Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 661: 662-670, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38310772

RESUMO

With the ever-growing demand for high-capacity energy storage technologies, lithium-ion batteries (LIBs) have drawn increasing attention. Ti2B2, a typical two-dimensional MBenes material, has been considered as a strong contender for anode materials of LIBs with significant performance. However, the limited Li storage capacity of MBenes has hindered its wide applications. To address this issue, we have functionalized Janus-structured MBenes, denoted as Ti2B2XaXb (Xa/Xb = N, O, S, Se). Employing first-principles simulations based on density functional theory, we have investigated the geometric characteristics and electrochemical properties of Ti2B2XaXb. Our results reveal that Ti2B2NO exhibits an exceptionally large theoretical specific capacity of 1091.17 mAh·g-1, improved by 2.4 times compared with the pristine Ti2B2 (456 mAh·g-1). Li atoms on the O side of Ti2B2NO possess a low diffusion barrier of 0.33 eV, which is conducive to the rapid charging and discharging of the battery. Moreover, the open-circuit voltage of Ti2B2NO within the safe voltage range of 0-1 V ensures the safety of battery operation. Overall, our study sheds light on understanding the underlying mechanism of surface functionalization on the Li storage properties of Janus-structured MBenes from atomic-scale, laying the groundwork for future design of high-performance anode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA