Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 16(10)2016 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-27735837

RESUMO

Silicon microneedle arrays (MNAs) have been widely studied due to their potential in various transdermal applications. However, discrete MNAs, as a preferred choice to fabricate flexible penetrating devices that could adapt curved and elastic tissue, are rarely reported. Furthermore, the reported discrete MNAs have disadvantages lying in uniformity and height-pitch ratio. Therefore, an improved technique is developed to manufacture discrete MNA with tunable height-pitch ratio, which involves KOH-dicing-KOH process. The detailed process is sketched and simulated to illustrate the formation of microneedles. Furthermore, the undercutting of convex mask in two KOH etching steps are mathematically analyzed, in order to reveal the relationship between etching depth and mask dimension. Subsequently, fabrication results demonstrate KOH-dicing-KOH process. {321} facet is figured out as the surface of octagonal pyramid microneedle. MNAs with diverse height and pitch are also presented to identify the versatility of this approach. At last, the metallization is realized via successive electroplating.

2.
Materials (Basel) ; 14(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34442923

RESUMO

This work provides a comprehensive investigation of nitrogen and aluminum doping and its consequences for the physical properties of 3C-SiC. Free-standing 3C-SiC heteroepitaxial layers, intentionally doped with nitrogen or aluminum, were grown on Si (100) substrate with different 4° off-axis in a horizontal hot-wall chemical vapor deposition (CVD) reactor. The Si substrate was melted inside the CVD chamber, followed by the growth process. Micro-Raman, photoluminescence (PL) and stacking fault evaluation through molten KOH etching were performed on different doped samples. Then, the role of the doping and of the cut angle on the quality, density and length distribution of the stacking faults was studied, in order to estimate the influence of N and Al incorporation on the morphological and optical properties of the material. In particular, for both types of doping, it was observed that as the dopant concentration increased, the average length of the stacking faults (SFs) increased and their density decreased.

3.
Materials (Basel) ; 14(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34640288

RESUMO

Micropipe, a "killer" defect in SiC crystals, severely hampers the outstanding performance of SiC-based devices. In this paper, the etching behavior of micropipes in 4H-SiC and 6H-SiC wafers was studied using the molten KOH etching method. The spectra of 4H-SiC and 6H-SiC crystals containing micropipes were examined using Raman scattering. A new Raman peak accompanying micropipes located near -784 cm-1 was observed, which may have been induced by polymorphic transformation during the etching process in the area of micropipe etch pits. This feature may provide a new way to distinguish micropipes from other defects. In addition, the preferable etching conditions for distinguishing micropipes from threading screw dislocations (TSDs) was determined using laser confocal microscopy, scanning electron microscopy (SEM) and optical microscopy. Meanwhile, the micropipe etching pits were classified into two types based on their morphology and formation mechanism.

4.
Environ Sci Pollut Res Int ; 27(7): 7309-7317, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31884546

RESUMO

The relatively low surface area and micropore volume of graphene nanosheets (GNS) limit their potential application as effective adsorbents for hydrophobic organic contaminants (HOCs). In this study, KOH etching was used to develop activated GNS (K-GNS) for adsorption of model HOCs such as naphthalene, phenol, nitrobenzene, and bisphenol A. After activation, the specific surface area (SSA) of K-GNS increased to 885 m2/g, which was three times larger than that of GNS. The micropore volume of K-GNS substantially increased and the C/O ratio was doubled. Accordingly, the adsorption capacity of these HOCs on K-GNS was larger than that of pristine GNS (P-GNS) by 2-8 times. The kinetic data was fitted by the pseudo-second-order model, and the adsorption isotherms of HOCs on P-GNS and K-GNS were fitted by the Freundlich model. The desorption studies showed the K-GNS had a lower rate of release than P-GNS. The high adsorption of naphthalene, phenol, nitrobenzene, and bisphenol A on P-GNS and K-GNS is dominated by hydrophobic and π-π interactions. Additionally, the π-π EDA interaction and hydrogen bond between K-GNS and substituents cannot be ignored.


Assuntos
Adsorção , Grafite , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Porosidade
5.
ACS Appl Mater Interfaces ; 12(11): 13140-13147, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32129591

RESUMO

We report on a quick, simple, and cost-effective solution-phase approach to prepare centimeter-sized morphology-graded vertically aligned Si nanowire arrays. Gradients in the nanowire diameter and shape are encoded through the macroscale substrate via a "dip-etching" approach, where the substrate is removed from a KOH etching solution at a constant rate, while morphological control at the nanowire level is achieved via sequential metal-assisted chemical etching and KOH etching steps. This combined approach provides control over light absorption and reflection within the nanowire arrays at both the macroscale and nanoscale, as shown by UV-vis spectroscopy and numerical three-dimensional finite-difference time-domain simulations. Macroscale morphology gradients yield arrays with gradually changing optical properties. Nanoscale morphology control is demonstrated by synthesizing arrays of bisegmented nanowires, where the nanowires are composed of two distinct segments with independently controlled lengths and diameters. Such nanowires are important to tailor light-matter interactions in functional devices, especially by maximizing light absorption at specific wavelengths and locations within the nanowires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA