Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(7)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38154956

RESUMO

The Kv4.2 potassium channel plays established roles in neuronal excitability, while also being implicated in plasticity. Current means to study the roles of Kv4.2 are limited, motivating us to design a genetically encoded membrane tethered Heteropodatoxin-2 (MetaPoda). We find that MetaPoda is an ultrapotent and selective gating-modifier of Kv4.2. We narrow its site of contact with the channel to two adjacent residues within the voltage sensitive domain (VSD) and, with docking simulations, suggest that the toxin binds the VSD from within the membrane. We also show that MetaPoda does not require an external linker of the channel for its activity. In neurons (obtained from female and male rat neonates), MetaPoda specifically, and potently, inhibits all Kv4 currents, leaving all other A-type currents unaffected. Inhibition of Kv4 in hippocampal neurons does not promote excessive excitability, as is expected from a simple potassium channel blocker. We do find that MetaPoda's prolonged expression (1 week) increases expression levels of the immediate early gene cFos and prevents potentiation. These findings argue for a major role of Kv4.2 in facilitating plasticity of hippocampal neurons. Lastly, we show that our engineering strategy is suitable for the swift engineering of another potent Kv4.2-selective membrane-tethered toxin, Phrixotoxin-1, denoted MetaPhix. Together, we provide two uniquely potent genetic tools to study Kv4.2 in neuronal excitability and plasticity.


Assuntos
Neurônios , Canais de Potássio Shal , Ratos , Masculino , Feminino , Animais , Neurônios/fisiologia , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/genética
2.
Am J Physiol Cell Physiol ; 327(4): C1023-C1034, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39159388

RESUMO

Melatonin is synthesized in and secreted from the pineal glands and regulates circadian rhythms. Although melatonin has been reported to modulate the activity of ion channels in several tissues, its effects on pineal ion channels remain unclear. In the present study, the effects of melatonin on voltage-gated K+ (KV) channels, which play a role in regulating the resting membrane potential, were examined in rat pinealocytes. The application of melatonin reduced pineal KV currents in a concentration-dependent manner (IC50 = 309 µM). An expression analysis revealed that KV4.2 channels were highly expressed in rat pineal glands. Melatonin-sensitive currents were abolished by the small interfering RNA knockdown of KV4.2 channels in rat pinealocytes. In human embryonic kidney 293 (HEK293) cells expressing KV4.2 channels, melatonin decreased outward currents (IC50 = 479 µM). Inhibitory effects were mediated by a shift in the voltage dependence of steady-state inactivation in a hyperpolarizing direction. This inhibition was observed even in the presence of 100 nM luzindole, an antagonist of melatonin receptors. Melatonin also blocked the activity of KV4.3, KV1.1, and KV1.5 channels in reconstituted HEK293 cells. The application of 1 mM melatonin caused membrane depolarization in rat pinealocytes. Furthermore, KV4.2 channel inhibition by 5 mM 4-aminopyridine attenuated melatonin secretion induced by 1 µM noradrenaline in rat pineal glands. These results strongly suggest that melatonin directly inhibited KV4.2 channels and caused membrane depolarization in pinealocytes, resulting in a decrease in melatonin secretion through parasympathetic signaling pathway. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands. NEW & NOTEWORTHY Melatonin is a hormone that is synthesized in and secreted from the pineal glands, which regulates circadian rhythms. However, the effects of melatonin on pineal ion channels remain unclear. The present study demonstrated that melatonin directly inhibited voltage-gated potassium KV4.2 channels, which are highly expressed in rat pinealocytes, and induced membrane depolarization, resulting in a decrease in melatonin secretion. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands.


Assuntos
Melatonina , Glândula Pineal , Canais de Potássio Shal , Animais , Glândula Pineal/metabolismo , Glândula Pineal/efeitos dos fármacos , Melatonina/farmacologia , Humanos , Células HEK293 , Ratos , Masculino , Canais de Potássio Shal/metabolismo , Canais de Potássio Shal/genética , Ratos Sprague-Dawley , Potenciais da Membrana/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 117(14): 8143-8153, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32209671

RESUMO

Although major depressive disorder (MDD) is highly prevalent, its pathophysiology is poorly understood. Recent evidence suggests that glycogen-synthase kinase 3ß (GSK3ß) plays a key role in memory formation, yet its role in mood regulation remains controversial. Here, we investigated whether GSK3ß activity in the nucleus accumbens (NAc) is associated with depression-like behaviors and synaptic plasticity. We performed whole-cell patch-clamp recordings of medium spiny neurons (MSNs) in the NAc and determined the role of GSK3ß in spike timing-dependent long-term potentiation (tLTP) in the chronic unpredictable mild stress (CUMS) mouse model of depression. To assess the specific role of GSK3ß in tLTP, we used in vivo genetic silencing by an adeno-associated viral vector (AAV2) short hairpin RNA against GSK3ß. In addition, we examined the role of the voltage-gated potassium Kv4.2 subunit, a molecular determinant of A-type K+ currents, as a potential downstream target of GSK3ß. We found increased levels of active GSK3ß and augmented tLTP in CUMS mice, a phenotype that was prevented by selective GSK3ß knockdown. Furthermore, knockdown of GSK3ß in the NAc ameliorated depressive-like behavior in CUMS mice. Electrophysiological, immunohistochemical, biochemical, and pharmacological experiments revealed that inhibition of the Kv4.2 channel through direct phosphorylation at Ser-616 mediated the GSK3ß-dependent tLTP changes in CUMS mice. Our results identify GSK3ß regulation of Kv4.2 channels as a molecular mechanism of MSN maladaptive plasticity underlying depression-like behaviors and suggest that the GSK3ß-Kv4.2 axis may be an attractive therapeutic target for MDD.


Assuntos
Transtorno Depressivo Maior/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Plasticidade Neuronal , Núcleo Accumbens/patologia , Canais de Potássio Shal/metabolismo , Potenciais de Ação , Animais , Comportamento Animal , Transtorno Depressivo Maior/etiologia , Transtorno Depressivo Maior/psicologia , Modelos Animais de Doenças , Masculino , Camundongos , Neurônios/patologia , Núcleo Accumbens/citologia , Técnicas de Patch-Clamp , Estresse Psicológico/complicações , Estresse Psicológico/psicologia , Fatores de Tempo
4.
Am J Physiol Cell Physiol ; 323(1): C190-C201, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35508186

RESUMO

Sympathetic regulation of the Kv4.2 transient outward potassium current (Ito) is critical for the acute electrical and contractile response of the myocardium under physiological and pathological conditions. Previous studies have suggested that KChIP2, the key auxiliary subunit of Kv4 channels, is required for the sympathetic regulation of Kv4.2 current densities. Of interest, Kv4.2 and KChIP2, and key components mediating acute sympathetic signaling transduction are present in lipid rafts, which are profoundly involved in regulation of Ito densities in rat ventricular myocytes. However, little is known about the mechanisms of Kv4.2-raft association and its connection with acute sympathetic regulation. With the aid of high-resolution fluorescent microscope, we demonstrated that KChIP2 assisted Kv4.2 localization in lipid rafts in HEK293 cells. Moreover, PKA-mediated Kv4.2 phosphorylation, the downstream signaling event of acute sympathetic stimulation, induced dissociation between Kv4.2 and KChIP2, resulting in Kv4.2 shifting out of lipid rafts in KChIP2-expressed HEK293. The mutation that mimics Kv4.2 phosphorylation by PKA (K4.2-S552D) similarly disrupted Kv4.2 interaction with KChIP2 and also decreased the surface stability of Kv4.2. The attenuated Kv4.2-KChIP2 interaction was also observed in native neonatal rat ventricular myocytes (NRVMs) upon acute adrenergic stimulation with phenylephrine (PE). Furthermore, PE stimulation decreased Kv4.2 location at lipid rafts and induced internalization of Kv4.2 as well as the effect of lipid rafts disruption. In conclusion, KChIP2 contributes to targeting Kv4.2 to lipid rafts. Acute adrenergic stimulation induces Kv4.2-KChIP2 dissociation, leading to Kv4.2 out of lipid rafts and internalization, reinforcing the critical role of Kv4.2-lipid raft association in the essential physiological response of Ito to acute sympathetic regulation.


Assuntos
Proteínas Interatuantes com Canais de Kv , Canais de Potássio Shal , Adrenérgicos , Animais , Células HEK293 , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Microdomínios da Membrana/metabolismo , Fosforilação , Ratos , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo
5.
J Physiol ; 600(9): 2225-2243, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35343587

RESUMO

Histaminergic neurons are exclusively located in the hypothalamic tuberomammillary nucleus, from where they project to many brain areas including the nucleus accumbens (NAc), a brain area that integrates diverse monoaminergic inputs to coordinate motivated behaviours. While the NAc expresses various histamine receptor subtypes, the mechanisms by which histamine modulates NAc activity are still poorly understood. Using whole-cell patch-clamp recordings, we found that pharmacological activation of histamine 2 (H2) receptors elevates the excitability of NAc medium spiny neurons (MSNs), while activation of H1 receptors failed to significantly affect MSN excitability. The evoked firing of MSNs increased after seconds of local H2 agonist administration and remained elevated for minutes. H2 receptor (H2R) activation accelerated subthreshold depolarization in response to current injection, reduced the latency to fire, diminished action potential afterhyperpolarization and increased the action potential half-width. The increased excitability was protein kinase A-dependent and associated with decreased A-type K+ currents. In addition, selective pharmacological inhibition of the Kv4.2 channel, the main molecular determinant of A-type K+ currents in MSNs, mimicked and occluded the increased excitability induced by H2R activation. Our results indicate that histaminergic transmission in the NAc increases MSN intrinsic excitability through H2R-dependent modulation of Kv4.2 channels. Activation of H2R will significantly alter spike firing in MSNs in vivo, and this effect could be an important mechanism by which these receptors mediate certain aspects of goal-induced behaviours. KEY POINTS: Histamine is synthesized and released by hypothalamic neurons of the tuberomammillary nucleus and serves as a general modulator for whole-brain activity including the nucleus accumbens. Histamine receptors type 2 (HR2), which are expressed in the nucleus accumbens, couple to Gαs/off proteins which elevate cyclic adenosine monophosphate levels and activate protein kinase A. Whole-cell patch-clamp recordings revealed that H2R activation increased the evoked firing in medium spiny neurons of the nucleus accumbens via protein kinase A-dependent mechanisms. HR2 activation accelerated subthreshold depolarization in response to current injection, reduced the latency to fire, diminished action potential medium after-hyperpolarization and increased the action potential half-width. HR2 activation also reduced A-type potassium current. Selective pharmacological inhibition of the Kv4.2 channel mimicked and occluded the increased excitability induced by H2R activation.


Assuntos
Histamina , Núcleo Accumbens , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Histamina/farmacologia , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Receptores Histamínicos H2
6.
Neurobiol Dis ; 175: 105932, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36427690

RESUMO

Histamine, a monoamine implicated in stress-related arousal states, is synthesized in neurons exclusively located in the hypothalamic tuberomammillary nucleus (TMN) from where they diffusely innervate striatal and mesolimbic networks including the nucleus accumbens (NAc), a vital node in the limbic loop. Since histamine-containing TMN neuron output increases during stress, we hypothesized that exposure of mice to acute restrain stress (ARS) recruits endogenous histamine type 2 receptor (H2R) signaling in the NAc, whose activation increases medium spiny neurons (MSNs) intrinsic excitability via downregulation of A-type K+ currents. We employed an ARS paradigm in which mice were restrained for 120 min, followed by a 20-min recovery period, after which brain slices were prepared for ex vivo electrophysiology. Using whole-cell patch-clamp recordings, we found that pharmacological activation of H2R failed to affect MSN excitability and A-type K+ currents in mice that underwent ARS. Interestingly, in mice treated with H2R-antagonist prior to ARS paradigm, H2R activation increased evoked firing and decreased A-type K+ currents similarly to what observed in control mice. Furthermore, H2R-antagonist treatment ameliorated anxiety-like behavior in ARS mice. Together, our findings indicate that ARS paradigm recruits endogenous H2R signaling in MSNs and suggest the involvement of H2R signaling in stress-related motivational states.


Assuntos
Histamina , Núcleo Accumbens , Camundongos , Animais , Potenciais de Ação/fisiologia , Neurônios Espinhosos Médios , Técnicas de Patch-Clamp
7.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012450

RESUMO

The concerted action of voltage-gated ion channels in the brain is fundamental in controlling neuronal physiology and circuit function. Ion channels often associate in multi-protein complexes together with auxiliary subunits, which can strongly influence channel expression and function and, therefore, neuronal computation. One such auxiliary subunit that displays prominent expression in multiple brain regions is the Dipeptidyl aminopeptidase-like protein 6 (DPP6). This protein associates with A-type K+ channels to control their cellular distribution and gating properties. Intriguingly, DPP6 has been found to be multifunctional with an additional, independent role in synapse formation and maintenance. Here, we feature the role of DPP6 in regulating neuronal function in the context of its modulation of A-type K+ channels as well as its independent involvement in synaptic development. The prevalence of DPP6 in these processes underscores its importance in brain function, and recent work has identified that its dysfunction is associated with host of neurological disorders. We provide a brief overview of these and discuss research directions currently underway to advance our understanding of the contribution of DPP6 to their etiology.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases , Canais de Potássio Shal , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Potássio Shal/metabolismo
8.
Eur J Neurosci ; 54(4): 5272-5292, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34251729

RESUMO

Long-term potentiation (LTP) is a highly studied cellular process, yet determining the transduction and gamma aminobutyric acid (GABAergic) pathways that are the essential versus modulatory for LTP elicited by theta burst stimulation (TBS) in the hippocampal Cornu Ammonis 1 (CA1) area is still elusive, due to the use of different TBS intensities, patterns or different rodent/cellular models. We now characterised the developmental maturation and the transduction and GABAergic pathways required for mild TBS-induced LTP in hippocampal CA1 area in male rats. LTP induced by TBS (5x4) (five bursts of four pulses delivered at 100 Hz) lasted for up to 3 h and was increasingly larger from weaning to adulthood. Stronger TBS patterns - TBS (15x4) or three TBS (15x4) separated by 6 min induced nearly maximal LTP not being the best choice to study the value of LTP-enhancing drugs. LTP induced by TBS (5x4) in young adults was fully dependent on N-methyl D-aspartate (NMDA) receptor and calmodulin-dependent protein kinase II (CaMKII) activity but independent of protein kinase A (PKA) or protein kinase C (PKC) activity. Furthermore, it was partially dependent on GABAB receptor activation and was potentiated by GABAA receptor blockade and less by GAT-1 transporter blockade. AMPA GluA1 phosphorylation on Ser831 (CaMKII target) but not GluA1 Ser845 (PKA target) was essential for LTP expression. The phosphorylation of the Kv4.2 channel was observed at Ser438 (CaMKII target) but not at Thr602 or Thr607 (ERK/MAPK pathway target). This suggests that cellular kinases like PKA, PKC, or kinases of the ERK/MAPK family although important modulators of TBS (5x4)-induced LTP may not be essential for its expression in the CA1 area of the hippocampus.


Assuntos
Região CA1 Hipocampal , Potenciação de Longa Duração , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Hipocampo , Masculino , Ratos , Desmame
9.
J Biol Chem ; 294(35): 13145-13157, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311860

RESUMO

Stress profoundly affects physiological properties of neurons across brain circuits and thereby increases the risk for depression. However, the molecular and cellular mechanisms mediating these effects are poorly understood. In this study, we report that chronic physical restraint stress in mice decreases excitability specifically in layer 2/3 of pyramidal neurons within the prelimbic subarea of the prefrontal cortex (PFC) accompanied by the induction of depressive-like behavioral states. We found that a complex between G protein-coupled receptor (GPCR) 158 (GPR158) and regulator of G protein signaling 7 (RGS7), a regulatory GPCR signaling node recently discovered to be a key modulator of affective behaviors, plays a key role in controlling stress-induced changes in excitability in this neuronal population. Deletion of GPR158 or RGS7 enhanced excitability of layer 2/3 PFC neurons and prevented the impact of stress. Investigation of the underlying molecular mechanisms revealed that the A-type potassium channel Kv4.2 subunit is a molecular target of the GPR158-RGS7 complex. We further report that GPR158 physically associates with Kv4.2 channel and promotes its function by suppressing inhibitory modulation by cAMP-protein kinase A (PKA)-mediated phosphorylation. Taken together, our observations reveal a critical mechanism that adjusts neuronal excitability in L2/3 pyramidal neurons of the PFC and may thereby modulate the effects of stress on depression.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas RGS/deficiência , Receptores Acoplados a Proteínas G/deficiência
10.
Cell Physiol Biochem ; 54(1): 27-39, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31935048

RESUMO

BACKGROUND/AIMS: To test whether the physiological regulation of the cardiac Kv4 channels by the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is restricted to lipid rafts and whether the interactions observed in rat cardiomyocytes also occur in the human ventricle. METHODS: Ventricular myocytes were freshly isolated from Sprague-Dawley rats. Ito was recorded by the whole-cell Patch-Clamp technique. Membrane rafts were isolated by centrifugation in a discontinuous sucrose density gradient. The presence of the proteins of interest was analysed by western blot. Immunogold staining and electron microscopy of heart vibrosections was performed to localize Kv4.2/Kv4.3 and CaMKII proteins. Protein-protein interactions were determined by co-immunoprecipitation experiments in rat and human ventricular mycoytes. RESULTS: Patch-Clamp recordings in control conditions and after lipid raft or caveolae disruption show that the CaMKII-Kv4 channel complex must associate in non-caveolar lipid rafts to be functional. Separation in density gradients, co-immunoprecipitation and electron microscopy show that there are two Kv4 channel populations: one located in caveolae, that is CaMKII independent, and another one located in planar membrane rafts, which is bound to CaMKII. CONCLUSION: CaMKII regulates only the Kv4 channel population located in non-caveolar lipid rafts. Thus, the regulation of cardiac Kv4 channels in rat and human ventricle depends on their subcellular localization.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Microdomínios da Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio Shal/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/análise , Cavéolas/metabolismo , Células Cultivadas , Humanos , Transporte de Íons , Potássio/metabolismo , Mapas de Interação de Proteínas , Ratos Sprague-Dawley , Canais de Potássio Shal/análise
11.
Cereb Cortex ; 29(5): 1851-1865, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790931

RESUMO

Spike timing-dependent plasticity (STDP) is a form of activity-dependent remodeling of synaptic strength that underlies memory formation. Despite its key role in dictating learning rules in the brain circuits, the molecular mechanisms mediating STDP are still poorly understood. Here, we show that spike timing-dependent long-term depression (tLTD) and A-type K+ currents are modulated by pharmacological agents affecting the levels of active glycogen-synthase kinase 3 (GSK3) and by GSK3ß knockdown in layer 2/3 of the mouse somatosensory cortex. Moreover, the blockade of A-type K+ currents mimics the effects of GSK3 up-regulation on tLTD and occludes further changes in synaptic strength. Pharmacological, immunohistochemical and biochemical experiments revealed that GSK3ß influence over tLTD induction is mediated by direct phosphorylation at Ser-616 of the Kv4.2 subunit, a molecular determinant of A-type K+ currents. Collectively, these results identify the functional interaction between GSK3ß and Kv4.2 channel as a novel mechanism for tLTD modulation providing exciting insight into the understanding of GSK3ß role in synaptic plasticity.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/fisiologia , Canais de Potássio Shal/metabolismo , Córtex Somatossensorial/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fosforilação , Córtex Somatossensorial/metabolismo
12.
Mol Cell Neurosci ; 94: 32-40, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408526

RESUMO

The medial habenula (MHb) receives septal inputs and sends efferents to the interpeduncular nucleus and is implicated in stress, depression, memory, and nicotine withdrawal syndrome. We previously showed by immunofluorescence microscopy that the cell adhesion molecule nectin-2α is expressed in the cholinergic neurons in the developing and adult mouse MHbs and localized at the boundary between the adjacent somata of clustered cholinergic neurons where the voltage-gated A-type K+ channel Kv4.2 is localized. We further showed by immunoelectron microscopy that Kv4.2 is localized at the membrane specializations (MSs) whereas nectin-2α is localized mostly outside of these MSs. In addition, we showed that genetic ablation of nectin-2 delays the localization of Kv4.2 at the MSs in the developing MHb. We investigated here how nectin-2α regulates this localization of Kv4.2 at the MSs. In vitro biochemical analysis revealed that nectin-2α interacted with the auxiliary protein of Kv4.2 dipeptidyl aminopeptidase-like protein 6 (DPP6), but not with Kv4.2 or another auxiliary protein Kv channel-interacting protein 1 (KChIP1). Immunofluorescence microscopy analysis showed that DPP6 was colocalized with nectin-2α at the boundary between the adjacent somata of the clustered cholinergic neurons in the developing and adult MHbs. Immunoelectron microscopy analysis on this boundary revealed that DPP6 was localized both at the inside and the outside of the MSs. Genetic ablation of nectin-2 did not affect the localization of DPP6 at the boundary between the adjacent somata of the clustered cholinergic neurons in the developing and adult MHbs. These results indicate that nectin-2α interacts with DPP6 but regulates the localization of Kv4.2 at the MSs in a DPP6-independent manner.


Assuntos
Neurônios Colinérgicos/metabolismo , Habenula/metabolismo , Nectinas/metabolismo , Canais de Potássio Shal/metabolismo , Aminopeptidases/metabolismo , Animais , Membrana Celular/fisiologia , Proteínas Interatuantes com Canais de Kv/metabolismo , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL
13.
Mol Cell Neurosci ; 98: 121-130, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31212013

RESUMO

Kv4.2 voltage-gated K+ channel subunits, the primary source of the somatodendritic A-type K+ current in CA1 pyramidal neurons of the hippocampus, play important roles in regulating dendritic excitability and plasticity. To better study the trafficking and subcellular distribution of Kv4.2, we created and characterized a novel Kv4.2 construct encoding a bungarotoxin binding site in the extracellular S3-S4 linker region of the α-subunit. When expressed, this construct can be visualized in living cells after staining with rhodamine-conjugated bungarotoxin. We validated the utility of this construct by visualizing the spontaneous internalization and insertion of Kv4.2 in HEK 293T cells. We further report that Kv4.2 colocalized with several endosome markers in HEK 293T cells. In addition, Kv4.2 internalization is significantly impaired by mitogen-activated protein kinase (MAPK) inhibitors in transfected primary hippocampal neurons. Therefore, this newly developed BBS-Kv4.2 construct provides a novel and powerful tool for studying surface Kv4.2 channel localization and trafficking.


Assuntos
Bungarotoxinas/farmacologia , Canais de Potássio Shal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Células HEK293 , Hipocampo/citologia , Humanos , Proteínas Interatuantes com Canais de Kv/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Ratos , Canais de Potássio Shal/química , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
14.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824677

RESUMO

The subthreshold, transient A-type K+ current is a vital regulator of the excitability of neurons throughout the brain. In mammalian hippocampal pyramidal neurons, this current is carried primarily by ion channels comprising Kv4.2 α-subunits. These channels occupy the somatodendritic domains of these principle excitatory neurons and thus regulate membrane voltage relevant to the input-output efficacy of these cells. Owing to their robust control of membrane excitability and ubiquitous expression in the hippocampus, their dysfunction can alter network stability in a manner that manifests in recurrent seizures. Indeed, growing evidence implicates these channels in intractable epilepsies of the temporal lobe, which underscores the importance of determining the molecular mechanisms underlying their regulation and contribution to pathologies. Here, we describe the role of p38 kinase phosphorylation of a C-terminal motif in Kv4.2 in modulating hippocampal neuronal excitability and behavioral seizure strength. Using a combination of biochemical, single-cell electrophysiology, and in vivo seizure techniques, we show that kainic acid-induced seizure induces p38-mediated phosphorylation of Thr607 in Kv4.2 in a time-dependent manner. The pharmacological and genetic disruption of this process reduces neuronal excitability and dampens seizure intensity, illuminating a cellular cascade that may be targeted for therapeutic intervention to mitigate seizure intensity and progression.


Assuntos
Convulsões/metabolismo , Canais de Potássio Shal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Potenciais de Ação , Motivos de Aminoácidos , Animais , Ondas Encefálicas , Feminino , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Fosforilação , Convulsões/etiologia , Convulsões/fisiopatologia , Canais de Potássio Shal/química
15.
Neurobiol Dis ; 130: 104508, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31212067

RESUMO

Epilepsy is often associated with altered expression or function of ion channels. One example of such a channelopathy is the reduction of A-type potassium currents in the hippocampal CA1 region. The underlying mechanisms of reduced A-type channel function in epilepsy are unclear. Here, we show that inhibiting a single microRNA, miR-324-5p, which targets the pore-forming A-type potassium channel subunit Kv4.2, selectively increased A-type potassium currents in hippocampal CA1 pyramidal neurons in mice. Resting membrane potential, input resistance and other potassium currents were not altered. In a mouse model of acquired chronic epilepsy, inhibition of miR-324-5p reduced the frequency of spontaneous seizures and interictal epileptiform spikes supporting the physiological relevance of miR-324-5p-mediated control of A-type currents in regulating neuronal excitability. Mechanistic analyses demonstrated that microRNA-induced silencing of Kv4.2 mRNA is increased in epileptic mice leading to reduced Kv4.2 protein levels, which is mitigated by miR-324-5p inhibition. By contrast, other targets of miR-324-5p were unchanged. These results suggest a selective miR-324-5p-dependent mechanism in epilepsy regulating potassium channel function, hyperexcitability and seizures.


Assuntos
Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , MicroRNAs/metabolismo , Convulsões/fisiopatologia , Canais de Potássio Shal/metabolismo , Regulação para Cima , Animais , Modelos Animais de Doenças , Epilepsia/metabolismo , Hipocampo/metabolismo , Camundongos , MicroRNAs/genética , Convulsões/metabolismo , Canais de Potássio Shal/genética
16.
Biosci Biotechnol Biochem ; 83(2): 202-211, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30392457

RESUMO

Oxytocin is produced by neurons in the paraventricular nucleus (PVN) and the supraoptic nucleus in the hypothalamus. Various ion channels are considered to regulate the excitability of oxytocin neurons and its secretion. A-type currents of voltage-gated potassium channels (Kv channels), generated by Kv4.2/4.3 channels, are known to be involved in the regulation of neuron excitability. However, it is unclear whether the Kv4.2/4.3 channels participate in the regulation of excitability in PVN oxytocin neurons. Here, we investigated the contribution of the Kv4.2/4.3 channels to PVN oxytocin neuron excitability. By using transgenic rat brain slices with the oxytocin-monomeric red fluorescent protein 1 fusion transgene, we examined the excitability of oxytocin neurons by electrophysiological technique. In some oxytocin neurons, the application of Kv4.2/4.3 channel blocker increased firing frequency and membrane potential with extended action potential half-width. Our present study indicates the contribution of Kv4.2/4.3 channels to PVN oxytocin neuron excitability regulation. Abbreviation: PVN, paraventricular nucleus; Oxt-mRFP1, Oxt-monometric red fluorescent protein 1; PaTx-1, Phrixotoxin-1; TEA, Tetraethylammonium Chloride; TTX, tetrodotoxin; aCSF, artificial cerebrospinal fluid;PBS, phosphate buffered saline 3v, third ventricle.


Assuntos
Ativação do Canal Iônico , Neurônios/fisiologia , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Canais de Potássio Shal/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Feminino , Imuno-Histoquímica , Proteínas Luminescentes/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos Transgênicos , Ratos Wistar , Canais de Potássio Shal/antagonistas & inibidores , Venenos de Aranha/farmacologia , Proteína Vermelha Fluorescente
17.
Int J Mol Sci ; 19(7)2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996472

RESUMO

Extracellular signal-regulated kinase 5 (ERK5) regulates diverse physiological responses such as proliferation, differentiation, and gene expression. Previously, we demonstrated that ERK5 is essential for neurite outgrowth and catecholamine biosynthesis in PC12 cells and sympathetic neurons. However, it remains unclear how ERK5 regulates the activity of ion channels, which are important for membrane excitability. Thus, we examined the effect of ERK5 on the ion channel activity in the PC12 cells that overexpress both ERK5 and the constitutively active MEK5 mutant. The gene and protein expression levels of voltage-dependent Ca2+ and K⁺ channels were determined by RT-qPCR or Western blotting. The A-type K⁺ current was recorded using the whole-cell patch clamp method. In these ERK5-activated cells, the gene expression levels of voltage-dependent L- and P/Q-type Ca2+ channels did not alter, but the N-type Ca2+ channel was slightly reduced. In contrast, those of Kv4.2 and Kv4.3, which are components of the A-type current, were significantly enhanced. Unexpectedly, the protein levels of Kv4.2 were not elevated by ERK5 activation, but the phosphorylation levels were increased by ERK5 activation. By electrophysiological analysis, the inactivation time constant of the A-type current was prolonged by ERK5 activation, without changes in the peak current. Taken together, ERK5 inhibits an inactivation of the A-type current by phosphorylation of Kv4.2, which may contribute to the neuronal differentiation process.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Animais , Catecolaminas/biossíntese , Diferenciação Celular , Regulação da Expressão Gênica , Potenciais da Membrana , Neurônios/citologia , Neurônios/metabolismo , Células PC12 , Técnicas de Patch-Clamp , Fosforilação , Ratos , Transdução de Sinais
18.
FASEB J ; 30(8): 2959-69, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27162025

RESUMO

The 5 human (h)KCNE ß subunits each regulate various cation channels and are linked to inherited cardiac arrhythmias. Reported here are previously undiscovered protein-coding regions in exon 1 of hKCNE3 and hKCNE4 that extend their encoded extracellular domains by 44 and 51 residues, which yields full-length proteins of 147 and 221 residues, respectively. Full-length hKCNE3 and hKCNE4 transcript and protein are expressed in multiple human tissues; for hKCNE4, only the longer protein isoform is detectable. Two-electrode voltage-clamp electrophysiology revealed that, when coexpressed in Xenopus laevis oocytes with various potassium channels, the newly discovered segment preserved conversion of KCNQ1 by hKCNE3 to a constitutively open channel, but prevented its inhibition of Kv4.2 and KCNQ4. hKCNE4 slowing of Kv4.2 inactivation and positive-shifted steady-state inactivation were also preserved in the longer form. In contrast, full-length hKCNE4 inhibition of KCNQ1 was limited to 40% at +40 mV vs. 80% inhibition by the shorter form, and augmentation of KCNQ4 activity by hKCNE4 was entirely abolished by the additional segment. Among the genome databases analyzed, the longer KCNE3 is confined to primates; full-length KCNE4 is widespread in vertebrates but is notably absent from Mus musculus Findings highlight unexpected KCNE gene diversity, raise the possibility of dynamic regulation of KCNE partner modulation via splice variation, and suggest that the longer hKCNE3 and hKCNE4 proteins should be adopted in future mechanistic and genetic screening studies.-Abbott, G. W. Novel exon 1 protein-coding regions N-terminally extend human KCNE3 and KCNE4.


Assuntos
Regulação da Expressão Gênica/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Conformação Proteica , Xenopus laevis
19.
J Neurosci ; 35(15): 6221-30, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878292

RESUMO

Neuronal hyperexcitability occurs early in the pathogenesis of Alzheimer's disease (AD) and contributes to network dysfunction in AD patients. In other disorders with neuronal hyperexcitability, dysfunction in the dendrites often contributes, but dendritic excitability has not been directly examined in AD models. We used dendritic patch-clamp recordings to measure dendritic excitability in the CA1 region of the hippocampus. We found that dendrites, more so than somata, of hippocampal neurons were hyperexcitable in mice overexpressing Aß. This dendritic hyperexcitability was associated with depletion of Kv4.2, a dendritic potassium channel important for regulating dendritic excitability and synaptic plasticity. The antiepileptic drug, levetiracetam, blocked Kv4.2 depletion. Tau was required, as crossing with tau knock-out mice also prevented both Kv4.2 depletion and dendritic hyperexcitability. Dendritic hyperexcitability induced by Kv4.2 deficiency exacerbated behavioral deficits and increased epileptiform activity in hAPP mice. We conclude that increased dendritic excitability, associated with changes in dendritic ion channels including Kv4.2, may contribute to neuronal dysfunction in early stages AD.


Assuntos
Doença de Alzheimer/patologia , Região CA1 Hipocampal/patologia , Dendritos/fisiologia , Neurônios/patologia , Canais de Potássio Shal/deficiência , Proteínas tau/deficiência , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/genética , Região CA1 Hipocampal/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Técnicas In Vitro , Levetiracetam , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neurônios/efeitos dos fármacos , Nootrópicos/farmacologia , Piracetam/análogos & derivados , Piracetam/farmacologia , Canais de Potássio Shal/genética , Proteínas tau/genética
20.
J Neurosci ; 35(38): 13206-18, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400949

RESUMO

Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29-32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K(+) channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K(+) channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. Significance statement: Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with faster action potential repolarization through enhanced expression of Kv4.2/Kv4.3 A-type K(+) channels, particularly within the cell bodies of CA3 pyramidal neurons.


Assuntos
Envelhecimento/fisiologia , Região CA3 Hipocampal/citologia , Potenciais da Membrana/fisiologia , Células Piramidais/fisiologia , Canais de Potássio Shal/metabolismo , Análise de Variância , Animais , Biofísica , Relação Dose-Resposta a Droga , Estimulação Elétrica , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA