Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373378

RESUMO

The waxy cuticle covers a plant's aerial surface and contributes to environmental adaptation in land plants. Although past decades have seen great advances in understanding wax biosynthesis in model plants, the mechanisms underlying wax biosynthesis in crop plants such as bread wheat remain to be elucidated. In this study, wheat MYB transcription factor TaMYB30 was identified as a transcriptional activator positively regulating wheat wax biosynthesis. The knockdown of TaMYB30 expression using virus-induced gene silencing led to attenuated wax accumulation, increased water loss rates, and enhanced chlorophyll leaching. Furthermore, TaKCS1 and TaECR were isolated as essential components of wax biosynthetic machinery in bread wheat. In addition, silencing TaKCS1 and TaECR resulted in compromised wax biosynthesis and potentiated cuticle permeability. Importantly, we showed that TaMYB30 could directly bind to the promoter regions of TaKCS1 and TaECR genes by recognizing the MBS and Motif 1 cis-elements, and activate their expressions. These results collectively demonstrated that TaMYB30 positively regulates wheat wax biosynthesis presumably via the transcriptional activation of TaKCS1 and TaECR.


Assuntos
Fatores de Transcrição , Triticum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas/metabolismo , Ceras/metabolismo
2.
Plant J ; 103(4): 1575-1589, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32433816

RESUMO

Arabidopsis thaliana AKR2A plays an important role in plant responses to cold stress. However, its exact function in plant resistance to cold stress remains unclear. In the present study, we found that the contents of very long-chain fatty acids (VLCFAs) in akr2a mutants were decreased, and the expression level of KCS1 was also reduced. Overexpression of KCS1 in the akr2a mutants could enhance VLCFAs contents and chilling tolerance. Yeast-2-hybrid and bimolecular fluorescence complementation (BIFC) results showed that the transmembrane motif of KCS1 interacts with the PEST motif of AKR2A both in vitro and in vivo. Overexpression of KCS1 in akr2a mutants rescued akr2a mutant phenotypes, including chilling sensitivity and a decrease of VLCFAs contents. Moreover, the transgenic plants co-overexpressing AKR2A and KCS1 exhibited a greater chilling tolerance than the plants overexpressing AKR2A or KCS1 alone, as well as the wild-type. AKR2A knockdown and kcs1 knockout mutants showed the worst performance under chilling conditions. These results indicate that AKR2A is involved in chilling tolerance via an interaction with KCS1 to affect VLCFA biosynthesis in Arabidopsis.


Assuntos
Acetiltransferases/fisiologia , Proteínas de Arabidopsis/fisiologia , Ácidos Graxos/metabolismo , Chaperonas Moleculares/fisiologia , Acetiltransferases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Temperatura Baixa/efeitos adversos , Resposta ao Choque Frio , Ácidos Graxos/fisiologia , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Chaperonas Moleculares/genética , Fotossíntese , Plantas Geneticamente Modificadas , Técnicas do Sistema de Duplo-Híbrido
3.
Curr Genet ; 65(4): 995-1014, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30879088

RESUMO

In yeast, the GCR1 transcription factor is involved in the regulation of glycolysis and its deletion exhibited growth defect, reduced inositol and phosphatidylinositol (PI) levels compared to WT cells. We observed a down regulation of the INO1 and PIS1 expression in gcr1∆ cells under both I- and I+ conditions and the over expression of GCR1 in gcr1∆ cells restored the growth, retrieved the expression of INO1, and PIS1 comparable to WT cells. In the gel shift assay, the Gcr1p binds to its consensus sequence CTTCC in PIS1 promoter and regulates its expression but not in INO1 transcription. The WT cells, under I- significantly reduced the expression of GCR1 and PIS1, but increased the expression of KCS1 and de-repressed INO1. The Kcs1p expression was reduced in gcr1∆ cells; this reduced INO1 expression resulting in abnormal vacuolar structure and reduced autophagy in Saccharomyces cerevisiae.


Assuntos
Autofagia/genética , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica , Sítios de Ligação , Proteínas de Ligação a DNA/química , Regulação Fúngica da Expressão Gênica/genética , Glicólise/genética , Inositol/genética , Inositol/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Vacúolos/genética , Vacúolos/ultraestrutura
4.
J Appl Genet ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153170

RESUMO

We report three patients with the novel variant c.100 + 1G > A of the TBCE gene and describe the presented clinical phenotype in detail. We also systematically reviewed the literature for clinical similarities and dissimilarities among all known patients with pathogenic TBCE variants. The clinical phenotype observed in patients with pathogenic TBCE variants is broader than previously described. Homozygous carriers of the c.100 + 1G > A variant exhibit a markedly milder clinical course, with no deviations in the calcium-phosphate metabolism and central nervous system pathology in MRI studies. Additionally, two patients manifest highly specific symptoms such as a rigid spine, eosinophilia, neutropenia, and nocturnal hypoxemia. Furthermore, cryptorchidism was observed in male patients. The identification of the pathogenic c.100 + 1G > A variant has thus far been limited to patients of Central-Eastern European descent, suggesting a potential founder mutation in this population.

5.
Biomolecules ; 14(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397389

RESUMO

The inositol pyrophosphate pathway, a complex cell signaling network, plays a pivotal role in orchestrating vital cellular processes in the budding yeast, where it regulates cell cycle progression, growth, endocytosis, exocytosis, apoptosis, telomere elongation, ribosome biogenesis, and stress responses. This pathway has gained significant attention in pharmacology and medicine due to its role in generating inositol pyrophosphates, which serve as crucial signaling molecules not only in yeast, but also in higher eukaryotes. As targets for therapeutic development, genetic modifications within this pathway hold promise for disease treatment strategies, offering practical applications in biotechnology. The model organism Saccharomyces cerevisiae, renowned for its genetic tractability, has been instrumental in various studies related to the inositol pyrophosphate pathway. This review is focused on the Kcs1 and Vip1, the two enzymes involved in the biosynthesis of inositol pyrophosphate in S. cerevisiae, highlighting their roles in various cell processes, and providing an up-to-date overview of their relationship with phosphate homeostasis. Moreover, the review underscores the potential applications of these findings in the realms of medicine and biotechnology, highlighting the profound implications of comprehending this intricate signaling network.


Assuntos
Difosfatos , Fosfatos de Inositol , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Difosfatos/metabolismo , Fosfatos de Inositol/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
6.
Adv Biol Regul ; 60: 22-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26446451

RESUMO

Synthesis of inositol pyrophosphates through activation of Kcs1 plays an important role in the signalling response required for cell cycle progression after mating pheromone arrest. Overexpression of Kcs1 doubled the level of inositol pyrophosphates when compared to wild type cells and 30 min following the release from α-factor block further increase in inositol pyrophosphates was observed, which resulted that cells overexpressing Kcs1 reached G2/M phase earlier than wild type cells. Similar effect was observed in ipk1Δ cells, which are unable to synthesize IP6-derived inositol pyrophosphates (IP7 and IP8) but will synthesize IP5-derived inositol pyrophosphates (PP-IP4 and (PP)2-IP3). Although ipk1Δ cells have shorter telomeres than wild type cells, overexpression of Kcs1 in both strains have similar effect on cell cycle progression. As it is known that PP-IP4 regulates telomere length through Tel1, inositol polyphosphates, cell cycle and telomere length were determined in tel1Δ cells. The release of the cells from α-factor block and overexpression of Kcs1 in tel1Δ cells produced similar effects on inositol pyrophosphates level and cell cycle progression when compared to wild type cells, although tel1Δ cells possesses shorter telomeres than wild type cells. It can be concluded that telomere length does not affect cell cycle progression, since cells with short telomeres (ipk1Δ and tel1Δ) progress through cell cycle in a similar manner as wild type cells and that overexpression of Kcs1 in cells with either short or normal telomeres will increase S phase progression without affecting telomere length. Furthermore, IP5-derived inositol pyrophosphates can compensate for the loss of IP6-derived inositol pyrophosphates, in modulating S phase progression of the cell cycle.


Assuntos
Ciclo Celular , Fosfatos de Inositol/metabolismo , Saccharomyces cerevisiae/citologia , Telômero/metabolismo , Divisão Celular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA