Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2216672120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36630451

RESUMO

Cost-effective fabrication of mechanically flexible low-power electronics is important for emerging applications including wearable electronics, artificial intelligence, and the Internet of Things. Here, solution-processed source-gated transistors (SGTs) with an unprecedented intrinsic gain of ~2,000, low saturation voltage of +0.8 ± 0.1 V, and a ~25.6 µW power consumption are realized using an indium oxide In2O3/In2O3:polyethylenimine (PEI) blend homojunction with Au contacts on Si/SiO2. Kelvin probe force microscopy confirms source-controlled operation of the SGT and reveals that PEI doping leads to more effective depletion of the reverse-biased Schottky contact source region. Furthermore, using a fluoride-doped AlOx gate dielectric, rigid (on a Si substrate) and flexible (on a polyimide substrate) SGTs were fabricated. These devices exhibit a low driving voltage of +2 V and power consumption of ~11.5 µW, yielding inverters with an outstanding voltage gain of >5,000. Furthermore, electrooculographic (EOG) signal monitoring can now be demonstrated using an SGT inverter, where a ~1.0 mV EOG signal is amplified to over 300 mV, indicating significant potential for applications in wearable medical sensing and human-computer interfacing.


Assuntos
Inteligência Artificial , Condução de Veículo , Humanos , Dióxido de Silício , Fontes de Energia Elétrica , Óxidos , Polietilenoimina
2.
Nano Lett ; 24(6): 1835-1842, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315833

RESUMO

Strain engineering modifies the optical and electronic properties of atomically thin transition metal dichalcogenides. Highly inhomogeneous strain distributions in two-dimensional materials can be easily realized, enabling control of properties on the nanoscale; however, methods for probing strain on the nanoscale remain challenging. In this work, we characterize inhomogeneously strained monolayer MoS2 via Kelvin probe force microscopy and electrostatic gating, isolating the contributions of strain from other electrostatic effects and enabling the measurement of all components of the two-dimensional strain tensor on length scales less than 100 nm. The combination of these methods is used to calculate the spatial distribution of the electrostatic potential resulting from piezoelectricity, presenting a powerful way to characterize inhomogeneous strain and piezoelectricity that can be extended toward a variety of 2D materials.

3.
Small ; 20(5): e2304362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752782

RESUMO

Atomicforce microscopy (AFM)-based scanning probing techniques, including Kelvinprobe force microscopy (KPFM) and conductive atomic force microscopy (C-AFM), have been widely applied to investigate thelocal electromagnetic, physical, or molecular characteristics of functional materials on a microscopic scale. The microscopic inhomogeneities of the electronic properties of polycrystalline photovoltaic materials can be examined by these advanced AFM techniques, which bridge the local properties of materials to overall device performance and guide the optimization of the photovoltaic devices. In this review, the critical roles of local optoelectronic heterogeneities, especially at grain interiors (GIs) and grain boundaries (GBs) of polycrystalline photovoltaic materials, including versatile polycrystalline silicon, inorganic compound materials, and emerging halide perovskites, studied by KPFM and C-AFM, are systematically identified. How the band alignment and electrical properties of GIs and GBs affect the carrier transport behavior are discussed from the respective of photovoltaic research. Further exploiting the potential of such AFM-based techniques upon a summary of their up-to-date applications in polycrystalline photovoltaic materials is beneficial to acomprehensive understanding of the design and manipulation principles of thenovel solar cells and facilitating the development of the next-generation photovoltaics and optoelectronics.

4.
J Microsc ; 293(3): 160-168, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234217

RESUMO

We calculate a universal shift in work function of 59.4 meV per decade of dopant concentration change that applies to all doped semiconductors and from this use Monte Carlo simulations to simulate the resulting change in secondary electron yield for doped GaAs. We then compare experimental images of doped GaAs layers from scanning electron microscopy and conductive atomic force microscopy. Kelvin probe force microscopy allows to directly measure and map local work function changes, but values measured are often smaller, typically only around half, of what theory predicts for perfectly clean surfaces.

5.
Nanotechnology ; 35(50)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39321826

RESUMO

As an effective method to fabricate a large-area cross-sectional sample for lithium-ion battery electrodes, we perform in-plane polishing of LiNi0.8Co0.15Al0.05O2(NCA) cathode samples and obtain a large cross-sectional area with a diameter of 1.5 mm. The polished cross-sections of NCA cathode particles are sufficiently flat to perform the atomic force microscopy (AFM) measurements on each cathode particle. Following AFM-based Kelvin probe force microscopy and scanning spreading resistance microscopy measurements, an identical in-plane polished NCA sample is assembled into a coin cell for the charge and discharge processes. After 90 charge/discharge cycles, the in-plane-polished sample is successfully disassembled from the coin cell without causing critical damage. In addition, a microcrack structure, which is a typical degradation feature of the cycles of NCA particles, is observed for the identical in-plane polished NCA sample. This indicates that the in-plane polishing method is effective for investigating identical NCA electrode samples before and after the charge/discharge process. Furthermore, the in-plane polishing method can be successfully applied to the large-area polishing of a Si-based anode which is a mixture of Si carbon complexes and graphite particles. This study presents a novel methodology for analyzing the degradation of lithium-ion battery electrode materials.

6.
Nano Lett ; 23(19): 8953-8959, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37737103

RESUMO

Kelvin probe force microscopy measures surface potential and delivers insights into nanoscale electronic properties, including work function, doping levels, and localized charges. Recently developed pulsed force Kelvin probe force microscopy (PF-KPFM) provides sub-10 nm spatial resolution under ambient conditions, but its original implementation is hampered by instrument complexity and limited operational speed. Here, we introduce a solution for overcoming these two limitations: a lock-in amplifier-based PF-KPFM. Our method involves phase-synchronized switching of a field effect transistor to mediate the Coulombic force between the probe and the sample. We validate its efficacy on two-dimensional material MXene and aged perovskite photovoltaic films. Lock-in-based PF-KPFM successfully identifies the contact potential difference (CPD) of stacked flakes and finds that the CPDs of monoflake MXene are different from those of their multiflake counterparts, which are otherwise similar in value. In perovskite films, we uncover electrical degradation that remains elusive with surface topography.

7.
Nano Lett ; 23(1): 66-72, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36576300

RESUMO

As an electromechanical coupling between strain gradients and polarization, flexoelectricity is largely enhanced at the nanoscale. However, directly observing the evolution of flexoelectric fields at the nanoscale usually suffers from the difficulty of producing strain gradients and probing electrical responses simultaneously. Here, we introduce nanocracks in SrTiO3, Ba0.67Sr0.33TiO3, and TiO2 samples and apply continuously varying mechanical loading to them, and as a result, huge strain gradients appear at the crack tip and result in a significant flexoelectric effect. Then, using atomic force microscopy, we successfully measure the evolution of flexoelectricity around the crack tips. For the case of SrTiO3, the maximum induced electric field reaches 11 kV/m due to the tensile load increasing. The proposed method provides a reliable way to identify the significance of the flexoelectric effect. It may also open a new avenue for the study of flexoelectricity involving multiple physics phenomena including flexoelectronics, the flexo-photovoltaic effect, and others.

8.
Nano Lett ; 23(17): 8280-8287, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650519

RESUMO

Advanced Kelvin probe force microscopy simultaneously detects the quantum capacitance and surface potential of an α-helical peptide monolayer. These indicators shift when either the magnetic polarization or the enantiomer is toggled. A model based on a triangular quantum well in thermal and chemical equilibrium and electron-electron interactions allows for calculating the electrical potential profile from the measured data. The combination of the model and the measurements shows that no global charge transport is required to produce effects attributed to the chirality-induced spin selectivity effect. These experimental findings support the theoretical model of Fransson et al. Nano Letters 2021, 21 (7), 3026-3032. Measurements of the quantum capacitance represent a new way to test and refine theoretical models used to explain strong spin polarization due to chirality-induced spin selectivity.

9.
Nano Lett ; 23(11): 5123-5130, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37272668

RESUMO

Developing cost-effective and highly efficient photocathodes toward polysulfide redox reduction is highly desirable for advanced quantum dot (QD) photovoltaics. Herein, we demonstrate nitrogen doped carbon (N-C) shell-supported iron single atom catalysts (Fe-SACs) capable of catalyzing polysulfide reduction in QD photovoltaics for the first time. Specifically, Fe-SACs with FeN4 active sites feature a power conversion efficiency of 13.7% for ZnCuInSe-QD photovoltaics (AM1.5G, 100 mW/cm2), which is the highest value for ZnCuInSe QD-based photovoltaics, outperforming those of Cu-SACs and N-C catalysts. Compared with N-C, Fe-SACs exhibit suitable energy level matching with polysulfide redox couples, revealed by the Kelvin probe force microscope, which accelerates the charge transferring at the interfaces of catalyst/polysulfide redox couple. Density functional theory calculations demonstrate that the outstanding catalytic activity of Fe-SACs originates from the preferable adsorption of S42- on the FeN4 active sites and the high activation degree of the S-S bonds in S42- initiated by the FeN4 active sites.

10.
Molecules ; 29(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39339434

RESUMO

A gallium nitride (GaN) semiconductor is one of the most promising materials integrated into biomedical devices to play the roles of connecting, monitoring, and manipulating the activity of biological components, due to its excellent photoelectric properties, chemical stability, and biocompatibility. In this work, it was found that the photogenerated free charge carriers of the GaN substrate, as an exogenous stimulus, served to promote neural stem cells (NSCs) to differentiate into neurons. This was observed through the systematic investigation of the effect of the persistent photoconductivity (PPC) of GaN on the differentiation of primary NSCs from the embryonic rat cerebral cortex. NSCs were directly cultured on the GaN surface with and without ultraviolet (UV) irradiation, with a control sample consisting of tissue culture polystyrene (TCPS) in the presence of fetal bovine serum (FBS) medium. Through optical microscopy, the morphology showed a greater number of neurons with the branching structures of axons and dendrites on GaN with UV irradiation. The immunocytochemical results demonstrated that GaN with UV irradiation could promote the NSCs to differentiate into neurons. Western blot analysis showed that GaN with UV irradiation significantly upregulated the expression of two neuron-related markers, ßIII-tubulin (Tuj-1) and microtubule-associated protein 2 (MAP-2), suggesting that neurite formation and the proliferation of NSCs during differentiation were enhanced by GaN with UV irradiation. Finally, the results of the Kelvin probe force microscope (KPFM) experiments showed that the NSCs cultured on GaN with UV irradiation displayed about 50 mV higher potential than those cultured on GaN without irradiation. The increase in cell membrane potential may have been due to the larger number of photogenerated free charges on the GaN surface with UV irradiation. These results could benefit topical research and the application of GaN as a biomedical material integrated into neural interface systems or other bioelectronic devices.


Assuntos
Diferenciação Celular , Gálio , Células-Tronco Neurais , Semicondutores , Raios Ultravioleta , Gálio/química , Gálio/farmacologia , Animais , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos da radiação , Células-Tronco Neurais/metabolismo , Diferenciação Celular/efeitos da radiação , Ratos , Células Cultivadas , Proliferação de Células , Neurônios/citologia , Neurônios/efeitos da radiação , Neurônios/metabolismo
11.
Nanotechnology ; 35(6)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37944481

RESUMO

The electrostatic potential distribution in materials and devices plays an important role in controlling the behaviors of charge carriers. Kelvin probe force microscopy (KPFM) is a powerful technique for measuring the surface potential at a high spatial resolution. However, the measured surface potential often deviates from the potential deep in the bulk owing to certain factors. Here, we performed KPFM measurements across the p-n junction, in which such factors were eliminated as much as possible by selecting the sample, force sensor, and measurement mode. The measured surface potential distribution agrees well with the line shape of the simulated bulk potential. Our results demonstrate that KPFM is capable of quantitatively characterizing potential distributions whose changes occur on the order of 10 nm.

12.
Nanotechnology ; 34(47)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37607501

RESUMO

Defects in two-dimensional (2D) transition metal dichalcogenides (TMDs) greatly influence their electronic and optical properties by introducing localized in-gap states. Using different non-invasive techniques, we have investigated the spatial distribution of intrinsic defects in as-grown chemical vapor deposition (CVD) MoS2monolayers and correlated the results with the growth temperature of the sample. We have shown that by increasing the CVD growth temperature the concentration of defects decreases and their spatial distribution and type change, influencing the sample's electronic and optical properties.

13.
Nanotechnology ; 34(16)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36638530

RESUMO

By combining non-contact atomic force microscopy (nc-AFM) and Kelvin probe microscopy (KPFM) in ultra high vacuum environment (UHV), we directly measure the height and work function of graphene monolayer on the Si-face of 6H-SiC(0001) with a precision that allows us to differentiate three different types of graphene structures : zero layer graphene (ZLG), Quasi free-standing monolayer graphene (QFMLG) and bilayer graphene (BLG). The height and work function of ZLG are 2.62 ± 0.22 Å and 4.42 ± 0.05 eV respectively, when they are 4.09 ± 0.11 Å and 4.63 ± 0.05 eV for QFMLG. The work function is 4.83 ± 0.05 eV for the BLG. Unlike any other available technique, the local nc-AFM/KPFM dual probe makes it possible to directly identify the nature of nanometer-sized graphene islands that constitute the early nuclei of graphene monolayer grown on 6H-SiC(0001) by chemical vapor deposition.

14.
Int J Mol Sci ; 24(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37958967

RESUMO

The oxides of group 14 have been widely used in numerous applications in glass, ceramics, optics, pharmaceuticals, and food industries and semiconductors, photovoltaics, thermoelectrics, sensors, and energy storage, namely, batteries. Herein, we simulate and experimentally determine by scanning kelvin probe (SKP) the work functions of three oxides, SiO2, SiO, and SnO2, which were found to be very similar. Electrical properties such as electronic band structure, electron localization function, and carrier mobility were also simulated for the three crystalline oxides, amorphous SiO, and surfaces. The most exciting results were obtained for SiO and seem to show Poole-Frankel emissions or trap-assisted tunneling and propagation of surface plasmon polariton (SPP) with nucleation of solitons on the surface of the Aluminum. These phenomena and proposed models may also describe other oxide-metal heterojunctions and plasmonic and metamaterials devices. The SiO2 was demonstrated to be a stable insulator interacting less with the metals composing the cell than SnO2 and much less than SiO, configuring a typical Cu/SiO2/Al cell potential well. Its surface charge carrier mobility is small, as expected for an insulator. The highest charge carrier mobility at the lowest conduction band energy is the SnO2's and the most symmetrical the SiO's with a similar number of electron holes at the conduction and valence bands, respectively. The SnO2 shows it may perform as an n-type semiconductor.


Assuntos
Óxidos , Dióxido de Silício , Óxidos/química , Dióxido de Silício/química , Metais/química , Vidro/química , Alumínio
15.
Entropy (Basel) ; 25(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36832663

RESUMO

Dual-phase high entropy alloys have recently attracted widespread attention as advanced structural materials due to their unique microstructure, excellent mechanical properties, and corrosion resistance. However, their molten salt corrosion behavior has not been reported, which is critical in evaluating their application merit in the areas of concentrating solar power and nuclear energy. Here, the molten salt corrosion behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) was evaluated in molten NaCl-KCl-MgCl2 salt at 450 °C and 650 °C in comparison to conventional duplex stainless steel 2205 (DS2205). The EHEA showed a significantly lower corrosion rate of ~1 mm/year at 450 °C compared to ~8 mm/year for DS2205. Similarly, EHEA showed a lower corrosion rate of ~9 mm/year at 650 °C compared to ~20 mm/year for DS2205. There was selective dissolution of the body-centered cubic phase in both the alloys, B2 in AlCoCrFeNi2.1 and α-Ferrite in DS2205. This was attributed to micro-galvanic coupling between the two phases in each alloy that was measured in terms of Volta potential difference using a scanning kelvin probe. Additionally, the work function increased with increasing temperature for AlCoCrFeNi2.1, indicating that the FCC-L12 phase acted as a barrier against further oxidation and protected the underlying BCC-B2 phase with enrichment of noble elements in the protective surface layer.

16.
Small ; 18(34): e2200605, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35905481

RESUMO

In organic electronics, local crystalline order is of critical importance for the charge transport. Grain boundaries between molecularly ordered domains are generally known to hamper or completely suppress charge transfer and detailed knowledge of the local electronic nature is critical for future minimization of such malicious defects. However, grain boundaries are typically hidden within the bulk film and consequently escape observation or investigation. Here, a minimal model system in form of monolayer-thin films with sub-nm roughness of a prototypical n-type organic semiconductor is presented. Since these films consist of large crystalline areas, the detailed energy landscape at single grain boundaries can be studied using Kelvin probe force microscopy. By controlling the charge-carrier density in the films electrostatically, the impact of the grain boundaries on charge transport in organic devices is modeled. First, two distinct types of grain boundaries are identified, namely energetic barriers and valleys, which can coexist within the same thin film. Their absolute height is found to be especially pronounced at charge-carrier densities below 1012 cm- 2 -the regime at which organic solar cells and light emitting diodes typically operate. Finally, processing conditions by which the type or energetic height of grain boundaries can be controlled are identified.

17.
Small ; 18(52): e2205080, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344458

RESUMO

Sample degradation, in particular of biomolecules, frequently occurs in surface-enhanced Raman spectroscopy (SERS) utilizing supported silver SERS substrates. Currently, thermal and/or photocatalytic effects are considered to cause sample degradation. This paper establishes the efficient inhibition of sample degradation using iodide which is demonstrated by a systematic SERS study of a small peptide in aqueous solution. Remarkably, a distinct charge separation-induced surface potential difference is observed for SERS substrates under laser irradiation using Kelvin probe force microscopy. This directly unveils the photocatalytic effect of Ag-SERS substrates. Based on the presented results, it is proposed that plasmonic photocatalysis dominates sample degradation in SERS experiments and the suppression of typical SERS sample degradation by iodide is discussed by means of the energy levels of the substrate under mild irradiation conditions. This approach paves the way toward more reliable and reproducible SERS studies of biomolecules under physiological conditions.


Assuntos
Iodetos , Análise Espectral Raman , Análise Espectral Raman/métodos , Microscopia de Força Atômica
18.
Nanotechnology ; 33(16)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34983039

RESUMO

Unstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from these structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Usingk·pcalculation, we show that the confinement comes from the band bending due to the surface Fermi level pinning. We find a correlation between the calculated charge density and the KPFM signal indicating thatk·pcalculations could be used to estimate the KPFM signal for a given structure. Our results suggest that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect.

19.
Nanotechnology ; 33(47)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35970138

RESUMO

Magnetic force microscopy (MFM) has become one of the most important instruments for characterizing magnetic materials with nanoscale spatial resolution. When analyzing magnetic particles by MFM, calibration of the magnetic tips using reference magnetic nanoparticles is a prerequisite due to similar orientation and dimension of the yielded magnetic fields. However, in such a calibration process, errors caused by extra electrostatic interactions will significantly affect the output results. In this work, we evaluate the magnetic moment and dipole radius of the MFM tip on Fe3O4nanoparticles by considering the associated electrostatic force. The coupling of electrostatic contribution on the measured MFM phase is eliminated by combining MFM and Kelvin probe force microscopy together with theoretical modeling. Numerical simulations and experiments on nickel nanoparticles demonstrate the effectiveness of decoupling. Results show that the calibrated MFM tip can enable a more accurate analysis of micro-and-nano magnetism. In addition, a fast and easy calibration method by using bimodal MFM is discussed, in which the acquisition of multiple phase shifts at different lift heights is not required.

20.
Nanotechnology ; 33(39)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623324

RESUMO

Fragmented multi-layered graphene films were directly synthesized via chemical vapor deposition (CVD) on dielectric substrates with a pre-deposited copper catalyst. We demonstrate that the thickness of the sacrificial copper film, process temperature, and growth time essentially influence the integrity, quality, and disorder of the synthesized graphene. Atomic force microscopy and Kelvin probe force microscopy measurements revealed the presence of nano-agglomerates and charge puddles. The potential gradients measured over the sample surface confirmed that the deposited graphene film possessed a multilayered structure, which was modelled as an ensemble of randomly oriented conductive prolate ellipsoids. THz time domain spectroscopy measurements gave theacconductivity of the graphene flakes and homogenized graphitic films as being around 1200 S cm-1and 1000 S cm-1, respectively. Our approach offers a scalable fabrication of graphene structures composed of graphene flakes, which have effective conductivity sufficient for a wide variety of THz applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA