Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(12): e2315707121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489388

RESUMO

KCTD10 belongs to the KCTD (potassiumchannel tetramerization domain) family, many members of which are associated with neuropsychiatric disorders. However, the biological function underlying the association with brain disorders remains to be explored. Here, we reveal that Kctd10 is highly expressed in neuronal progenitors and layer V neurons throughout brain development. Kctd10 deficiency triggers abnormal proliferation and differentiation of neuronal progenitors, reduced deep-layer (especially layer V) neurons, increased upper-layer neurons, and lowered brain size. Mechanistically, we screened and identified a unique KCTD10-interacting protein, KCTD13, associated with neurodevelopmental disorders. KCTD10 mediated the ubiquitination-dependent degradation of KCTD13 and KCTD10 ablation resulted in a considerable increase of KCTD13 expression in the developing cortex. KCTD13 overexpression in neuronal progenitors led to reduced proliferation and abnormal cell distribution, mirroring KCTD10 deficiency. Notably, mice with brain-specific Kctd10 knockout exhibited obvious motor deficits. This study uncovers the physiological function of KCTD10 and provides unique insights into the pathogenesis of neurodevelopmental disorders.


Assuntos
Encefalopatias , Transtornos do Neurodesenvolvimento , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Camundongos , Proteínas/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Transtornos do Neurodesenvolvimento/genética , Encefalopatias/genética , Neurogênese/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(28): e2320655121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959043

RESUMO

SLC7A11 is a cystine transporter and ferroptosis inhibitor. How the stability of SLC7A11 is coordinately regulated in response to environmental cystine by which E3 ligase and deubiquitylase (DUB) remains elusive. Here, we report that neddylation inhibitor MLN4924 increases cystine uptake by causing SLC7A11 accumulation, via inactivating Cullin-RING ligase-3 (CRL-3). We identified KCTD10 as the substrate-recognizing subunit of CRL-3 for SLC7A11 ubiquitylation, and USP18 as SLC7A11 deubiquitylase. Upon cystine deprivation, the protein levels of KCTD10 or USP18 are decreased or increased, respectively, contributing to SLC7A11 accumulation. By destabilizing or stabilizing SLC7A11, KCTD10, or USP18 inversely regulates the cystine uptake and ferroptosis. Biologically, MLN4924 combination with SLC7A11 inhibitor Imidazole Ketone Erastin (IKE) enhanced suppression of tumor growth. In human breast tumor tissues, SLC7A11 levels were negatively or positively correlated with KCTD10 or USP18, respectively. Collectively, our study defines how SLC7A11 and ferroptosis is coordinately regulated by the CRL3KCTD10/E3-USP18/DUB axis, and provides a sound rationale of drug combination to enhance anticancer efficacy.


Assuntos
Cistina , Ferroptose , Pirimidinas , Ubiquitina Tiolesterase , Animais , Feminino , Humanos , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Cistina/metabolismo , Células HEK293 , Piperazinas/farmacologia , Pirimidinas/farmacologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
3.
Bioessays ; 42(8): e1900256, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32484264

RESUMO

Protein ubiquitination constitutes a post-translational modification mediated by ubiquitin ligases whereby ubiquitinated substrates are degraded through the proteasomal or lysosomal pathways, or acquire novel molecular functions according to their "ubiquitin codes." Dysfunction of the ubiquitination process in cells causes various diseases such as cancers along with neurodegenerative, auto-immune/inflammatory, and metabolic diseases. KCTD10 functions as a substrate recognition receptor for cullin-3 (CUL3), a scaffold protein in RING-type ubiquitin ligase complexes. Recently, studies by ourselves and others have identified new substrates that are ubiquitinated by the CUL3/KCTD10 ubiquitin ligase complex. Moreover, the type of polyubiquitination (e.g., K27-, K48-, or K63-chain) of various substrates (e.g., RhoB, CEP97, EIF3D, and TRIF) mediated by KCTD10 underlies its divergent roles in endothelial barrier formation, primary cilium formation, plasma membrane dynamics, cell proliferation, and immune response. Here, the physiological functions of KCTD10 are summarized and potential mechanisms are proposed.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Ubiquitina , Biologia , Linhagem Celular , Proteínas Culina/genética , Fator de Iniciação 3 em Eucariotos , Humanos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
J Cell Sci ; 131(24)2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30404837

RESUMO

Primary cilia are antenna-like sensory organelles that transmit various extracellular signals. Ciliogenesis requires the removal of CP110 and its interactor CEP97 from the mother centriole for initiating ciliary axoneme extension, but the underlying mechanism remains unknown. Here we show that, upon serum starvation, CEP97 is partially degraded by the ubiquitin-proteasome system. CEP97 was polyubiquitylated in serum-starved cells, and overexpression of a non-ubiquitylatable CEP97 mutant effectively blocked CP110 removal and ciliogenesis induced by serum-starvation. Through several screening steps, we identified the cullin-3-RBX1-KCTD10 complex as the E3 ligase that mediates CEP97 degradation and removal from the mother centriole. Depletion of each component of this E3 complex caused aberrant accumulation of CEP97 on the centrosome, suppressed the removal of CEP97 and CP110 from the mother centriole, and impaired ciliogenesis. Moreover, KCTD10 was specifically localized to the mother centriole. These results suggest that CEP97 degradation by the cullin-3-RBX1-KCTD10 complex plays a crucial role in serum-starvation-induced CP110 removal and ciliogenesis.


Assuntos
Centrossomo/metabolismo , Proteínas Culina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Axonema/metabolismo , Linhagem Celular , Centríolos/metabolismo , Humanos , Ubiquitina/metabolismo
5.
J Cell Physiol ; 234(5): 6033-6041, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30478832

RESUMO

Evidence has demonstrated that the microRNA (miR) may play a significant role in the development of congenital heart disease (CHD). Here, we explore the mechanism of microRNA-592 (miR-592) in heart development and CHD with the involvement of KCTD10 and Notch signaling pathway in a CHD mouse model. Cardiac tissues were extracted from CHD and normal mice. Immunohistochemistry staining was performed to detect positive expression rate of KCTD10. A series of inhibitor, activators, and siRNAs was introduced to verified regulatory functions for miR-592 governing KCTD10 in CHD. Furthermore, the effect of miR-592 on cell proliferation and apoptosis was also investigated. Downregulated positive rate of KCTD10 was observed in CHD mice. Downregulation of miR-592 would upregulate expression of KCTD10 and inhibit the activation of Notch signaling pathway, thus promote cell proliferation. This study demonstrates that downregulation of miR-592 prevents CHD and hypoplastic heart by inhibition of the Notch signaling pathway via negatively binding to KCTD10.


Assuntos
Cardiopatias Congênitas/prevenção & controle , MicroRNAs/metabolismo , Miocárdio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Receptores Notch/metabolismo , Regiões 3' não Traduzidas , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Masculino , Camundongos , MicroRNAs/genética , Miocárdio/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Receptores Notch/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
6.
Biochem Biophys Res Commun ; 516(4): 1116-1122, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31280863

RESUMO

Eukaryotic translation initiation factor 3 subunit D (EIF3D) binds to the 5'-cap of specific mRNAs, initiating their translation into polypeptides. From a pathological standpoint, EIF3D has been observed to be essential for cell growth in various cancer types, and cancer patients with high EIF3D mRNA levels exhibit poor prognosis, indicating involvement of EIF3D in oncogenesis. In this study, we found, by mass spectrometry, that Cullin-3 (CUL3)/KCTD10 ubiquitin (Ub) ligase forms a complex with EIF3D. We also demonstrated that EIF3D is K27-polyubiquitinated at the lysine 153 and 275 residues in a KCTD10-dependent manner in human hepatocellular carcinoma HepG2 cells. Similar to other cancers, high expression of EIF3D significantly correlated with poor prognosis in hepatocellular carcinoma patients, and depletion of EIF3D drastically suppressed HepG2 cell proliferation. These results indicate that EIF3D is a novel substrate of CUL3/KCTD10 Ub ligase and suggest involvement of K27-polyubiquitinated EIF3D in the development of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas Culina/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Neoplasias Hepáticas/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Células Hep G2 , Humanos , Mapas de Interação de Proteínas , Ubiquitinação
7.
Lipids Health Dis ; 15(1): 171, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27716295

RESUMO

BACKGROUND: Several genome-wide association studies have discovered novel loci at chromosome 12q24, which includes mevalonate kinase (MVK), methylmalonic aciduria (cobalamin deficiency) cbIB type (MMAB), and potassium channel tetramerization domain-containing 10 (KCTD10), all of which influence HDL-cholesterol concentrations. However, there are few reports on the associations between these polymorphisms and HDL-C concentrations in Chinese population. This study aimed to evaluate the associations between functional polymorphisms in three genes (MVK, MMAB and KCTD10) and HDL-C concentrations, as well as coronary heart disease (CHD) susceptibility in Chinese individuals. METHODS: We systematically selected and genotyped 18 potentially functional polymorphisms in MVK, MMAB and KCTD10 by using the TaqMan OpenArray Genotyping System in a Chinese population including 399 dyslipidemia cases, 697 CHD cases and 465 controls. Multivariate logistic regression analyses were performed to estimate the relationship between the genotypes and dyslipidemia, CHD risk with adjustment of relevant confounders. RESULTS: Among six polymorphisms showing significant associations with dyslipidemia, the minor alleles of rs11066782 in KCTD10, rs11613718 in KCTD10 and rs11067233 in MMAB were significantly associated with a decreased risk of CHD (additive model: OR = 0.71, 95 % CI = 0.53-0.97, P = 0.029 for rs11066782; OR = 0.73, 95 % CI = 0.54-0.99, P = 0.044 for rs11613718 and OR = 0.57, 95 % CI = 0.40-0.80, P = 0.001 for rs11067233). Further combined analysis showed that individuals carrying "3-4" favorable alleles presented a 62 % (OR = 0.38, 95 % CI = 0.21-0.66) decreased risk of CHD compared with those carrying "0-2" favorable alleles. CONCLUSIONS: These findings suggest that rs11066782 in KCTD10, rs11613718 in KCTD10 and rs11067233 in MMAB may contribute to the susceptibility of CHD by altering plasma HDL-C levels in Han Chinese.


Assuntos
Alquil e Aril Transferases/genética , Doença das Coronárias/genética , Dislipidemias/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Adulto , Idoso , Alelos , HDL-Colesterol/sangue , HDL-Colesterol/genética , Doença das Coronárias/patologia , Dislipidemias/patologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
8.
Acta Biochim Biophys Sin (Shanghai) ; 46(5): 377-86, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705121

RESUMO

KCTD10 is a member of the PDIP1 family, which is highly conserved during evolution, sharing a lot of similarities among human, mouse, and zebrafish. Recently, zebrafish KCTD13 has been identified to play an important role in the early development of brain and autism. However, the specific function of KCTD10 remains to be elucidated. In this study, experiments were carried out to determine the expression pattern of zebrafish KCTD10 mRNA during embryonic development. It was found that KCTD10 is a maternal gene and KCTD10 is of great importance in the shaping of heart and blood vessels. Our data provide direct clues that knockdown of KCTD10 resulted in severe pericardial edema and loss of heart formation indicated by morphological observation and crucial heart markers like amhc, vmhc, and cmlc2. The heart defect caused by KCTD10 is linked to RhoA and PCNA. Flk-1 staining revealed that intersomitic vessels were lost in the trunk, although angioblasts could migrate to the midline. These findings could be helpful to better understand the determinants responsible for the heart and blood vessel defects.


Assuntos
Vasos Sanguíneos/embriologia , Coração/embriologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Biologia Computacional , Primers do DNA , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos , Peixe-Zebra
9.
Am J Transl Res ; 15(1): 125-137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777839

RESUMO

OBJECTIVE: Our previous study found KCTD10 negatively regulates Notch signaling, but whether KCTD10 regulates human hepatocellular carcinoma (HCC) carcinogenicity was uncertain. METHODS: We used lentivirus infection to regulate KCTD10 expression in HCC cell lines, then monitored tumor sphere formation rate, cell migration, in vitro and in vivo tumorigenicity, cancer stem cell (CSC) biomarkers and Notch signaling variation. RESULTS: Down-regulation of KCTD10 in HCC cell lines (Hep3B and MHCC97H) enhanced the expression of CSC marker genes, promoted self-renewal and tumorigenic ability, and increased the CD133+ cell population. Further molecular studies showed that the transmembrane/intracellular region (NTM) of Notch1 decreased when KCTD10 was knocked down in HCC cell lines, and that the balance between P53 and Notch activity was regulated. CONCLUSIONS: The results demonstrated that KCTD10 can act as a tumor suppressor in HCC cells through Notch signaling.

10.
J Endocrinol ; 252(3): 155-166, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34854382

RESUMO

Brown adipose tissue (BAT) is emerging as a target to beat obesity through the dissipation of chemical energy to heat. However, the molecular mechanisms of brown adipocyte thermogenesis remain to be further elucidated. Here, we show that KCTD10, a member of the polymerase delta-interacting protein 1 family, was reduced in BAT by cold stress and a ß3 adrenoceptor agonist. Moreover, KCTD10 level increased in the BAT of obese mice, and KCTD10 overexpression attenuates uncoupling protein 1 expression in primary brown adipocytes. BAT-specific KCTD10 knockdown mice had increased thermogenesis and cold tolerance protecting from high-fat diet (HFD)-induced obesity. Conversely, overexpression of KCTD10 in BAT caused reduced thermogenesis, cold intolerance, and obesity. Mechanistically, inhibiting Notch signaling restored the KCTD10 overexpression-suppressed thermogenesis. Our study presents that KCTD10 serves as an upstream regulator of Notch signaling pathway to regulate BAT thermogenesis and whole-body metabolic function.


Assuntos
Tecido Adiposo Marrom/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Receptores Notch/metabolismo , Termogênese , Animais , Proteínas de Ciclo Celular/metabolismo , Resposta ao Choque Frio , Dioxóis , Feminino , Técnicas de Silenciamento de Genes , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Transdução de Sinais , Fatores de Transcrição HES-1/metabolismo , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA