RESUMO
PURPOSE: This study investigated the effect of an isocitrate dehydrogenase 1 (IDH1) mutation (mutIDH1) on the invasion and angiogenesis of human glioma cells. METHODS: Doxycycline was used to induce the expression of mutIDH1 in glioma cells. Transwell and wound healing assays were conducted to assess glioma cell migration and invasion. Western blotting and cell immunofluorescence were used to measure the expression levels of various proteins. The influence of bone morphogenetic protein 2 (BMP2) on invasion, angiogenesis-related factors, BMP2-related receptor expression, and changes in Smad signaling pathway-related proteins were evaluated after treatment with BMP2. Differential gene expression and reference transcription analysis were performed. RESULTS: Successful infection with recombinant lentivirus expressing mutIDH1 was demonstrated. The IDH1 mutation promoted glioma cell migration and invasion while positively regulating the expression of vascularization-related factors and BMP2-related receptors. BMP2 exhibited a positive regulatory effect on the migration, invasion, and angiogenesis of mutIDH1-glioma cells, possibly mediated by BMP2-induced alterations in Smad signaling pathway-related factors.After BMP2 treatment, the differential genes of MutIDH1-glioma cells are closely related to the regulation of cell migration and cell adhesion, especially the regulation of Smad-related proteins. KEGG analysis confirmed that it was related to BMP signaling pathway and TGF-ß signaling pathway and cell adhesion. Enrichment analysis of gene ontology and genome encyclopedia further confirmed the correlation of these pathways. CONCLUSION: Mutation of isocitrate dehydrogenase 1 promotes the migration, invasion, and angiogenesis of glioma cells, through its effects on the BMP2-driven Smad signaling pathway. In addition, BMP2 altered the transcriptional patterns of mutIDH1 glioma cells, enriching different gene loci in pathways associated with invasion, migration, and angiogenesis.
Assuntos
Proteína Morfogenética Óssea 2 , Neoplasias Encefálicas , Movimento Celular , Glioma , Isocitrato Desidrogenase , Mutação , Invasividade Neoplásica , Neovascularização Patológica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Humanos , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Movimento Celular/efeitos dos fármacos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Invasividade Neoplásica/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Smad/metabolismo , Proteínas Smad/genética , AngiogêneseRESUMO
This is a single arm, open label perioperative trial to assess the feasibility, pharmacokinetics and pharmacodynamics of treatment with safusidenib following biopsy, and prior to surgical resection in patients with IDH1 mutated glioma who have not received radiation therapy or chemotherapy. Fifteen participants will receive treatment in two parts. First, biopsy followed by one cycle (28 days) of safusidenib, an orally available, small molecular inhibitor of mutated IDH1, then maximal safe resection of the tumor (Part A). Second, after recovery from surgery, safusidenib until disease progression or unacceptable toxicity (Part B). This research will enable objective measurement of biological activity of safusidenib in patients with IDH1 mutated glioma. Anti-tumor activity will be assessed by progression free survival and time to next intervention.Clinical Trial Registration: NCT05577416 (ClinicalTrials.gov).
Adult low-grade gliomas (aLGG) are primary brain cancers, defined by mutations in IDH1 or IDH2. When the IDH gene becomes abnormal (mutated), production of a metabolite that causes cancer cells to grow is increased. These tumors grow slowly but invade the normal functioning brain, making them nearly impossible to cure. The current standard of care treatment includes surgery, followed by radiation therapy and chemotherapy, the timing of which depends on the risk of cancer regrowth. Some patients may be suitable for monitoring with MRI scans alone, however recurrences will inevitably occur. Recently developed targeted mutant IDH inhibitors for aLGG patients may be beneficial both at diagnosis and recurrence. Notably, early treatment prior to radiation therapy and chemotherapy delays growth of aLGG and the need for subsequent radiation therapy and chemotherapy. Nevertheless, most patients will eventually suffer further tumor growth and the optimal timing and sequencing of these therapies remains an area of active research. This research investigates the mutant IDH1 inhibitor safusidenib. The researchers are conducting an innovative clinical trial where patients with aLGG, who have not received radiation therapy or chemotherapy, are treated with safusidenib following a biopsy and prior to surgical removal of their tumor. In this study they investigate whether this trial design is safe and feasible, and how safusidenib works; with the goal to better understand the optimal use of IDH inhibitors for patients with aLGG.
Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Mutação , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/antagonistas & inibidores , Glioma/genética , Glioma/tratamento farmacológico , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Intervalo Livre de Progressão , Antineoplásicos/uso terapêutico , Assistência Perioperatória/métodosRESUMO
OBJECTIVE: Several studies have compared the immune microenvironment of isocitrate dehydrogenase (IDH)-wildtype glioma versus IDH-mutant glioma. The authors sought to determine whether histological tumor progression in a subset of IDH-mutant glioma was associated with concomitant alterations in the intratumoral immune microenvironment. METHODS: The authors performed bulk RNA sequencing on paired and unpaired samples from patients with IDH-mutant glioma who underwent surgery for tumor progression across multiple timepoints. They compared patterns of differential gene expression, overall inflammatory signatures, and transcriptomic measures of relative immune cell proportions. RESULTS: A total of 55 unique IDH-mutant glioma samples were included in the analysis. The authors identified multiple genes associated with progression and higher grade across IDH-mutant oligodendrogliomas and astrocytomas. Compared with lower-grade paired samples, grade 4 IDH-mutant astrocytomas uniquely demonstrated upregulation of VEGFA in addition to counterproductive alterations in inflammatory score reflective of a more hostile immune microenvironment. CONCLUSIONS: Here, the authors have provided a transcriptomic analysis of a progression cohort for IDH-mutant glioma. Compared with lower-grade tumors, grade 4 astrocytomas displayed alterations that may inform the timing of antiangiogenic and immune-based therapy as these tumors progress.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Regulação para Cima , Mutação/genética , Glioma/genética , Glioma/patologia , Astrocitoma/genética , Microambiente Tumoral/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Adult brain tumors (glioma) represent a cancer of unmet need where standard-of-care is non-curative; thus, new therapies are urgently needed. It is unclear whether isocitrate dehydrogenases (IDH1/2) when not mutated have any role in gliomagenesis or tumor growth. Nevertheless, IDH1 is overexpressed in glioblastoma (GBM), which could impact upon cellular metabolism and epigenetic reprogramming. This study characterizes IDH1 expression and associated genes and pathways. A novel biomarker discovery pipeline using artificial intelligence (evolutionary algorithms) was employed to analyze IDH-wildtype adult gliomas from the TCGA LGG-GBM cohort. Ninety genes whose expression correlated with IDH1 expression were identified from: (1) All gliomas, (2) primary GBM, and (3) recurrent GBM tumors. Genes were overrepresented in ubiquitin-mediated proteolysis, focal adhesion, mTOR signaling, and pyruvate metabolism pathways. Other non-enriched pathways included O-glycan biosynthesis, notch signaling, and signaling regulating stem cell pluripotency (PCGF3). Potential prognostic (TSPYL2, JAKMIP1, CIT, TMTC1) and two diagnostic (MINK1, PLEKHM3) biomarkers were downregulated in GBM. Their gene expression and methylation were negatively and positively correlated with IDH1 expression, respectively. Two diagnostic biomarkers (BZW1, RCF2) showed the opposite trend. Prognostic genes were not impacted by high frequencies of molecular alterations and only one (TMTC1) could be validated in another cohort. Genes with mechanistic links to IDH1 were involved in brain neuronal development, cell proliferation, cytokinesis, and O-mannosylation as well as tumor suppression and anaplerosis. Results highlight metabolic vulnerabilities and therapeutic targets for use in future clinical trials.
RESUMO
Three disposable stochastic sensors designed using nanolayer deposition of copper (Cu), graphene (GR), and copper-graphene (Cu-GR) composite on the silk textile, as substrate, were modified with chitosan (n=371-744), for biomedical analysis. Isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) served as model analytes for molecular recognition and quantification in biological samples such as whole blood and brain tumor tissue samples. The best sensitivities (3.77×107s µg mL-1 for IDH1, and 1.88×107s µg mL-1 for IDH2) and the lowest limits of quantification (10-2fg mL-1 for IDH1, and 5×10-2fg mL-1 for IDH2) for both IDH1 and IDH2 were recorded for the disposable stochastic sensors based on chitosan/graphene nanolayer. Very good correlations between the screening method based on disposable stochastic sensors and enzyme-linked immunosorbent assay (ELISA) were obtained; this was also proved by the results obtained using the paired t-test.
Assuntos
Cobre/química , Grafite/química , Isocitrato Desidrogenase/análise , Isoenzimas/análise , Seda/química , Neoplasias Encefálicas/enzimologia , Ensaio de Imunoadsorção Enzimática , Humanos , Isocitrato Desidrogenase/sangue , Limite de Detecção , Microscopia Eletrônica de Varredura , Processos EstocásticosRESUMO
PURPOSE: The study aimed to assess how isocitrate dehydrogenase 1 (IDH1) mutation status in patients with glioma may alter functional connectivity (FC) in the default mode network (DMN) and fronto-parietal network (FPN). METHODS: Using resting-state functional magnetic resonance imaging, a seed-based FC analysis was employed to investigate connectivity within and between networks in seventeen patients with IDH1-mutant glioma (IDH1-M), eleven patients with IDH1-wildtype glioma (IDH1-WT), and nineteen healthy controls (HC). RESULTS: For FC within the DMN, compared to HC, both IDH1-M and IDH1-WT exhibited significantly increased FC between the posterior cingulate cortex (PCC) and the right retrosplenial cortex, right precuneus/cuneus, and right middle cingulate cortex and between the right lateral parietal cortex (LP_R) and the right middle temporal gyrus. For FC within the FPN, compared with HC, IDH1-M showed significantly greater FC between the right posterior parietal cortex (PPC_R) and the right inferior, right medial, and right middle frontal gyrus, and IDH1-WT showed significantly increased FC between the PPC_R and the right middle frontal gyrus. For FC between the DMN and FPN, relative to IDH1-WT and HC, IDH1-M exhibited significantly increased FC between the LP_R and the right superior frontal gyrus and between the PPC_R and the right precuneus/cuneus. In contrast, compared to IDH1-M and HC, IDH1-WT showed significantly reduced FC between the PPC_R and the right angular gyrus. CONCLUSION: The preliminary findings revealed that there should be differences in the patterns of network reorganization between IDH1-M and IDH1-WT with different growth kinetics.
Assuntos
Mapeamento Encefálico , Glioma , Encéfalo , Lobo Frontal/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , MutaçãoRESUMO
Gliomas are highly aggressive cancer types that are in urgent need of novel drugs and targeted therapies. Treatment protocols have not improved in over a decade, and glioma patient survival remains among the worst of all cancer types. As a result, cancer metabolism research has served as an innovative approach to identifying novel glioma targets and improving our understanding of brain tumors. Recent research has uncovered a unique metabolic vulnerability in the sphingolipid pathways of gliomas that possess the IDH1 mutation. Sphingolipids are a family of lipid signaling molecules that play a variety of second messenger functions in cellular regulation. The two primary metabolites, sphingosine-1-phosphate (S1P) and ceramide, maintain a rheostat balance and play opposing roles in cell survival and proliferation. Altering the rheostat such that the pro-apoptotic signaling of the ceramides outweighs the pro-survival S1P signaling in glioma cells diminishes the hallmarks of cancer and enhances tumor cell death. Throughout this review, we discuss the sphingolipid pathway and identify the enzymes that can be most effectively targeted to alter the sphingolipid rheostat and enhance apoptosis in gliomas. We discuss each pathway's steps based on their site of occurrence in the organelles and postulate novel targets that can effectively exploit this vulnerability.
Assuntos
Glioma , Esfingolipídeos , Apoptose/fisiologia , Morte Celular , Ceramidas/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Lisofosfolipídeos/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/metabolismoRESUMO
Tumours of the central nervous system, though not very common, pose a serious health burden owing to their high mortality rate. Glial tumours are the commonest type of brain tumours in Pakistani population. Diagnosis of gliomas has been greatly revolutionised over the past few years with integration of immunohistochemistry and molecular subtyping in the World Health Organisation's updated 2016 classification of glial tumours. One of the major changes was incorporation of isocitrate dehydrogenase mutation detection that is considerably a significant prognostic and predictive marker. The published data on isocitrate dehydrogenase mutation in the local population is hard to find. The current narrative review was planned to briefly describe the international trends regarding frequency of isocitrate dehydrogenase mutation in gliomas, its predictive and prognostic significance and its impact on accurate diagnosis leading to a targeted therapeutic approach for patients.
Assuntos
Glioma , Isocitrato Desidrogenase , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Mutação , Neurocirurgiões , Paquistão , PatologistasRESUMO
Various somatic isocitrate dehydrogenase 1 (IDH1) gene variants have been reported to drive lower-grade gliomas and secondary glioblastomas. In the current study, we explored the IDH1 variants in the glioma biopsy samples of patients from Pakistan. We explored the incidence of isocitrate dehydrogenase 1 gene variants by hotspot sequencing in 80 formalin-fixed paraffin-embedded tissues of different types of glioma biopsy samples. Structural modeling of the identified variants in isocitrate dehydrogenase 1 protein was done to see their possible consequences. The frequently described p.Arg132 variants were not found in any of the glioma types. However, in our study, we identified nonsynonymous variants at the residues p.R109 and p.G136 in astrocytomas and p.R100 in oligodendroglioma. These variants are affecting a part of the conserved domain in isocitrate dehydrogenase 1. Both of p.R100 and p.R109 variants are rare and described before, whereas the p.G136 variant identified in this study has never been described previously. Structural modeling showed that variants of these residues would directly affect the substrate binding and hence the enzyme activity.
Assuntos
Predisposição Genética para Doença , Glioma/genética , Isocitrato Desidrogenase/genética , Conformação Proteica , Biópsia , Feminino , Variação Genética/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/ultraestrutura , Masculino , Pessoa de Meia-Idade , Mutação/genética , PaquistãoRESUMO
Isocitrate dehydrogenase 1 (IDH1) mutations that generate the oncometabolite 2-hydroxyglutarate (2-HG) from α-ketoglutarate (α-KG) have been identified in many types of tumors and are an important prognostic factor in gliomas. 2-HG production can be determined by hyperpolarized carbon-13 magnetic resonance spectroscopy (HP-13 C-MRS) using [1-13 C]-α-KG as a probe, but peak contamination from naturally occurring [5-13 C]-α-KG overlaps with the [1-13 C]-2-HG peak. Via a newly developed oxidative-Stetter reaction, [1-13 C-5-12 C]-α-KG was synthesized. α-KG metabolism was measured via HP-13 C-MRS using [1-13 C-5-12 C]-α-KG as a probe. [1-13 C-5-12 C]-α-KG was synthesized in high yields, and successfully eliminated the signal from C5 of α-KG in the HP-13 C-MRS spectra. In HCT116 IDH1 R132H cells, [1-13 C-5-12 C]-α-KG allowed for unimpeded detection of [1-13 C]-2-HG. 12 C-enrichment represents a novel method to circumvent spectral overlap, and [1-13 C-5-12 C]-α-KG shows promise as a probe to study IDH1 mutant tumors and α-KG metabolism.
Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glutaratos/análise , Ácidos Cetoglutáricos/metabolismo , Células HCT116 , HumanosRESUMO
BACKGROUND: Diffuse gliomas in the adult population are the most common primary central nervous system (CNS) tumors. The World Health Organization incorporated isocitrate dehydrogenase (IDH) mutations and 1p/19q co-deletion with histopathological features into an "integrated diagnosis" in the revised classification of tumors of CNS. These molecular subgroups of diffuse gliomas are found to stratify patients into prognostically distinct groups better than the histological classification. The objectives of the current study were to assess the frequency of IDH mutation, ATRX expression loss, p53 overexpression, and 1p/19q co-deletion detection in adult diffuse gliomas (Grade II, III, and IV) and to correlate them with clinicopathological and histopathological features. MATERIALS AND METHODS: The current study was a tertiary care hospital-based retrospective case series of 112 cases of adult diffuse gliomas. Immunohistochemistry (IHC)-based molecular detection was performed for IDH-1, ATRX, and p53 and fluorescent in situ hybridization (FISH) was performed for 1p/19q co-deletion detection. RESULTS: IDH-1 mutation was present in 30.4% (n = 34/112) cases, ATRX expression was lost in 18% (n = 19/104) cases, p53 was mutated in 39.3% (n = 42/107) cases and 1p19q was co-deleted in 25% (n = 4/16) cases. In the IDH1 mutant cases, with retained ATRX, FISH for 1p/19q co-deletion was performed and was co-deleted in four cases. CONCLUSION: The results of the present study indicate that IHC including IDH1/2, ATRX, and p53 is useful for the molecular classification of diffuse gliomas, which could be useful for the evaluation of prognosis, especially Grade III and II. Although the immunohistochemical approach does not replace genetic testing completely, it is a practical and powerful means of assessing molecular genetic changes. IDH mutations are the established markers of better prognosis in diffuse gliomas.
RESUMO
PURPOSE: To determine if dynamic susceptibility contrast perfusion MR imaging (DSC-pMRI) can predict significant genomic alterations in glioblastoma (GB). METHODS: A total of 47 patients with treatment-naive GB (M/F: 23/24, mean age: 54 years, age range: 20-90 years) having DSC-pMRI with leakage correction and genomic analysis were reviewed. Mean relative cerebral blood volume (rCBV), maximum rCBV, relative percent signal recovery (rPSR), and relative peak height (rPH) were derived from T2* signal intensity-time curves by ROI analysis. Major genomic alterations of IDH1-132H, MGMT, p53, EGFR, ATRX, and PTEN status were correlated with DSC-pMRI-derived GB parameters. Statistical analysis was performed utilizing the independent-samples t-test, ROC (receiver operating characteristic) curve analysis, and multivariable stepwise regression model. RESULTS: rCBVmean and rCBVmax were significantly different in relation to the IDH1, MGMT, p53, and PTEN mutation status (all p < 0.05). The rPH of the p53 mutation-positive GBs (mean 5.8 ± 2.8) was significantly higher than those of the p53 mutation-negative GBs (mean 4.0 ± 1.5) (p = 0.022). Multivariable stepwise regression analysis revealed that the presence of IDH-1 mutation (B = - 2.81, p = 0.005) was associated with decreased rCBVmean; PTEN mutation (B = - 1.21, p = 0.003) and MGMT methylation (B = - 1.47, p = 0.038) were associated with decreased rCBVmax; and ATRX loss (B = - 1.05, p = 0.008) was associated with decreased rPH. CONCLUSION: Significant associations were identified between DSC-pMRI-derived parameters and major genomic alterations, including IDH-1 mutation, MGMT methylation, ATRX loss, and PTEN mutation status in GB.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Feminino , Genômica , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Humanos , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Perfusão , Estudos Retrospectivos , Adulto JovemRESUMO
Grincamycins (GCNs) are a class of angucycline glycosides isolated from actinomycete Streptomyces strains that have potent antitumor activities, but their antitumor mechanisms remain unknown. In this study, we tried to identify the cellular target of grincamycin B (GCN B), one of most dominant and active secondary metabolites, using a combined strategy. We showed that GCN B-selective-induced apoptosis of human acute promyelocytic leukemia (APL) cell line NB4 through increase of ER stress and intracellular reactive oxygen species (ROS) accumulation. Using a strategy of combining phenotype, transcriptomics and protein microarray approaches, we identified that isocitrate dehydrogenase 1(IDH1) was the putative target of GCN B, and confirmed that GCNs were a subset of selective inhibitors targeting both wild-type and mutant IDH1 in vitro. It is well-known that IDH1 converts isocitrate to 2-oxoglutarate (2-OG), maintaining intracellular 2-OG homeostasis. IDH1 and its mutant as the target of GCN B were validated in NB4 cells and zebrafish model. Knockdown of IDH1 in NB4 cells caused the similar phenotype as GCN B treatment, and supplementation of N-acetylcysteine partially rescued the apoptosis caused by IDH1 interference in NB4 cells. In zebrafish model, GCN B effectively restored myeloid abnormality caused by overexpression of mutant IDH1(R132C). Taken together, we demonstrate that IDH1 is one of the antitumor targets of GCNs, suggesting wild-type IDH1 may be a potential target for hematological malignancies intervention in the future.
Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glicosídeos/farmacologia , Isocitrato Desidrogenase/antagonistas & inibidores , Animais , Antraquinonas/metabolismo , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Glicosídeos/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Peixe-ZebraRESUMO
Background Mutant isocitrate dehydrogenase 1 and 2 (IDH1/IDH2) enzymes produce the oncometabolite D-2-hydroxyglutarate (2-HG). Ivosidenib (AG-120) is a targeted mutant IDH1 inhibitor under evaluation in a phase 1 dose escalation and expansion study of IDH1-mutant advanced solid tumors including cholangiocarcinoma, chondrosarcoma, and glioma. We explored the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of ivosidenib in these populations. Methods Ivosidenib was administered orally once (QD) or twice (BID) daily in continuous 28-day cycles; 168 patients received ≥1 dose within the range 100 mg BID to 1200 mg QD. PK and PD were assessed using validated liquid chromatography-tandem mass spectrometry assays. Results Ivosidenib demonstrated good oral exposure after single and multiple doses, was rapidly absorbed, and had a long terminal half-life (mean 40-102 h after single dose). Exposure increased less than dose proportionally. Steady state was reached by day 15, with moderate accumulation across all tumors (1.5- to 1.7-fold for area-under-the-curve at 500 mg QD). None of the intrinsic and extrinsic factors assessed affected ivosidenib exposure, including patient/disease characteristics and concomitant administration of weak CYP3A4 inhibitors/inducers. After multiple doses in patients with cholangiocarcinoma or chondrosarcoma, plasma 2-HG was reduced by up to 98%, to levels seen in healthy subjects. Exposure-response relationships for safety and efficacy outcomes were flat across the doses tested. Conclusions Ivosidenib demonstrated good oral exposure and a long half-life. Robust, persistent plasma 2-HG inhibition was observed in IDH1-mutant cholangiocarcinoma and chondrosarcoma. Ivosidenib 500 mg QD is an appropriate dose irrespective of various intrinsic and extrinsic factors. Trial RegistrationClinicalTrials.gov (NCT02073994).
Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Glicina/análogos & derivados , Isocitrato Desidrogenase/antagonistas & inibidores , Neoplasias/metabolismo , Piridinas/administração & dosagem , Piridinas/farmacocinética , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/sangue , Relação Dose-Resposta a Droga , Feminino , Glutaratos/sangue , Glicina/administração & dosagem , Glicina/sangue , Glicina/farmacocinética , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Piridinas/sangueRESUMO
Although the enzymatic activity of isocitrate dehydrogenase 1 (IDH1) was defined decades ago, its functions in vivo are not yet fully understood. Cytosolic IDH1 converts isocitrate to α-ketoglutarate (α-KG), a key metabolite regulating nitrogen homeostasis in catabolic pathways. It was thought that IDH1 might enhance lipid biosynthesis in liver or adipose tissue by generating NADPH, but we show here that lipid contents are relatively unchanged in both IDH1-null mouse liver and IDH1-deficient HepG2 cells generated using the CRISPR-Cas9 system. Instead, we found that IDH1 is critical for liver amino acid (AA) utilization. Body weights of IDH1-null mice fed a high-protein diet (HPD) were abnormally low. After prolonged fasting, IDH1-null mice exhibited decreased blood glucose but elevated blood alanine and glycine compared with wild-type (WT) controls. Similarly, in IDH1-deficient HepG2 cells, glucose consumption was increased, but alanine utilization and levels of intracellular α-KG and glutamate were reduced. In IDH1-deficient primary hepatocytes, gluconeogenesis as well as production of ammonia and urea were decreased. In IDH1-deficient whole livers, expression levels of genes involved in AA metabolism were reduced, whereas those involved in gluconeogenesis were up-regulated. Thus, IDH1 is critical for AA utilization in vivo and its deficiency attenuates gluconeogenesis primarily by impairing α-KG-dependent transamination of glucogenic AAs such as alanine.
Assuntos
Aminoácidos/metabolismo , Isocitrato Desidrogenase/deficiência , Fígado/metabolismo , Animais , Glicemia/metabolismo , Linhagem Celular Tumoral , Jejum/metabolismo , Gluconeogênese , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima/fisiologiaRESUMO
Glioblastoma (GBM) is the most common type of malignant primary brain tumor in adults. It is a uniformly fatal disease (median overall survival 16 months) even with aggressive resection and an adjuvant temozolomide-based chemoradiation regimen. Age remains an independent risk factor for a poor prognosis. Several factors contribute to the dismal outcomes in the elderly population with GBM, including poor baseline health status, differences in underlying genomic alterations, and variability in the surgical and medical management of this subpopulation. The latter arises from a lack of adequate representation of elderly patients in clinical trials, resulting in limited data on the response of this subpopulation to standard treatment. Results from retrospective and some prospective studies have indicated that resection of only contrast-enhancing lesions and administration of hypofractionated radiotherapy in combination with temozolomide are effective strategies for optimizing survival while maintaining baseline quality of life in elderly GBM patients; however, survival remains dismal relative to that in a younger cohort. Here, the authors present historical context for the current strategies used for the multimodal management (surgical and medical) of elderly patients with GBM. Furthermore, they provide insights into elderly GBM patient-specific genomic signatures such as isocitrate dehydrogenase 1/2 (IDH1/2) wildtype status, telomerase reverse transcriptase promoter (TERTp) mutations, and somatic copy number alterations including CDK4/MDM2 coamplification, which are becoming better understood and could be utilized in a clinical trial design and patient stratification to guide the development of more effective adjuvant therapies specifically for elderly GBM patients.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Idoso , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Tomada de Decisão Clínica , Genômica , Glioblastoma/genética , Glioblastoma/cirurgia , Humanos , Prognóstico , Estudos Prospectivos , Qualidade de Vida , Estudos RetrospectivosRESUMO
DDIT3 is of great importance in endoplasmic reticulum stress and is involved in many inflammatory diseases and mineralization processes. The cementum protects teeth from periodontitis and provides attachment for Sharpey's fibers of the periodontal ligament. However, the effect of DDIT3 on cementoblast differentiation remains largely unknown. In this study, we found that DDIT3 was suppressed during cementoblast differentiation. Knockdown of DDIT3 increased the messenger RNA (mRNA) and protein levels of several key osteogenic markers in vitro, including alkaline phosphatase, runt-related transcription factor 2, and osteocalcin (OCN). In addition, isocitrate dehydrogenase 1 (IDH1) was increased during cementoblast differentiation, and knockdown of DDIT3 increased the protein and mRNA levels of IDH1. Furthermore, inhibition of IDH1 could partially reduce the effect of DDIT3 on cementoblast differentiation. The DDIT3 knockdown activated nuclear factor-κB (NF-κB) transcriptional activity and upregulated the expression of p-p65 and p-IκBα. The increased osteogenic differentiation ability and IDH1 expression, as induced by the DDIT3 knockdown, could be partially turned over by the addition of NF-κB inhibitor BAY 11-7082. Overall, our data clarified that DDIT3 suppresses cementoblast differentiation through IDH1, via the NF-κB pathway.
Assuntos
Cemento Dentário/metabolismo , Isocitrato Desidrogenase/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição CHOP/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Isocitrato Desidrogenase/genética , Camundongos , NF-kappa B/genética , Nitrilas/farmacologia , Sulfonas/farmacologia , Fator de Transcrição CHOP/genéticaRESUMO
PURPOSE: To assess the effect of ethnicity, food, and itraconazole (strong CYP3A4 inhibitor) on the pharmacokinetics of ivosidenib after single oral doses in healthy subjects. METHODS: Three phase 1 open-label studies were performed. Study 1: Japanese and Caucasian subjects received single doses of 250, 500, or 1000 mg ivosidenib (NCT03071770). Part 1 of study 2 (a two-period crossover study): subjects received 500 mg ivosidenib after either an overnight fast or a high-fat meal. Subjects received 1000 mg ivosidenib after an overnight fast in the single period of part 2 (NCT02579707). Study 3: in period 1, subjects received 250 mg ivosidenib; then, in period 2, subjects received oral itraconazole (200 mg once daily) on days 1-18, plus 250 mg ivosidenib on day 5 (NCT02831972). RESULTS: Ivosidenib was well tolerated in all three studies. Study 1: pharmacokinetic profiles were generally comparable, although AUC and Cmax were slightly lower in Japanese subjects than in Caucasian subjects, by ~ 30 and 17%, respectively. Study 2: AUC increased by ~ 25% and Cmax by ~ 98%, when ivosidenib was administered with a high-fat meal compared with a fasted state. Study 3: co-administration of itraconazole increased ivosidenib AUC by 169% (90% CI 145-195) but had no effect on ivosidenib Cmax. CONCLUSIONS: No ivosidenib dose adjustment is deemed necessary for Japanese subjects. High-fat meals should be avoided when ivosidenib is taken with food. When co-administered with strong CYP3A4 inhibitors, monitoring for QT interval prolongation (a previously defined adverse event of interest) is recommended and an ivosidenib dose interruption or reduction may be considered. CLINICALTRIALS.GOV : NCT03071770, NCT02579707, and NCT02831972.
Assuntos
Antineoplásicos/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Glicina/análogos & derivados , Itraconazol/farmacologia , Síndrome do QT Longo/epidemiologia , Piridinas/farmacocinética , Administração Oral , Adulto , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Área Sob a Curva , Povo Asiático , Estudos Cross-Over , Relação Dose-Resposta a Droga , Interações Medicamentosas/etnologia , Feminino , Interações Alimento-Droga/etnologia , Glicina/administração & dosagem , Glicina/efeitos adversos , Glicina/farmacocinética , Voluntários Saudáveis , Humanos , Itraconazol/administração & dosagem , Leucemia Mieloide Aguda/tratamento farmacológico , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/etiologia , Masculino , Pessoa de Meia-Idade , Piridinas/administração & dosagem , Piridinas/efeitos adversosRESUMO
Objective To investigate the clinical value of serum tumor marker isocitrate dehydrogenase 1(IDH1)in the diagnosis of lung cancer. Methods The general data were collected in lung cancer patients and non-lung cancer patients.The serum level of IDH1 was detected by enzyme-linked immunosorbent assay to evaluate its clinical significance in diagnosing lung cancer. Results The serum IDH1 level was significantly higher in lung cancer patients than in non-lung cancer patients [(7.12±6.98)ng/ml vs.(2.09±1.83)ng/ml,t=11.540,P<0.001].The serum IDH1 level in patients with adenocarcinoma or squamous cell carcinoma was significantly higher than that in patients with small cell lung cancer [(7.91±7.26)ng/ml vs.(2.76±2.27)ng/ml, t=6.345,P<0.001].The sensitivity of IDH1 in detecting lung cancer,stage â /â ¡ lung cancer,and stage â ¢/â £ lung cancer was 47.4%,49.1%,and 46.3%,respectively. Conclusions Serum IDH1 has high sensitivities and specificities in the diagnosis and differential diagnosis of non-small cell lung cancer(squamous cell carcinoma and adenocarcinoma)and small cell lung cancer as well as the auxiliary diagnosis of stage â and â ¡ lung cancer.It is a valuable marker for the auxiliary diagnosis of lung cancer.
Assuntos
Isocitrato Desidrogenase/sangue , Neoplasias Pulmonares , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , HumanosRESUMO
Mutations of isocitrate dehydrogenase 1 (IDH1) gene are most common in glioma, arguably preceding all known genetic alterations during tumor development. IDH1 mutations nearly invariably target the enzymatic active site Arg132, giving rise to the predominant IDH1R132H. Cells harboring IDH1 R132H -heterozygous mutation produce 2-hydroxyglutarate (2-HG), which results in histone and DNA hypermethylation. Although exogenous IDH1 R132H transduction has been shown to promote anchorage-independent growth, the biological role of IDH1R132H in glioma remains debatable. In this study, we demonstrate that heterozygous IDH1 R132H suppresses but hemizygous IDH1 R132H promotes anchorage-independent growth. Whereas genetic deletion of the wild-type allele in IDH1 R132H -heterozygous cells resulted in a pronounced increase in neurosphere genesis, restoration of IDH1 expression in IDH1 R132H -hemizygous cells led to the contrary. Conversely, anchorage-independent growth was antagonistic to the mutant IDH1 function by inhibiting gene expression and 2-HG production. Furthermore, we identified that in contrast to IDH1 R132H -hemizygous neurosphere, IDH1 R132H -heterozygous cells maintained a low level of reducing power to suppress neurosphere genesis, which could be bypassed, however, by the addition of reducing agent. Taken together, these results underscore the functional importance of IDH1 mutation heterozygosity in glioma biology and indicate functional loss of mutant IDH1 as an escape mechanism underlying glioma progression and the pathway of redox homeostasis as potential therapeutic targets.