolic profiling of TNBC cells.
Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , NAD/metabolismo , Imagem Óptica , Oxirredução , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/genéticaRESUMO
A simple and highly sensitive spectrofluorimetric method for the estimation of sumatriptan succinate has been investigated. The suggested method depends on the determination of the intrinsic fluorescence properties of the drug in aqueous systems at λem 350 nm following λex at 225 nm. The linearity range was 10-100 ng/ml, with a detection limit and quantitation limit of 1.2 and 3.6 ng/ml, respectively. The suggested method was sufficiently successful for determination of sumatriptan its pharmaceutical tablets as well as in spiked human plasma. Moreover, the validation parameters were determined following International Council for Harmonisation guidelines. Statistical analysis of the obtained results from the proposed and reference methods showed no significance difference between the two methods regarding accuracy and precision.