Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Protein Expr Purif ; 223: 106540, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38971213

RESUMO

To harness the diverse industrial applications of cellulase, including its use in the food, pulp, textile, agriculture, and biofuel sectors, this study focused on the high-yield production of a bioactive insect-derived endoglucanase, Monochamus saltuarius glycoside hydrolase family 5 (MsGHF5). MsGHF5 was introduced into the genome of Kluyveromyces lactis to maintain expression stability, and mass production of the enzyme was induced using fed-batch fermentation. After 40 h of cultivation, recombinant MsGHF5 was successfully produced in the culture broth, with a yield of 29,000 U/L, upon galactose induction. The optimal conditions for the activity of purified MsGHF5 were determined to be a pH of 5 and a temperature of 35 °C, with the presence of ferrous ions enhancing the enzymatic activity by up to 1.5-fold. Notably, the activity of MsGHF5 produced in K. lactis was significantly higher than that produced in Escherichia coli, suggesting that glycosylation is crucial for the functional performance of the enzyme. This study highlights the potential use of K. lactis as a host for the production of bioactive MsGHF5, thus paving the way for its application in various industrial sectors.


Assuntos
Celulase , Kluyveromyces , Proteínas Recombinantes , Animais , Kluyveromyces/genética , Kluyveromyces/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Celulase/genética , Celulase/química , Celulase/biossíntese , Celulase/isolamento & purificação , Celulase/metabolismo , Besouros/enzimologia , Besouros/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Proteínas de Insetos/genética , Proteínas de Insetos/química , Proteínas de Insetos/biossíntese , Proteínas de Insetos/metabolismo , Proteínas de Insetos/isolamento & purificação , Concentração de Íons de Hidrogênio
2.
BMC Microbiol ; 23(1): 110, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081407

RESUMO

BACKGROUND: The production of biopolymers from waste resources is a growing trend, especially in high-population countries like Egypt. Beta-glucan (ß-glucan) belongs to natural polysaccharides that are derived from plant and microbial origins. In this study, following increasing demands for ß-glucan owing to its bioactive properties, a statistical model to enhance microbial ß-glucan production was evaluated for its usefulness to the food and pharmaceutical industries. In addition, a trial to convert ß-glucan polymer to nanostructure form was done to increase its bioactivity. RESULTS: Ingredients of low-cost media based on agro-industrial wastes were described using Plackett-Burman and central composite design of response surface methodology for optimizing yeast ß-glucan. Minerals and vitamin concentrations significantly influenced ß-glucan yield for Kluyveromyces lactis and nitrogen and phosphate sources for Meyerozyma guilliermondii. The maximum predicted yields of ß-glucan recovered from K. lactis and M. guilliermondii after optimizing the medium ingredients were 407 and 1188 mg/100 ml; respectively. For the first time, yeast ß-glucan nanoparticles (ßGN) were synthesized from the ß-glucan polymer using N-dimethylformamide as a stabilizer and characterized using UV-vis spectroscopy, transmission electron microscope (TEM), dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR). The average size of ßGN was about 300 nm as determined by DLS. The quantitative variation of functional groups between ß-glucan polymer and ßGN was evaluated by FT-IR for explaining the difference in their biological activity against Normal Homo sapiens-Hela contaminant and Hepatic cancer cell lines. CONCLUSIONS: Enriching the low-cost media based on agro-industrial wastes with nutritional ingredients improves the yield of yeast ß-glucan. The present study succeeds to form ß-glucan nanoparticles by a simple method.


Assuntos
Nanopartículas , beta-Glucanas , Humanos , beta-Glucanas/química , beta-Glucanas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Resíduos Industriais , Nanopartículas/química , Nanotecnologia
3.
Appl Microbiol Biotechnol ; 107(16): 5107-5118, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37401996

RESUMO

Zearalenone (ZEN) is a mycotoxin that causes serious threats to human health. People are exposed to ZEN contamination externally and internally through many ways, while environmental-friendly strategies for efficient elimination of ZEN are urgently needed worldwide. Previous studies revealed that the lactonase Zhd101 from Clonostachys rosea can hydrolyze ZEN to low toxicity compounds. In this work, the enzyme Zhd101 was conducted with combinational mutations to enhance its application properties. The optimal mutant (V153H-V158F), named Zhd101.1, was selected and introduced into the food-grade recombinant yeast strain Kluyveromyces lactis GG799(pKLAC1-Zhd101.1), followed by induced expression and secretion into the supernatant. The enzymatic properties of this mutant were extensively examined, revealing a 1.1-fold increase in specific activity, as well as improved thermostability and pH stability, compared to the wild-type enzyme. The ZEN degradation tests and the reaction parameters optimization were carried out in both solutions and the ZEN-contaminated corns, using the fermentation supernatants of the food-grade yeast strain. Results showed that the degradation rates for ZEN by fermentation supernatants reached 96.9% under optimal reaction conditions and 74.6% in corn samples, respectively. These new results are a useful reference to zearalenone biodegradation technologies and indicated that the mutant enzyme Zhd101.1 has potential to be used in food and feed industries. KEY POINTS: • Mutated lactonase showed 1.1-fold activity, better pH stability than the wild type. • The strain K. lactis GG799(pKLAC1-Zhd101.1) and the mutant Zhd101.1 are food-grade. • ZEN degradation rates by supernatants reached 96.9% in solution and 74.6% in corns.


Assuntos
Calosidades , Micotoxinas , Zearalenona , Humanos , Zearalenona/metabolismo , Mutação
4.
World J Microbiol Biotechnol ; 39(12): 342, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828125

RESUMO

In the enzymatic synthesis of galacto-oligosaccharide (GOS), the primary by-products include glucose, galactose and unreacted lactose. This This study was aimed to provide a method to to purify GOS by yeat fermentation and explore the interaction between GOS and CAS with a view for expanding the prospects of GOS application in the food industry. The crude GOS(25.70 g/L) was purified in this study using the fermentation method with Kluyveromyces lactis CICC 1773. Optimal conditions for purification with the yeast were 75 g/L of the yeast inoculation rate and 50 g/L of the initial crude GOS concentration for 12 h of incubation. After removing ethanol produced by yeast by low-temperature distillation, GOS content could reach 90.17%. A study of the interaction between GOS and casein (CAS) in a simulated acidic fermentation system by D-(+)-gluconic acid δ-lactone (GDL) showed that the GOS/CAS complexes with higher GOS concentrations, e.g., 4% and 6% (w/v), was more viscoelastic with higher water-holding capacity, but decreased hardness, elasticity, and cohesiveness at 6% (w/v) of GOS. The addition of GOS to CAS suspension significantly caused (p<0.05) decreased particle sizes of the formed GOS/CAS complexes, and the suspension system became more stable. FT-IR spectra confirmed the existence of different forms of molecular interactions between CAS and GOS, e.g., hydrogen bonding and hydrophobic interaction, and the change of secondary structure after CAS binding to GOS.


Assuntos
Caseínas , Kluyveromyces , Fermentação , Espectroscopia de Infravermelho com Transformada de Fourier , Oligossacarídeos/metabolismo , Lactose/metabolismo , Galactose , beta-Galactosidase/metabolismo
5.
J Food Sci Technol ; 60(10): 2670-2680, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37599848

RESUMO

The effects of various yeast species isolated from raw-milk cheese were evaluated in Beyaz cheese. Four batches of cheeses were produced, in which the control cheese involved only commercial starter culture while YL, DH and KL cheeses were produced with the incorporation of individual Yarrowia lipolytica, Debaryomyces hansenii and Kluyveromyces lactis, respectively. The chemical composition, microbial counts, sensory attributes, volatile compounds and textural properties of cheeses were determined on days 1, 30, and 60 during the ripening period. The results obtained demonstrated that chemical, microbial and sensory properties of cheese varied depending on yeast species. The cheese with Y. lipolytica was the most preferred and it contained more short chain fatty acids, particularly butyric acid. This result could be due to the higher fat content and advanced lipolytic activity. The ripening index of DH was found to be higher than the other cheeses, showing an advanced proteolytic activity in relation to lower hardness in the texture profile. K. lactis was associated with lactose metabolism and promoted the development of Lactococcus spp. The results highlighted a potential use of yeasts as adjunct cultures in Beyaz cheese to develop the sensory properties such as texture and flavor. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05791-3.

6.
Food Microbiol ; 108: 104101, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088116

RESUMO

Four batches of Cebreiro-type cheese were made in duplicate from pasteurized milk. A control batch was manufactured with only a commercial O-starter. The other three batches were made with the same starter plus: (i) a commercial culture of Enterococcus faecium; (ii) a selected Kluyveromyces lactis adjunct culture used in a cheese-milk pre-ripening step; and (iii) the combination of both adjunct cultures. The cheeses made with the yeast adjunct were characterized by higher values of overall proteolysis, pH and aw, and showed total and lactic acid bacteria (LAB) counts at least 2 log units than the batches made with only LAB. The volatile profiles of the cheeses made with added K. lactis were distinguished by high contents of esters, branched-chain alcohols, fatty acids, acetoin and 2-pnenylethanol. These batches had a more friable and sticky texture, and exhibited differential piquant, yeasty, alcoholic, acetic and fruity flavors. Furthermore, the addition of enterococci seemed to help achieve more desirable sensory characteristics. The batches manufactured with both adjunct cultures were awarded the highest scores for texture preference, flavor intensity, flavor preference, and overall sensory preference. The sensory profiles of the cheeses made with added yeast closely resembled those of traditional 'good quality' raw-milk Cebreiro cheese.


Assuntos
Queijo , Enterococcus faecium , Kluyveromyces , Queijo/microbiologia , Leveduras
7.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955722

RESUMO

3'-5' cyclic nucleotide phosphodiesterases (PDEs) are a family of evolutionarily conserved cAMP and/or cGMP hydrolyzing enzymes, components of transduction pathways regulating crucial aspects of cell life. Among them, cGMP-specific PDE5-being a regulator of vascular smooth muscle contraction-is the molecular target of several drugs used to treat erectile dysfunction and pulmonary hypertension. Production of full-length murine PDE5A isoforms in the milk-yeast Kluyveromyces lactis showed that the quaternary assembly of MmPDE5A1 is a mixture of dimers and tetramers, while MmPDE5A2 and MmPDE5A3 only assembled as dimers. We showed that the N-terminal peptide is responsible for the tetramer assembly of MmPDE5A1, while that of the MmPDE5A2 is responsible for its mitochondrial localization. Overexpression of the three isoforms alters at different levels the cAMP/cGMP equilibrium as well as the NAD(P)+/NAD(P)H balance and induces a metabolic switch from oxidative to fermentative. In particular, the mitochondrial localization of MmPDE5A2 unveiled the existence of a cAMP-cGMP signaling cascade in this organelle, for which we propose a metabolic model that could explain the role of PDE5 in some cardiomyopathies and some of the side effects of its inhibitors.


Assuntos
GMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , NAD , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Animais , GMP Cíclico/metabolismo , Masculino , Camundongos , NAD/metabolismo , Oxirredução , Isoformas de Proteínas/metabolismo
8.
Biochem Biophys Res Commun ; 553: 85-91, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33765558

RESUMO

Glucose-6-phosphate dehydrogenase is the first enzyme in the pentose phosphate pathway. The reaction catalyzed by the enzyme is considered to be the main source of reducing power for nicotinamide adenine dinucleotide phosphate (NADPH) and is a precursor of 5-carbon sugar used by cells. To uncover the structural features of the enzyme, we determined the crystal structures of glucose-6-phosphate dehydrogenase from Kluyveromyces lactis (KlG6PD) in both the apo form and a binary complex with its substrate glucose-6-phosphate. KlG6PD contains a Rossman-like domain for cofactor NADPH binding; it also presents a typical antiparallel ß sheet at the C-terminal domain with relatively the same pattern as those of other homologous structures. Moreover, our structural and biochemical analyses revealed that Lys153 contributes significantly to substrate G6P recognition. This study may provide insights into the structural variation and catalytic features of the G6PD enzyme.


Assuntos
Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Kluyveromyces/enzimologia , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Glucosefosfato Desidrogenase/genética , Cinética , Modelos Moleculares , Mutagênese , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Curr Genet ; 67(1): 153-163, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33156376

RESUMO

Telomeres are specialized nucleoprotein complexes that protect the ends of eukaryotic chromosomes and distinguish them from broken DNA ends. Disruption of telomere protection may cause aging-associated pathologies and cancer. Here, we examined what makes telomere protection durable and resistant to perturbations using a budding yeast model organism. The protein Rap1 binds the telomeric repeats, negatively regulates telomere length, and protects telomeres by repressing homologous recombination and non-homologous end joining (NHEJ). A single-nucleotide mutation in the Kluyveromyces lactis telomerase RNA (TER1) template, ter1-16T, is incorporated into the telomeric repeats, disrupting the binding of Rap1 and causing dramatic telomere elongation. However, cell viability is not significantly affected, suggesting the existence of additional mechanism(s) for telomere protection. To examine this hypothesis, we explored the contribution of the recombination factor Rad52 and telomerase to telomere protection in the background of ter1-16T. To disrupt the function of telomerase, we exploited small mutations in a stem-loop domain of TER1 (Reg2), which result in short but stable telomeres. We generated K. lactis strains with combinations of three different mutations: ter1-16T, RAD52 deletion, and a two-nucleotide substitution in Reg2. Our results show that upon Rap1 depletion from telomeres, telomerase and the recombination machinery compensate for the loss of Rap1 protection and play redundant but critical roles in preventing NHEJ and maintaining telomere integrity and cell viability. These results demonstrate how redundant pathways make the essential role of telomeres-protecting our genome integrity and preventing cancer-more robust and resistant to assaults and perturbations.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Telomerase/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Fatores de Transcrição/genética , Reparo do DNA por Junção de Extremidades/genética , Humanos , Kluyveromyces/genética , Mutação/genética , RNA/genética , Saccharomyces cerevisiae/genética , Complexo Shelterina , Homeostase do Telômero/genética
10.
Plasmid ; 116: 102577, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058238

RESUMO

Proteins from food-grade expression systems can be used in food products and medical applications. Herein, we describe a one-step method of constructing an expression vector in Kluyveromyces lactis by combining a URA3-deficient strain and a plasmid vector with no drug-resistant selection. Adjacent DNA elements of the vector were assembled in a targeted manner through a reaction with a special recombinase to form a plasmid vector using a one-step reaction. The unnecessary fragments containing the pUC origin and the ampicillin resistance gene were removed, and the vector was isolated and purified before transformation. A single transformation of the vector can produce a URA3-deficient strain. PCR assay, sequencing, and western blot analysis all indicated that the method of vector construction and target protein expression (mCherry and human serum albumin) were successful. This method may potentially be applied to any species containing the URA3 gene; this system has the potential to become a safe and powerful tool for promoting protein expression in food-safe species.


Assuntos
Kluyveromyces , Vetores Genéticos/genética , Humanos , Kluyveromyces/genética , Plasmídeos/genética , Transformação Genética
11.
Appl Microbiol Biotechnol ; 105(21-22): 8531-8544, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34611725

RESUMO

Carbon nanomaterials, due to their catalytic activity and high surface area, have potential as cell immobilization supports to increase the production of xylanase. Recombinant Kluyveromyces lactis used for xylanase production was integrated into a polymeric gel network with carbon nanomaterials. Carbon nanomaterials were pretreated before cell immobilization with hydrochloric acid (HCl) treatment and glutaraldehyde (GA) crosslinking, which contributes to cell immobilization performance. Carbon nanotubes (CNTs) and graphene oxide (GO) were further screened using a Plackett-Burman experimental design. Cell loading and agar concentration were the most important factors in xylanase production with low cell leakage. Under optimized conditions, xylanase production was increased by more than 400% compared to free cells. Immobilized cell material containing such high cell densities may exhibit new and unexplored beneficial properties because the cells comprise a large fraction of the component. The use of carbon nanomaterials as a cell immobilization support along with the entrapment method successfully enhances the production of xylanase, providing a new route to improved bioprocessing, particularly for the production of enzymes. KEY POINTS: • Carbon nanomaterials (CNTs, GO) have potential as cell immobilization supports. • Entrapment in a polymeric gel network provides space for xylanase production. • Plackett-Burman design screen for the most important factor for cell immobilization.


Assuntos
Kluyveromyces , Nanoestruturas , Nanotubos de Carbono , Enzimas Imobilizadas , Kluyveromyces/genética , Projetos de Pesquisa
12.
Regul Toxicol Pharmacol ; 126: 105027, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34428516

RESUMO

Kluyveromyces lactis is broadly considered as a safe yeast in food and a suitable organism for the production of food enzymes. The K. lactis enzyme production strains of DSM are used to produce a variety of enzymes, for example beta-galactosidase (lactase), chymosin and esterase. All of these production strains are derived from the same lineage, meaning they all originate from the same ancestor strain after classical mutagenesis and/or genetic engineering. Four different enzyme preparations produced with strains within this lineage were toxicologically tested. These enzyme preparations were nontoxic in repeated-dose oral toxicity studies performed in rats and were non-genotoxic in vitro. These studies confirm the safety of the DSM K. lactis strains as a production platform for food enzymes, as well as the safety of the genetic modifications made to these strains through genetic engineering or classical mutagenesis. The outcome of the toxicity studies can be extended to other enzyme preparations produced by any strain from this lineage through read across. Therefore, no new toxicity studies are required for the safety evaluation, as long as the modifications made do not raise safety concerns. Consequently, this approach is in line with the public ambition to reduce animal toxicity studies.


Assuntos
Kluyveromyces/classificação , Kluyveromyces/enzimologia , Testes de Toxicidade/normas , Leveduras/classificação , Leveduras/enzimologia , Engenharia Genética
13.
Prep Biochem Biotechnol ; 51(7): 714-722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33287624

RESUMO

The present study aimed to evaluate the lactose hydrolysis conditions from "coalho" cheese whey using ß-galactosidase (ß-gal) produced by Kluyveromyces lactis immobilized with sodium alginate. Three sodium alginate-based immobilization systems were evaluated (0.5, 0.7, and 1% w/v) for maximizing the immobilization yield (Y), efficiency (EM), and recovered activity (ar). The lactose hydrolysis capacity of the immobilized form of ß-gal was determined, and simulated environments were used to assess the preservation of the immobilized enzyme in the gastrointestinal tract. The results showed that ß-gal immobilization with 1% (w/v) sodium alginate presented the best results (EM of 66%, Y of 41%, and ar of 65%). The immobilization system maintained the highest pH stability in the range between 5.0 and 7.0, with the highest relative activity obtained under pH 5 conditions. The temperature stability was also favored by immobilization at 50 °C for 30 min was obtained a relative activity of 180.0 ± 1.37%. In 6 h, the immobilized ß-gal was able to hydrolyze 46% of the initial lactose content. For the gastrointestinal simulations, around 40% of the activity was preserved after 2 h. Overall, the results described here are promising for the industrial applications of ß-galactosidase from K. lactis.


Assuntos
Alginatos/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Kluyveromyces/enzimologia , Lactose/química , beta-Galactosidase/química , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise
14.
Yeast ; 37(12): 647-657, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161613

RESUMO

Kluyveromyces lactis Upc2p is an ortholog of Upc2p/Ecm22p transcription factors involved in regulation of sterol import and sterol homeostasis in Saccharomyces cerevisiae. In this work, we investigated the role of Upc2p in K. lactis. The absence of KlUpc2p significantly reduced the tolerance of mutant cells to antifungal azoles and Li+ cations. Reduced expression of genes from the late ergosterol pathway results in a decreased ergosterol content and altered plasma membrane-associated functions in Klupc2 mutant cells-the plasma membrane is hyperpolarized, and its fluidity is reduced. KlUpc2p contributes to transcriptional upregulation of KlENA1, KlPMA1 and KlYAP1 under azole stress. Our study demonstrates that KlUpc2p is involved in the regulation of ergosterol homeostasis in K. lactis. The analysis of KlPMA1 and KlPDR12 transcripts in wild-type and Klupc2Δ mutant strains showed that KlUpc2p acts as an activator or as a repressor depending upon its target.


Assuntos
Deleção de Genes , Regulação Fúngica da Expressão Gênica , Homeostase/genética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Esteróis/metabolismo , Antifúngicos/farmacologia , Homeostase/efeitos dos fármacos , Kluyveromyces/efeitos dos fármacos , Mutação , Transcrição Gênica
15.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31053583

RESUMO

The yeast Kluyveromyces lactis has been a successful host for the production of heterologous proteins for over 30 years. Currently, the galactose-/lactose-inducible and glucose-repressible LAC4 promoter (P LAC4 ) is the most widely used promoter to drive recombinant protein expression in K. lactis However, P LAC4 is not fully repressed in the presence of glucose and significant protein expression still occurs. Thus, P LAC4 is not suitable in processes where tight regulation of heterologous gene expression is required. In this study, we devised a novel K. lactis promoter system that is both strong and tightly controllable. We first tested several different endogenous K. lactis promoters for their ability to express recombinant proteins. A novel hybrid promoter (termed P350) was created by combining segments of two K. lactis promoters, namely, the strong constitutive P GAP1 promoter and the carbon source-sensitive P ICL1 promoter. We demonstrate that P350 is tightly repressed in the presence of glucose or glycerol and becomes derepressed upon depletion of these compounds by the growing cells. We further illustrate the utility of P350-controlled protein expression in shake flask and high-cell-density bioreactor cultivation strategies. The P350 hybrid promoter is a strong derepressible promoter for use in autoinduction of one-step fermentation processes for the production of heterologous proteins in K. lactisIMPORTANCE The yeast Kluyveromyces lactis is an important host for the expression of recombinant proteins at both laboratory and industrial scales. However, the system lacks a tightly regulated promoter that permits controlled expression of heterologous proteins. In this study, we report the engineering of a highly regulated strong hybrid promoter (termed P350) for use in K. lactis P350 is tightly repressed by glucose or glycerol in the medium but strongly promotes gene expression once the carbon source has been consumed by the cells. This feature permits heterologous protein expression to be "autoinduced" at any scale without the addition of a gratuitous inducer molecule or changing feed solutions.


Assuntos
Proteínas Fúngicas/genética , Expressão Gênica , Kluyveromyces/genética , Regiões Promotoras Genéticas , Proteínas Fúngicas/metabolismo , Kluyveromyces/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
FEMS Yeast Res ; 19(4)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31210264

RESUMO

Glucose is the preferred nutrient for most living cells and is also a signaling molecule that modulates several cellular processes. Glucose regulates the expression of glucose permease genes in yeasts through signaling pathways dependent on plasma membrane glucose sensors. In the yeast Kluyveromyces lactis, sufficient levels of glucose induction of the low-affinity glucose transporter RAG1 gene also depends on a functional glycolysis, suggesting additional intracellular signaling. We have found that the expression of RAG1 gene is also induced by hypoxia in the presence of glucose, indicating that glucose and oxygen signaling pathways are interconnected. In this study we investigated the molecular mechanisms underlying this crosstalk. By analyzing RAG1 expression in various K. lactis mutants, we found that the bHLH transcriptional activator Sck1 is required for the hypoxic induction of RAG1 gene. The RAG1 promoter region essential for its hypoxic induction was identified by promoter deletion experiments. Taken together, these results show that the RAG1 glucose permease gene is synergistically induced by hypoxia and glucose and highlighted a novel role for the transcriptional activator Sck1 as a key mediator in this mechanism.


Assuntos
Proteínas Fúngicas/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Glucose/metabolismo , Kluyveromyces/genética , Fatores de Transcrição/genética , Anaerobiose , Regulação Fúngica da Expressão Gênica , Glicólise , Kluyveromyces/metabolismo , Mutação , Transdução de Sinais
17.
FEMS Yeast Res ; 19(3)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30865773

RESUMO

Although there are similarities in the core steps of the secretion pathway from yeast to higher eukaryotes, significant functional differences exist even among diverse yeast species. Here, we used next-generation sequencing to identify two mutations in the Kluyveromyces lactis KlSEC59 gene, encoding dolichol kinase (DK), which are responsible for an enhanced secretion phenotype in a previously isolated mutant, MD2/1-9. Compared with the temperature-sensitive Saccharomyces cerevisiae sec59-1 mutant, which exhibits reduced N-glycosylation and decreased secretory efficacy, the identified K. lactis DK mutations had fewer effects on glycosylation, as well as on survival at high temperature and cell wall integrity. Moreover, despite some glycosylation defects, double DK mutations (G405S and I419S) in the K. lactis mutant strain demonstrated three times the level of recombinant α-amylase secretion as the wild-type strain. Overexpression of potential suppressors KlMNN10, KlSEL1, KlERG20, KlSRT1, KlRER2, KlCAX4, KlLPP1 and KlDPP1 in the DK-mutant strain restored carboxypeptidase Y glycosylation to different extents and, with the exception of KISRT1, reduced α-amylase secretion to levels observed in wild-type cells. Our results suggest that enhanced secretion related to reduced activity of mutant DK in K. lactis results from mild glycosylation changes that affect activity of other proteins in the secretory pathway.


Assuntos
Proteínas Fúngicas/genética , Kluyveromyces/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Recombinantes/biossíntese , Carboxipeptidases/metabolismo , Glicosilação , Sequenciamento de Nucleotídeos em Larga Escala , Kluyveromyces/enzimologia , Fenótipo , Via Secretória , alfa-Amilases/biossíntese
18.
Fish Shellfish Immunol ; 94: 389-397, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31520749

RESUMO

The aim of this study was to analyze the probiotic potential, fatty acid composition and immunostimulant activities of Kluyveromyces lactis M3 isolated from a hypersaline sediment. For this purpose, K. lactis M3 resistance to different pH, salinities and bile, as well as its antioxidant capability were assayed. Furthermore, total fatty acid composition of the yeast was determined where the dominant fatty acids were palmitic, palmitoleic, oleic and linoleic acids. K. lactis M3 showed no cytotoxic effects on peripheral blood leukocytes. During an in vivo experiment in gilthead seabream (Sparus aurata), dietary K. lactis M3 supplemented at 0.55 or 1.1% of the basal diet enhanced bactericidal activity against Vibrio parahaemolyticus N16, V. harveyi Lg 16/00, and V. anguillarum CECT 43442 compared to fish fed commercial diet (control group). Finally, nitric oxide production, peroxidase activity and skin mucus lectin union levels strongly increased in fish fed K. lactis M3 with respect to the control group. The results suggested that the yeast K. lactis M3 had exhibited high antioxidant capability, and its dietary administration at 0.55 or 1% basal diet had immunostimulant activity for gilthead seabream. For all these reasons, it should be considered an appropriate probiotic candidate for the aquaculture fish industry.


Assuntos
Imunidade Inata/imunologia , Kluyveromyces/química , Muco/imunologia , Perciformes/imunologia , Probióticos/farmacologia , Pele/imunologia , Ração Animal/análise , Animais , Antibacterianos/farmacologia , Antioxidantes/metabolismo , Sobrevivência Celular , Dieta/veterinária , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio , Kluyveromyces/fisiologia , Leucócitos/microbiologia , Leucócitos/fisiologia , Muco/efeitos dos fármacos , Muco/microbiologia , Distribuição Aleatória , Salinidade , Pele/efeitos dos fármacos , Pele/microbiologia
19.
Int J Mol Sci ; 20(19)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569356

RESUMO

Glucose phosphorylating enzymes are crucial in the regulation of basic cellular processes, including metabolism and gene expression. Glucokinases and hexokinases provide a pool of phosphorylated glucose in an adenosine diphosphate (ADP)- and ATP-dependent manner to shape the cell metabolism. The glucose processing enzymes from Kluyveromyces lactis are poorly characterized despite the emerging contribution of this yeast strain to industrial and laboratory scale biotechnology. The first reports on K. lactis glucokinase (KlGlk1) positioned the enzyme as an essential component required for glucose signaling. Nevertheless, no biochemical and structural information was available until now. Here, we present the first crystal structure of KlGlk1 together with biochemical characterization, including substrate specificity and enzyme kinetics. Additionally, comparative analysis of the presented structure and the prior structures of lactis hexokinase (KlHxk1) demonstrates the potential transitions between open and closed enzyme conformations upon ligand binding.


Assuntos
Glucoquinase/química , Kluyveromyces/enzimologia , Modelos Moleculares , Conformação Proteica , Glucoquinase/genética , Glucoquinase/metabolismo , Glucose/metabolismo , Cinética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Especificidade por Substrato
20.
Microb Cell Fact ; 17(1): 137, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176892

RESUMO

BACKGROUND: The recycling of agro-industrial wastes is at present limited by the availability of efficient and low-cost enzyme cocktails. The use of these materials as culture media to produce the enzymes can contribute to the profitability of the recycling process and to the circular economy. The aim of this work is the construction of a recombinant yeast strain efficient to grow in mixed whey (residue of cheese making) and beet molasses (residue of sugar manufacture) as culture medium, and to produce heterologous α-galactosidase, an enzyme with varied industrial applications and wide market. RESULTS: The gene MEL1, encoding the α-galactosidase of Saccharomyces cerevisiae, was integrated (four copies) in the LAC4 locus of the Kluyveromyces lactis industrial strain GG799. The constructed recombinant strain produces high levels of extracellular α-galactosidase under the control of the LAC4 promoter, inducible by lactose and galactose, and the native MEL1 secretion signal peptide. K. lactis produces natively beta-galactosidase and invertase thus metabolizing the sugars of whey and molasses. A culture medium based on whey and molasses was statistically optimized, and then the cultures scaled-up at laboratory level, thus obtaining 19 U/mL of heterologous α-galactosidase with a productivity of 0.158 U/L h, which is the highest value reported hitherto from a cheap waste-based medium. CONCLUSIONS: A K. lactis recombinant strain was constructed and a sustainable culture medium, based on a mixture of cheese whey and beet molasses, was optimized for high productivity of S. cerevisiae α-galactosidase, thus contributing to the circular economy by producing a heterologous enzyme from two agro-industrial wastes.


Assuntos
Queijo/análise , Resíduos Industriais/análise , Kluyveromyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Soro do Leite/química , alfa-Galactosidase/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA