Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2308994121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190536

RESUMO

The relationship between initial Homo sapiens dispersal from Africa to East Asia and the orbitally paced evolution of the Asian summer monsoon (ASM)-currently the largest monsoon system-remains underexplored due to lack of coordinated synthesis of both Asian paleoanthropological and paleoclimatic data. Here, we investigate orbital-scale ASM dynamics during the last 280 thousand years (kyr) and their likely influences on early H. sapiens dispersal to East Asia, through a unique integration of i) new centennial-resolution ASM records from the Chinese Loess Plateau, ii) model-based East Asian hydroclimatic reconstructions, iii) paleoanthropological data compilations, and iv) global H. sapiens habitat suitability simulations. Our combined proxy- and model-based reconstructions suggest that ASM precipitation responded to a combination of Northern Hemisphere ice volume, greenhouse gas, and regional summer insolation forcing, with cooccurring primary orbital cycles of ~100-kyr, 41-kyr, and ~20-kyr. Between ~125 and 70 kyr ago, summer monsoon rains and temperatures increased in vast areas across Asia. This episode coincides with the earliest H. sapiens fossil occurrence at multiple localities in East Asia. Following the transcontinental increase in simulated habitat suitability, we suggest that ASM strengthening together with Southeast African climate deterioration may have promoted the initial H. sapiens dispersal from their African homeland to remote East Asia during the last interglacial.


Assuntos
Povo Asiático , Migração Humana , Tempo (Meteorologia) , Humanos , África , Ásia , Ásia Oriental
2.
Proc Natl Acad Sci U S A ; 121(15): e2322127121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568978

RESUMO

Soil moisture (SM) is essential for sustaining services from Earth's critical zone, a thin-living skin spanning from the canopy to groundwater. In the Anthropocene epoch, intensive afforestation has remarkably contributed to global greening and certain service improvements, often at the cost of reduced SM. However, attributing the response of SM in deep soil to such human activities is a great challenge because of the scarcity of long-term observations. Here, we present a 37 y (1985 to 2021) analysis of SM dynamics at two scales across China's monsoon loess critical zone. Site-scale data indicate that land-use conversion from arable cropland to forest/grassland caused an 18% increase in SM deficit over 0 to 18 m depth (P < 0.01). Importantly, this SM deficit intensified over time, despite limited climate change influence. Across the Loess Plateau, SM storage in 0 to 10 m layer exhibited a significant decreasing trend from 1985 to 2021, with a turning point in 1999 when starting afforestation. Compared with SM storage before 1999, the relative contributions of climate change and afforestation to SM decline after 1999 were -8% and 108%, respectively. This emphasizes the pronounced impacts of intensifying land-use conversions as the principal catalyst of SM decline. Such a decline shifts 18% of total area into an at-risk status, mainly in the semiarid region, thereby threatening SM security. To mitigate this risk, future land management policies should acknowledge the crucial role of intensifying land-use conversions and their interplay with climate change. This is imperative to ensure SM security and sustain critical zone services.

3.
Proc Natl Acad Sci U S A ; 120(5): e2214655120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689658

RESUMO

In parallel with pronounced cooling in the oceans, vast areas of the continents experienced enhanced aridification and restructuring of vegetation and animal communities during the Late Miocene. Debate continues over whether pCO2-induced global cooling was the primary driver of this climate and ecosystem upheaval on land. Here we present an 8 to 5 Ma land surface temperatures (LST) record from East Asia derived from paleosol carbonate clumped isotopes and integrated with climate model simulations. The LST cooled by ~7 °C between 7.5 and 5.7 Ma, followed by rapid warming across the Miocene-Pliocene transition (5.5 to 5 Ma). These changes occurred synchronously with variations in alkenone and Mg/Ca-based sea surface temperatures and with hydroclimate and ecosystem shifts in East Asia, highlighting a global climate forcing mechanism. Our modeling experiments additionally demonstrate that pCO2-forced cooling would have altered moisture transfer and pathways and driven extensive aridification in East Asia. We, thus, conclude that the East Asian hydroclimate and ecosystem shift was primarily controlled by pCO2-forced global cooling between 8 and 5 Ma.


Assuntos
Dióxido de Carbono , Ecossistema , Animais , Clima , Ásia Oriental , Temperatura
4.
Proc Natl Acad Sci U S A ; 120(17): e2211495120, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068228

RESUMO

Whether there are links between geomagnetic field and Earth's orbital parameters remains unclear. Synchronous reconstructions of parallel long-term quantitative geomagnetic field and climate change records are rare. Here, we present 10Be-derived changes of both geomagnetic field and Asian monsoon (AM) rainfall over the last 870 kyr from the Xifeng loess-paleosol sequence on the central Chinese Loess Plateau. The 10BeGM flux (a proxy for geomagnetic field-induced 10Be production rate) reveals 13 consecutive geomagnetic excursions in the Brunhes chron, which are synchronized with the global records, providing key time markers for Chinese loess-paleosol sequences. The 10Be-derived rainfall exhibits distinct ~100 kyr glacial-interglacial cycles, and superimposed precessional (~23 kyr) cycles that match with those in Chinese speleothem δ18O record. We find that changes in the geomagnetic field and AM rainfall share a common ~100 kyr cyclicity, implying a likely eccentricity modulation of both the geomagnetic field and climate.

5.
Cereb Cortex ; 33(15): 9263-9279, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37310176

RESUMO

We studied the effect of multimodal traumatic brain injuries on daily sleep/activity patterns and related histology. Gyrencephalic ferrets wore actigraphs and received military-relevant brain injuries including shockwaves, strong rotational impact, and variable stress, which were evaluated up to 6 months post injury. Sham and Baseline animals exhibited activity patterns occurring in distinct clusters of high activity, interspersed with periods of low activity. In the Injury and Injury + Stress groups, activity clusters diminished and overall activity patterns became significantly more dispersed at 4 weeks post injury with significant sleep fragmentation. Additionally, the Injury + Stress group exhibited a significant decrease in daytime high activity up to 4 months post injury. At 4 weeks post injury, the reactive astrocyte (GFAP) immunoreactivity was significantly greater in both the injury groups compared to Sham, but did not differ at 6 months post injury. The intensity of immunoreactivity of the astrocytic endfeet that surround blood vessels (visualized with aquaporin 4; AQP4), however, differed significantly from Sham at 4 weeks post injury (in both injured groups) and at 6 months (Injury + Stress only). As the distribution of AQP4 plays a key role in the glymphatic system, we suggest that glymphatic disruption occurs in ferrets after the injuries described here.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Concussão Encefálica/complicações , Furões , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Sono
6.
Environ Res ; 242: 117720, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37996008

RESUMO

Vegetation restoration has significant impacts on ecosystems, and a comprehensive understanding of microbial environmental adaptability could facilitate coping with ecological challenges such as environmental change and biodiversity loss. Here, abundant and rare soil bacterial and fungal communities were characterized along a 15-45-year chronosequence of forest vegetation restoration in the Loess Plateau region. Phylogenetic-bin-based null model analysis (iCAMP), niche breadth index, and co-occurrence network analysis were used to assess microbial community assembly and environmental adaptation of a Robinia pseudoacacia plantation under long-term vegetation restoration. The drift process governed community assembly of abundant and rare soil fungi and bacteria. With increasing soil total phosphorus content, the relative importance of drift increased, while dispersal limitation and heterogeneous selection exhibited opposite trends for abundant and rare fungi. Rare soil fungal composition dissimilarities were dominated by species replacement processes. Abundant microbial taxa had higher ecological niche width and contribution to ecosystem multifunctionality than rare taxa. Node property values (e.g., degree and betweenness) of abundant microbial taxa were substantially higher than those of rare microbial taxa, indicating abundant species occupied a central position in the network. This study provides insights into the diversity and stability of microbial communities during vegetation restoration in Loess Plateau. The findings highlight that abundant soil fungi and bacteria have broad environmental adaptation and major implications for soil multifunctionality under long-term vegetation restoration.


Assuntos
Microbiota , Robinia , Ecossistema , Filogenia , Florestas , Bactérias , Solo , Microbiologia do Solo , China
7.
Environ Res ; 252(Pt 2): 118895, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604483

RESUMO

Landfill gases can have numerous detrimental effects on the global climate and urban ecological environment. The protective efficacy of the final cover layer against landfill gases, following exposure to periodic natural meteorological changes during long-term service, remains unclear. This study conducted centrifuge tests and gas permeability tests on compacted loess. The experiments examined the impact and relationship of wetting-drying cycles and dry density on the soil water characteristic curve (SWCC) and gas permeability of compacted loess. Research findings reveal that during the dehumidification process of compacted loess, the gas permeability increases non-linearly, varying the gas permeability of soil with different densities to different extents under wetting-drying cycles. Two models were introduced to describe the impact of wetting-drying cycles on gas permeability of loess with various dry densities, where fitting parameters increased with the number of wetting-drying cycles. Sensitivity analysis of the parameters in the Parker-Van Genuchten-Mualem (P-VG-M) model suggests that parameter γ's accuracy should be ensured in practical applications. Finally, from a microstructural perspective, wetting-drying cycles cause dispersed clay and other binding materials coalesce to fill minuscule pores, leading to an increase in the effective pores responsible for the gas permeability of the soil. These research results offer valuable guidance for designing water retention and gas permeability in compacted loess cover layers under wetting-drying cycles.


Assuntos
Permeabilidade , Solo , Solo/química , Água/química , Molhabilidade , Eliminação de Resíduos/métodos , Gases , Dessecação/métodos , Poluentes Atmosféricos/análise
8.
J Environ Manage ; 360: 121112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733847

RESUMO

Assessing net primary productivity (NPP) dynamics and the contribution of land-use change (LUC) to NPP can help guide scientific policy to better restore and control the ecological environment. Since 1999, the "Green for Grain" Program (GGP) has strongly affected the spatial and temporal pattern of NPP on the Loess Plateau (LP); however, the multifaceted impact of phased vegetation engineering measures on NPP dynamics remains unclear. In this study, the Carnegie-Ames-Stanford Approach (CASA) model was used to simulate NPP dynamics and quantify the relative contributions of LUC and climate change (CC) to NPP under two different scenarios. The results showed that the average NPP on the LP increased from 240.7 gC·m-2 to 422.5 gC·m-2 from 2001 to 2020, with 67.43% of the areas showing a significant increasing trend. LUC was the main contributor to NPP increases during the study period, and precipitation was the most important climatic factor affecting NPP dynamics. The cumulative amount of NPP change caused by LUC (ΔNPPLUC) showed a fluctuating growth trend (from 46.23 gC·m-2 to 127.25 gC·m-2), with a higher growth rate in period ΙΙ (2010-2020) than in period Ι (2001-2010), which may be related to the accumulation of vegetation biomass and the delayed effect of the GGP on NPP. The contribution rate of LUC to increased NPP in periods Ι and ΙΙ was 101.2% and 51.2%, respectively. Regarding the transformation mode, the transformation of grassland to forest had the greatest influence on ΔNPPLUC. Regarding land-use type, the increased efficiency of NPP was improved in cropland, grassland, and forest. This study provides a scientific basis for the scientific management and development of vegetation engineering measures and regional sustainable development.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema
9.
J Environ Manage ; 366: 121798, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018866

RESUMO

Identifying streamwater-groundwater interactions (SGI) is crucial for effective water resource management, especially in arid and semi-arid regions. Despite the effectiveness of tracers in detecting these interactions, their large-scale application is challenged by the variability in tracer characteristics and natural conditions. This study addresses these challenges through extensive research across seven watersheds (7636-60,916 km2) in China's Loess Plateau (CLP). We utilized multiple physicochemical and stable isotope tracers (δ2H and δ18O) to elucidate the spatiotemporal variations and controlling factors of SGI, and to estimate uncertainties in quantifying SGI using various indicators during unidirectional water exchange periods. Our findings indicated that groundwater discharge into streamwater dominates SGI in the CLP, with mean discharge ratios (the percentage of river flow that originates from groundwater discharge) varying from 10% to 57%. Significant spatial variability was observed both across and within watersheds. The central watersheds exhibited lower discharge ratios (23 ± 11%) compared to the northern (29 ± 12%) and southern (25 ± 13%) watersheds. The upper reaches showed higher discharge ratios (28 ± 12%) compared to the middle and lower reaches (22 ± 8%). Loess thickness and vegetation primarily limit groundwater discharge by affecting groundwater storage and water flow velocity. The utilization of individual isotopic or hydrochemical indicators introduces large uncertainties in quantifying groundwater discharge ratios due to isotope fractionation or water-rock interaction, while the combination of these two indicators can reduce uncertainties in quantifying SGI. This study provides valuable insights for selecting environmental tracers to quantify SGI, contributing to sustainable water resource management in arid and semi-arid regions.

10.
J Environ Manage ; 359: 120998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677232

RESUMO

Afforestation is beneficial to improving soil carbon pools. However, due to the lack of deep databases, the variations in soil carbon and the combined effects of multiple factors after afforestation have yet to be adequately explored in >1 m deep soils, especially in areas with deep-rooted plants and thick vadose zones. This study examined the multivariate controls of soil organic carbon (SOC) and inorganic carbon (SIC) in 0-18 m deep under farmland, grassland, willow, and poplar in loess deposits. The novelty of this study is that the factors concurrently affecting deep soil carbon were investigated by multiwavelet coherence and structural equation models. On average, the SOC density (53.1 ± 5.0 kg m-2) was only 12% of SIC density (425.4 ± 13.8 kg m-2), with depth-dependent variations under different land use types. In the soil profiles, the variations in SOC were more obvious in the 0-6 m layer, while SIC variations were mainly observed in the 6-12 m layer. Compared with farmland (SOC: 17.0 kg m-2; SIC: 122.9 kg m-2), the plantation of deciduous poplar (SOC: 28.5 kg m-2; SIC: 144.2 kg m-2) increased the SOC and SIC density within the 0-6 m layer (p < 0.05), but grassland and evergreen willow impacted SOC and SIC density insignificantly. The wavelet coherence analysis showed that, at the large scale (>4 m), SOC and SIC intensities were affected by total nitrogen-magnetic susceptibility and magnetic susceptibility-water content, respectively. The structural equation model further identified that SOC density was directly controlled by total nitrogen (path coefficient = 0.64) and indirectly affected by magnetic susceptibility (path coefficient = 0.36). Further, SOC stimulated the SIC deposition by improving water conservation and electrical conductivity. This study provides new insights into afforestation-induced deep carbon cycles, which have crucial implications for forest management and enhancing ecosystem sustainability in arid regions.


Assuntos
Carbono , Solo , Solo/química , Carbono/análise
11.
J Environ Manage ; 352: 120004, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38218170

RESUMO

Soil loss is an environmental concern of global importance. Accurate simulation of soil loss in small watersheds is crucial for protecting the environment and implementing soil and water conservation measures. However, predicting soil loss while meeting the criteria of high precision, efficiency, and generalizability remains a challenge. Therefore, this study first used three machine learning (ML) algorithms, namely, random forest (RF), support vector machine (SVM), and artificial neural network (ANN) to develop soil loss models and predict soil loss rates (SLRs). These soil loss models were constructed using field observation data with an average SLR of 1756.48 t/km2 from rainfall events and small watersheds in the hilly-gully region of the Loess Plateau, China. During training, testing and generalizability stages, the average coefficients of determination from the RF, SVM, and ANN models were 0.903, 0.860, and 0.836, respectively. Similarly, the average Nash-Sutcliffe coefficients of efficiency from the RF, SVM and ANN models were 0.893, 0.791 and 0.814, respectively. These results indicated that MLs have superior predictive performance and generalizability, and broad prospects for predicting SLRs. This study also demonstrated that the RF model outperformed better than the SVM and ANN models. Therefore, the RF model was used to simulate the SLR of each small watershed in the Chabagou watershed. Our results showed the four-year (2017-2020) average annual SLR of the small watersheds ranged from 0.73 to 1.63 × 104 t/(km2∙a) in the Chabagou watershed. Additionally, the results also indicated the SLR of small watersheds under the rainstorm event with a 100-year recurrence interval was 4.4-51.3 times that of other rainfall events.Furthermore, this study confirmed that bare land was the predominant source of soil loss in the Chabagou watershed, followed by cropland land and grassland. This study helps to provide the theoretical basis for deploying soil and water conservation measures to realize the sustainable utilization of soil resources in the future.


Assuntos
Conservação dos Recursos Hídricos , Solo , Algoritmos , China , Aprendizado de Máquina
12.
J Environ Manage ; 354: 120296, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341910

RESUMO

It is crucial for understanding the variations of carbon and nutrient pools within the ecosystems during long-term vegetation restoration to accurately assess the effects of different ecological restoration patterns. However, the long-term spatio-temporal variations of carbon and nutrient pools under different vegetation types remain unclear. The sites for long-term natural and planted forests (i.e., Natural secondary forest, Pinus tabulaeformis planted forest, Platycladus orientalis planted forest, and Robinia pseudoacacia planted forest) on the northeastern Loess Plateau, China were selected, to measure and analyze the differences and interannual variations of vegetation attributes at four synusiae and soil properties at 0-100 cm over the period of 12 years (2006-2017). The principal component analysis (PCA) and Mantel test were also conducted to explore the relationships among vegetation attributes, soil properties, and carbon and nutrient pools. The results showed that: compared with the planted forests, the natural secondary forest had lower arborous biomass (84.21 ± 1.53 t hm-2) and higher understory biomass and plant heights. Compared to planted forests, the secondary forest had higher soil carbon and nitrogen contents (13.74 ± 3.50 g kg-1 and 1.16 ± 0.34 g kg-1). The soil carbon pool in the secondary forest was 22.0% higher than planted forests, while the vegetation carbon pool in the P. tabulaeformis was 75.5% higher than other forests. Principal component analysis (PCA) and Mantel test revealed that vegetation attributes and soil properties had significant correlations with carbon and nutrient pools, especially at the arborous synusia (p < 0.01). The findings indicated that in the ecologically fragile Loess Plateau region, the selection of appropriate vegetation restoration types should be guided by varying ecological restoration goals and benefits, aiming to expected ecological outcomes. This insight offers a strategic implication for forest management that is tailored to improve carbon and nutrient pools in areas with similar environmental conditions.


Assuntos
Carbono , Ecossistema , Carbono/análise , Florestas , Solo , China
13.
J Environ Manage ; 360: 121176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759547

RESUMO

Globally, grazing activities have profound impacts on the structure and function of ecosystems. This study, based on a 20-year MODIS time series dataset, employs remote sensing techniques and the Seasonal-Trend decomposition using Loess (STL) algorithm to quantitatively assess the stability of alpine grassland ecosystems from multiple dimensions, and to reveal the characteristics of grazing activities and environmental conditions on ecosystem stability. The results indicate that only 5.77% of the area remains undisturbed, with most areas experiencing varying degrees of disturbance. Further analysis shows that grazing activities in high vegetation coverage areas are the main source of interference. In areas with concentrated interference, elevation and slope have a positive correlation with resistance stability, but a negative correlation with recovery stability. Precipitation and landscape diversity have positive effects on both resistance stability and recovery stability. Vegetation coverage and grazing intensity have a negative correlation with resistance stability, but a positive correlation with recovery stability. This highlights the complex interactions between human activities, environmental factors, and ecosystem stability. The findings emphasize the need for targeted conservation and management strategies to mitigate disturbances to ecosystems affected by human activities and enhance their stability.


Assuntos
Ecossistema , Pradaria , Animais , Conservação dos Recursos Naturais , Herbivoria
14.
Environ Res ; 219: 115017, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495959

RESUMO

With the implementation of the 'Grain-for-Green' program on the Chinese Loess Plateau (CLP), drought-tolerant deep-rooted plants have been increasingly introduced to the northwest in China. However, the vertical features of dissolved organic matter (DOM) in deep soil profiles on CLP during the 'Grain-for-Green' program is still not well understood. In the study, ultraviolet-visible (UV-Vis) spectroscopy and three-dimensional fluorescence excitation-emission matrices (3D-EEMs) with parallel factor analysis (PARAFAC) were used to characterize DOM in 5-m profile of farmland and forestland (Pinus tabulaeformis and Robinia pseudoacacia) in the southern CLP. The results demonstrated that the average dissolved organic carbon (DOC) content of the surface layer of farmland (119.3 mg kg-1 soil) was lower than that of forestland (Pinus tabulaeformis 175.5 mg kg-1 soil; Robinia pseudoacacacia 166.4 mg kg-1 soil). The DOC content gradually decreased with increasing soil depth and reached stability after 2 m depth. Three substances, including tryptophan-like substances (C1) and two humic acid-like substances (C2, C3), were detected from all samples. Tryptophan-like substances (C1) significantly increased with soil depth while humic acid-like substances (C2, C3) significantly decreased particularly in farmland. The humic acid-like content of surface soils (Robinia pseudoacacia) was relatively higher, but the difference between the two vegetation soils was not significant. The freshness index (ß/α) values of DOM as well as biological index (BIX) values were significantly higher in farmland than that in forestland, and the humification index (HIX) values were lower than in forestland soils, indicating that the change of soil DOM in farmland was more active than that in forestland and more dependent on local terrestrial sources. These results could contribute to a better understanding of the vertical distribution and features of soil DOM during the 'Grain-for-Green' program of CLP.


Assuntos
Substâncias Húmicas , Solo , Solo/química , Substâncias Húmicas/análise , Matéria Orgânica Dissolvida , Fazendas , Triptofano , Florestas , Espectrometria de Fluorescência/métodos
15.
Proc Natl Acad Sci U S A ; 117(40): 24729-24734, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958667

RESUMO

Midlatitude Asia (MLA), strongly influenced by westerlies-controlled climate, is a key source of global atmospheric dust, and plays a significant role in Earth's climate system . However, it remains unclear how the westerlies, MLA aridity, and dust flux from this region evolved over time. Here, we report a unique high-resolution eolian dust record covering the past 3.6 Ma, retrieved from the thickest loess borehole sequence (671 m) recovered to date, at the southern margin of the Taklimakan desert in the MLA interior. The results show that eolian dust accumulation, which is closely related to aridity and the westerlies, indicates existence of a dry climate, desert area, and stable land surface, promoting continuous loess deposition since at least ∼3.6 Ma. This region experienced long-term stepwise drying at ∼2.7, 1.1, and 0.5 Ma, coeval with a dominant periodicity shift from 41-ka cyclicity to 100-ka cyclicity between 1.1 Ma and 0.5 Ma. These features match well with global ice volume variability both in the time and frequency domains (including the Mid-Pleistocene Transition), highlighting global cooling-forced aridity and westerlies climate changes on these timescales. Numerical modeling demonstrates that global cooling can dry MLA and intensify the westerlies, which facilitates dust emission and transport, providing an interpretive framework. Increased dust may have promoted positive feedbacks (e.g., decreasing atmospheric CO2 concentrations and modulating radiation budgets), contributing to further cooling. Unraveling the long-term evolution of MLA aridity and westerlies climate is an indispensable component of the unfolding mystery of global climate change.

16.
J Environ Manage ; 326(Pt A): 116708, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356535

RESUMO

The increased frequency and intensity of droughts have seriously affected the stability of plantation ecosystems in the Chinese Loess Plateau. Caragana korshinskii Kom. was the dominant afforested shrub species in this region. Evaluating the radial growth of C. korshinskii and its response to drought can provide valuable information for sustainable management of plantations in the context of climate change. In this study, based on 237 shrub C. korshinskii annual ring samples from nine sites in different climate regions, we investigated the response of C. korshinskii radial growth to climate (temperature, precipitation, and monthly resolved standardized precipitation evapotranspiration index (SPEI_01)), and evaluated the differences between them using calculated indices of drought resistance, recovery, and resilience. The results demonstrate that the radial growth of C. korshinskii was mainly limited by drought stress in the previous September in arid regions and in March and June in semi-arid regions, whereas C. korshinskii in semi-humid regions was less influenced by drought stress. Recovery after drought decreased with increasing resistance, and resilience increased significantly with increasing resistance and recovery. Differences in precipitation were found to be the main factor generating variations in shrub resilience; with an increase in precipitation, the recovery and resilience after drought gradually increased. For plantation management, this study suggests that efficient utilization of precipitation resources and site-specific afforestation in different climate and site conditions may help to enhance resilience and improve the ecological service function of plantation forests in the Loess Plateau.


Assuntos
Caragana , Caragana/fisiologia , Secas , Ecossistema , Clima Desértico , Mudança Climática , China
17.
J Environ Manage ; 331: 117237, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630802

RESUMO

The relationship between industrial structure (IS) and eco-efficiency (EE) is intricate with mutual influence and constraint. Exploring the coordinated relationship between IS and EE is beneficial to the sustainable development of ecologically fragile areas. This paper estimates and analyses the levels of EE and IS in 39 prefecture-level cities of the Loess Plateau, discussing the comprehensive and coordinated development levels between industrial structure rationalization (ISR) and EE, industrial structure advancement (ISA) and EE based on the coupling coordination degree model (CCDM). The results showed that the comprehensive development of the Loess Plateau has rough and imbalanced issues. The EE and IS are developing at a relatively low level, and the spatial distribution shows the development trend of high in the east and down in the west. The CCD of ISA and EE performs better than that of ISR and EE, but neither has reached the collaborative coupling state. The poor CCD score in the Loess Plateau is primarily attributable to its relatively backward degree of integrated EE and IS. The results are expected to provide decision-making support for EE improvement and industrial restructuring in the Loess Plateau and other ecologically fragile areas.


Assuntos
Eficiência , Desenvolvimento Sustentável , Cidades , China , Indústrias , Desenvolvimento Econômico
18.
J Environ Manage ; 330: 117155, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603272

RESUMO

Ecosystem carbon sequestration service (ECSS) is the benefits humans derive from the ecosystem carbon sequestration process, which is key to regulating climate, stabilising the natural foundation for development, and supporting the Sustainable Development Goals (SDGs) achievement. However, how ECSS contributes to the SDGs still needs to be discovered. Here, based on downscaling localisation SDG indicators, regression methods, and mechanism analysis, we identified the contribution of ECSS to the SDGs, taking China's Loess Plateau (LP) region as an example. The results showed that the LP made higher progress on resource and environmental SDGs, such as SDGs 13, 12, 6, and 7 (climate, consumption and production, water, and energy) in the last two decades. As for the relationships between ECSS and SDGs, the progress of SDGs 6, 7, 13 and 15 (water, energy, climate, and ecosystems) showed positive linear responses to ECSS. The response of SDGs 1, 4, 8, and 12 (poverty reduction, education, economic growth, and consumption and production) to ECSS showed a threshold when the standardised ECSS value was 0.11. To improve ECSS for a more sustainable ecological foundation underpinning the SDGs, ECSS management should be improved to protect the ecosystem carbon pool and improve carbon sequestration function, as well as to promote the social-ecological co-benefits. This work links carbon sequestration service to sustainable development and can help in leveraging nature's contributions towards carbon neutrality and the 2030 Agenda.


Assuntos
Ecossistema , Desenvolvimento Sustentável , Humanos , Sequestro de Carbono , Desenvolvimento Econômico , Carbono , Objetivos
19.
J Environ Manage ; 344: 118521, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453300

RESUMO

Addressing the dynamics of human-natural systems (HNS) driven by land use change (LC) is a key challenge for the sustainable development of ecosystem services (ES). However, how changes to the HNS coupling relationships affect ES is rarely reported. We used network analysis methods to construct an HNS correlation network in the Loess Plateau based on the correlation between the main components of HNS, such as ES, human factors, landscape pattern, vegetation cover, climate change and geomorphic characteristics, and quantitatively described the HNS coupling relationships through key network attributes. We analyzed the variation in HNS network attributes and their relationships with ES along an LC intensity gradient. The results show that carbon storage and soil conservation in the Loess Plateau increased by 0.56% and 0.26%, respectively, during the study period, while the habitat quality and water yield decreased by 0.11% and 0.18%, respectively. An increase in LC intensity reduces connectivity and density in the HNS network, which results in looser connections among HNS components. Importantly, we found that HNS network attributes explained 85% of ES variation across different LC intensity gradients and that connectivity and density had the strongest explanatory power. This means that LC mainly affects ES dynamics by changing the coupling strength of HNS. Our research offers a new perspective for linking LC-HNS-ES, which will help guide practitioners toward establishing and maintaining the sustainability of human well-being amidst changing HNS.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Conservação dos Recursos Naturais/métodos , Solo , Desenvolvimento Sustentável , Mudança Climática , China
20.
J Environ Manage ; 344: 118542, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393873

RESUMO

The sand and gravel fillers used in traditional bioretention cells are expensive and becoming increasingly scarce, and their performance is unstable. It is important to find a stable, reliable, and low-cost alternative filler for bioretention facilities. Using cement as a modified loess filler for bioretention cells is a low-cost and easily obtainable alternative. The loss rate and anti-scouring index of the cement-modified loess (CM) were analyzed under different curing times, cement addition amount, and compactness control conditions. This study found that the stability and strength of the cement-modified loess in water with a density of not less than 1.3 g/cm3, a curing time, of not less than 28 d and a cement addition amount not less than 10% meets the use requirements of the bioretention cell filler. X-ray diffraction and Fourier transform infrared spectroscopy of cement-modified materials with a 10% cement addition and a curing time of 28 days (CM28) and 56 days (CM56). Cement-modified materials with 2% straw and a curing time of 56 days (CS56) showed that the three kinds of modified loess all contain calcium carbonate and that the surface contains hydroxyl and amino functional groups that can effectively remove phosphorus. The specific surface areas of the CM56, CM28, and CS56 samples were 12.53 m2/g, 24.731 m2/g, and 26.252 m2/g, respectively, which are significantly higher than that of sand (0.791 m2/g). At the same time, the adsorption capacity of the ammonia nitrogen and the phosphate that was present in the three modified materials is better than that of sand. CM56, like sand, has rich microbial communities, which can entirely remove nitrate nitrogen in water under anaerobic conditions, indicating that CM56 can be used as an alternative filler for bioretention cells. The production of cement-modified loess is simple and cost-effective, and using modified loess as a filler can reduce the use of stone resources or other on-site materials. Current methods for improving the filler of bioretention cells are mainly based on sand. This experiment used loess to improve the filler. The performance of loess is better than sand, and can completely replace sand as the filler in bioretention cells.


Assuntos
Areia , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fósforo , Água , Nitrogênio , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA