Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.351
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Arch Microbiol ; 206(4): 188, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519709

RESUMO

Biodegradation is an eco-friendly measure to address plastic pollution. This study screened four bacterial isolates that were capable of degrading recalcitrant polymers, i.e., low-density polyethylene, polyethylene terephthalate, and polystyrene. The unique bacterial isolates were obtained from plastic polluted environment. Dermacoccus sp. MR5 (accession no. OP592184) and Corynebacterium sp. MR10 (accession no. OP536169) from Malaysian mangroves and Bacillus sp. BS5 (accession no. OP536168) and Priestia sp. TL1 (accession no. OP536170) from a sanitary landfill. The four isolates showed a gradual increase in the microbial count and the production of laccase and esterase enzymes after 4 weeks of incubation with the polymers (independent experiment set). Bacillus sp. BS5 produced the highest laccase 15.35 ± 0.19 U/mL and showed the highest weight loss i.e., 4.84 ± 0.6% for PS. Fourier transform infrared spectroscopy analysis confirmed the formation of carbonyl and hydroxyl groups as a result of oxidation reactions by enzymes. Liquid chromatography-mass spectrometry analysis showed the oxidation of the polymers to small molecules (alcohol, ethers, and acids) assimilated by the microbes during the degradation. Field emission scanning electron microscopy showed bacterial colonization, biofilm formation, and surface erosion on the polymer surface. The result provided significant insight into enzyme activities and the potential of isolates to target more than one type of polymer for degradation.


Assuntos
Bacillus , Poliestirenos , Poliestirenos/metabolismo , Polietileno/metabolismo , Polietilenotereftalatos , Lacase , Bacillus/metabolismo , Biodegradação Ambiental
2.
Artigo em Inglês | MEDLINE | ID: mdl-38259170

RESUMO

A bacterial strain, designated NLS-7T, was isolated through enrichment of landfill cover soil in methane-oxidizing conditions. Strain NLS-7T is a Gram-stain negative, non-motile rod, approximately 0.8 µm wide by 1.3 µm long. Phylogenetic analysis based on 16S rRNA gene sequencing places it within the genus Methylocystis, with its closest relatives being M. hirsuta, M. silviterrae and M. rosea, with 99.9, 99.7 and 99.6 % sequence similarity respectively. However, average nucleotide identity and average amino acid identity values below the 95 % threshold compared to all the close relatives and digital DNA-DNA hybridization values between 20.9 and 54.1 % demonstrate that strain NLS-7T represents a novel species. Genome sequencing generated 4.31 million reads and genome assembly resulted in the generation of 244 contigs with a total assembly length of 3 820 957 bp (N50, 37 735 bp; L50, 34). Genome completeness is 99.5 % with 3.98 % contamination. It is capable of growth on methane and methanol. It grows optimally at 30 °C between pH 6.5 and 7.0. Strain NLS-7T is capable of atmospheric dinitrogen fixation and can use ammonium (as NH4Cl), l-aspartate, l-arginine, yeast extract, nitrate, l-leucine, l-proline, l-methionine, l-lysine and l-alanine as nitrogen sources. The major fatty acids are C18:1 ω8c and C18:1 ω7c. Based upon this polyphasic taxonomic study, strain NLS-7T represents a novel species of the genus Methylocystis, for which the name Methylocystis suflitae sp. nov. is proposed. The type strain is NLS-7T (=ATCC TSD-256T=DSM 112294T). The 16S rRNA gene and genome sequences of strain NLS-7T have been deposited in GenBank under accession numbers ON715489 and GCA_024448135.1, respectively.


Assuntos
Methylocystaceae , Methylocystaceae/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Bactérias , Metano
3.
Artigo em Inglês | MEDLINE | ID: mdl-38963413

RESUMO

A Gram-stain-negative, yellow-pigmented, and facultatively aerobic bacterium, designated strain GPA1T, was isolated from plastic waste landfill soil in the Republic of Korea. The cells were non-motile short rods exhibiting oxidase-negative and catalase-positive activities. Growth was observed at 15-40 °C (optimum, 30 °C), at pH 6.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 0-2.5 % (w/v) NaCl (optimum, 0 %). Menaquinone-7 was the sole respiratory quinone, and iso-C15 : 0, C16 : 1 ω5c, and iso-C17 : 0 3-OH were the major cellular fatty acids (>10 % of the total fatty acids). Phosphatidylethanolamine was identified as a major polar lipid. Phylogenetic analyses based on 16S rRNA gene sequences and 120 concatenated marker protein sequences revealed that strain GPA1T formed a distinct lineage within the genus Chitinophaga. The genome of strain GPA1T was 6078 kb in size with 53.8 mol% G+C content. Strain GPA1T exhibited the highest similarity to Chitinophaga rhizosphaerae T16R-86T, with a 98.6 % 16S rRNA gene sequence similarity, but their average nucleotide identity and digital DNA-DNA hybridization values were 82.5 and 25.9 %, respectively. Based on its phenotypic, chemotaxonomic, and phylogenetic characteristics, strain GPA1T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga pollutisoli sp. nov. is proposed. The type strain is GPA1T (=KACC 23415T=JCM 36644T).


Assuntos
Técnicas de Tipagem Bacteriana , Bacteroidetes , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Fosfatidiletanolaminas , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2 , RNA Ribossômico 16S/genética , República da Coreia , Ácidos Graxos/química , Vitamina K 2/análogos & derivados , Vitamina K 2/química , Vitamina K 2/análise , DNA Bacteriano/genética , Sedimentos Geológicos/microbiologia , Bacteroidetes/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Hibridização de Ácido Nucleico , Instalações de Eliminação de Resíduos , Genoma Bacteriano
4.
Microb Ecol ; 87(1): 88, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943017

RESUMO

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.


Assuntos
Bactérias , Biodegradação Ambiental , Microbiota , Microplásticos , Instalações de Eliminação de Resíduos , Microplásticos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poliésteres/metabolismo , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Estuários , Polietileno/metabolismo , Polietilenotereftalatos/metabolismo
5.
Environ Sci Technol ; 58(10): 4737-4750, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408453

RESUMO

Landfills are the final stage of urban wastes containing perfluoroalkyl and polyfluoroalkyl substances (PFASs). PFASs in the landfill leachate may contaminate the surrounding groundwater. As major environmental pollutants, emerging PFASs have raised global concern. Besides the widely reported legacy PFASs, the distribution and potential toxic effects of numerous emerging PFASs remain unclear, and unknown PFASs still need discovery and characterization. This study proposed a comprehensive method for PFAS screening in leachate samples using suspect and nontarget analysis. A total of 48 PFASs from 10 classes were identified; nine novel PFASs including eight chloroperfluoropolyether carboxylates (Cl-PFPECAs) and bistriflimide (HNTf2) were reported for the first time in the leachate, where Cl-PFPECA-3,1 and Cl-PFPECA-2,2 were first reported in environmental media. Optimized molecular docking models were established for prioritizing the PFASs with potential activity against peroxisome proliferator-activated receptor α and estrogen receptor α. Our results indicated that several emerging PFASs of N-methyl perfluoroalkyl sulfonamido acetic acids (N-MeFASAAs), n:3 fluorotelomer carboxylic acid (n:3 FTCA), and n:2 fluorotelomer sulfonate (n:2 FTSA) have potential health risks that cannot be ignored.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Simulação de Acoplamento Molecular , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Instalações de Eliminação de Resíduos , Alcanossulfonatos , Ácidos Carboxílicos/análise
6.
Environ Res ; 248: 118234, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272296

RESUMO

This investigation aimed to scrutinize the level of phthalate esters (PEs) in the landfill leachate of a coastal city in the north of the Persian Gulf and the sensitive ecosystem (soil and water) around it. Soil (two depths) and water samples were prepared from 5 stations in wet and dry seasons. The studied landfill leachate contained 114-303 µg/L of phthalates. The highest concentration of phthalates was related to bis (2-ethylhexyl) phthalate (3257 ng/g) in the wet season at surface soil (0-5 cm) in the landfill site, while the lowest one (6 ng/g) belonged to dimethyl phthalate at sub-surface soil at 700 m from the landfill in the dry season. A significant change in the level of Σ6PEs in the dry (303 µg/L) and wet (114 µg/L) seasons (P ≤ 0.05) was observed for water samples. The PE concentrations in wet times were higher in all soil depths than in dry times. With increasing depth, the content of phthalates decreased in all studied environments. A direct relationship was observed between the phthalates concentration and the pH value of leachate/water and soil. The PEs concentration was linked to electrical conductivity (leachate: R2 = 0.65, P < 0.01 and surface soil: R2 = 0.77, P < 0.05) and the soil organic content. The ecological risk of di-n-butyl phthalate, benzyl butyl phthalate, bis (2-ethylhexyl) phthalate, and di-n-octyl phthalate in the wet season was greater than one. The results showed that significant levels of phthalate esters are released from landfills to the surrounding environment, which requires adequate measures to maintain the health of the ecosystem and nearby residents.


Assuntos
Ácidos Ftálicos , Poluentes Químicos da Água , Água , Poluentes Químicos da Água/análise , Ésteres , Solo/química , Irã (Geográfico) , Ecossistema , Ácidos Ftálicos/química , Instalações de Eliminação de Resíduos
7.
Environ Res ; 247: 118241, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244967

RESUMO

Landfills are sources of soil, water, and air pollution due to the release of toxic compounds such as metals and metalloids. In both tropical and temperate environments, scavenger birds such as the Black Vulture (Coragyps atratus) that have learned to use these sites as a feeding area are probably exposed to metals, metalloids and other "persistent bioaccumulative toxic substances (PBTs)" released in open dumpsite (OD) and sanitary landfill (SL). The objective of this study is to evaluate the presence and distribution of toxic metals (Al, Sn, Hg, Cu, Pb, Cd, Cr) and As in OD and SL from urban, semi-urban and rural localities in Campeche, México, using molting feathers of C. atratus as bioindicators. A total of 125 Black Vulture primary and secondary wing feathers were collected from OD and SL. Metals were determined by voltammetry through acid digestion. The highest levels of metals occurred in landfills in urban, semi-urban, and rural localities. The elements with the highest concentrations were Al, with an average of 35.67 ± 33.51 µg g-1 from rural environments, and As, with 16.20 ± 30.06 µg g-1 from the urban localities. Mercury was the only element that had a very homogeneous distribution between the three environments we studied. In general, Pb, Hg, Cu and Cd were the elements that presented the lowest concentrations with 0.32 ± 0.35, 0.16 ± 0.22, 0.14 ± 0.31 and 0.06 ± 0.10 µg g-1, respectively regardless of any particular location or environment. Black Vultures from dumpsites are good bioindicators of what humans consume in urban, semi-urban, and rural environments. However, the conservation of vultures is of great importance since these scavenger birds perform ecosystem services by feeding on decomposing organic material.


Assuntos
Falconiformes , Mercúrio , Metaloides , Metais Pesados , Humanos , Animais , Biomarcadores Ambientais , Metaloides/análise , Ecossistema , Cádmio , Plumas , México , Chumbo , Monitoramento Ambiental , Aves , Metais Pesados/análise
8.
Environ Res ; 260: 119680, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059619

RESUMO

Landfill leachate-containing per- and polyfluoroalkyl substances (PFAS) is both an important 'sink' and a 'source' of secondary pollution, posing serious threaten to surrounding environments. To date, the pollution characteristics of PFAS in landfill leachate, and the coexistence and interaction between PFAS and other leachate contaminants, such as dissolved organic matter (DOM) and toxic metals remains unclear. Herein, our results showed that 17 target PFAS, with concentrations ranged from 1804 to 43309 ng/L, were detected in landfill leachates. The main PFAS were short-chain and even-chain substances represented by perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS). Leachate derived DOM is mainly composed of protein-like and humic-like substance, among which the total contribution of protein-like substance is as high as 73.7%. Correlation analysis results showed that the distribution of PFAS was strongly correlated with the substituted functional groups (e.g., carboxyl and hydroxyl) on the aromatic ring of humic-like substance (C2 and E253/E203) and autochthonous metabolism by microbial activities (FI). Furthermore, Mn element showed a significantly strong correlation with PFAS. Both organic and inorganic substances positively correlated with toxic metals. Our findings are helpful to understand the environmental fate of PFAS, and contribute to decision-making regarding DOM, toxic metals, and PFAS management in landfill.


Assuntos
Fluorocarbonos , Substâncias Húmicas , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Substâncias Húmicas/análise , Monitoramento Ambiental , Metais/análise , Metais/toxicidade
9.
Environ Res ; 247: 118230, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237756

RESUMO

The transport of per- and polyfluoroalkyl substances (PFAS) from landfill leachate to surrounding soil and groundwater poses a threat to human health via the food chain or drinking water. Studies have shown that the transport process of PFAS from the solid to liquid phase in the environment is significantly affected by dissolved organic matter (DOM) adsorption. However, the mechanism of PFAS release from landfill solids into leachate and its transport to the surrounding groundwater remains unclear. In this study, we identified the composition of PFAS and DOM components and analyzed the association between DOM components, physicochemical factors, and PFAS concentrations in landfill leachate and groundwater. This study demonstrated that the frequency of PFAS detection in the samples was 100%, and the PFAS concentrations in leachate were greater than in the groundwater samples. Physicochemical factors, such as ammonium-nitrogen (NH4+-N), sodium (Na), calcium (Ca), DOM components C4 (macromolecular humic acid), SUVA254 (aromatic component content), and A240-400 (humification degree and molecular weight), were strongly correlated with PFAS concentrations. In conclusion, PFAS environmental risk management should be enhanced in landfills, especially in closed landfills, or landfills that are scheduled to close in the near future.


Assuntos
Fluorocarbonos , Água Subterrânea , Eliminação de Resíduos , Poluentes Químicos da Água , Humanos , Matéria Orgânica Dissolvida , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos , Água Subterrânea/química
10.
Environ Res ; 250: 118508, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395333

RESUMO

Industrial processes and municipal wastes largely contribute to the fluctuations in iron (Fe) content in soils. Fe, when present in unfavorable amount, causes harmful effects on human, flora, and fauna. The present study is an attempt to evaluate the composition of Fe in surface soils from paper mill and municipal landfill sites and assess their potential ecological and human health risks. Geochemical fractionation was conducted to explore the chemical bonding of Fe across different fractions, i.e., water-soluble (F1) to residual (F6). Different contamination factors and pollution indices were evaluated to comprehend Fe contamination extent across the study area. Results indicated the preference for less mobile forms in the paper mill and landfill, with 26.66% and 43.46% of Fe associated with the Fe-Mn oxide bound fraction (F4), and 57.22% and 24.78% in the residual fraction (F6). Maximum mobility factor (MF) of 30.65% was observed in the paper mill, and 80.37% in the landfill. The enrichment factor (EF) varied within the range of 20 < EF < 40, signifying a high level of enrichment in the soil. The individual contamination factor (ICF) ranged from 0 to >6, highlighting low to high contamination. Adults were found to be more vulnerable towards Fe associated health risks compared to children. The Hazard Quotient (HQ) index showed the highest risk potential pathways as dermal contact > ingestion > inhalation. The study offers insights into potential Fe contamination risks in comparable environments, underscoring the crucial role of thorough soil assessments in shaping land use and waste management policies.


Assuntos
Ferro , Papel , Poluentes do Solo , Instalações de Eliminação de Resíduos , Ferro/análise , Poluentes do Solo/análise , Humanos , Medição de Risco , Monitoramento Ambiental , Resíduos Industriais/análise , Fracionamento Químico , Solo/química , Adulto , Criança
11.
Environ Res ; 245: 117968, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38151154

RESUMO

Coastal areas stand out because of their rich biodiversity and high tourist potential due to their privileged geographical position. However, one of the main problems in these areas is the generation of waste and its management, which must consider technical and sustainable criteria. This work aims to conduct a systematic review of the scientific literature on integrated solid waste management (ISWM) by considering scientific publications on the scientific basis for the proposal of sustainability strategies in the context of use and efficiency. The overall method comprises i) Search strategy, merging and processing of the databases (Scopus and Web of Science); ii) Evolution of coastal zone waste management; iii) Systematic reviews on coastal landfills and ISWM in the context of the circular economy; and iv) Quantitative synthesis in integrated waste management. The results show 282 studies focused on coastal landfills and 59 papers on ISWM with the application of circular economy criteria. Systematic reviews allowed for the definition of criteria for the selection of favorable sites, such as i) sites far from the coastline, ii) impermeable soils at their base to avoid contamination of aquifers, iii) use of remote sensing and geographic information system tools for continuous monitoring, iv) mitigation of possible contamination of ecosystems, v) planning the possibility of restoration (reforestation) and protection of the environment. In coastal zones, it is necessary to apply the ISWM approach to avoid landfill flooding and protect the marine environment, reducing rubbish and waste on beaches and oceans. Therefore, applying the circular economy in ISWM is critical to sustainability in coastal environments, with the planet's natural processes and variations due to climate change.


Assuntos
Ecossistema , Gerenciamento de Resíduos , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Oceanos e Mares
12.
Environ Res ; 245: 118006, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154568

RESUMO

Solid waste is an inevitable consequence of urbanization. It can be safely managed in municipal landfills and processing plants for volume reduction or material reuse, including organic solid waste. However, solid waste can also be discarded in (un-)authorized dumping sites or inadvertently released into the environment. Legacy and emerging contaminants have the potential to leach from solid waste, making it a significant pathway to the environment. Non-target screening (NTS) and suspect screening analysis (SSA) have become helpful tools in environmental science for the simultaneous analysis of a wide range of chemical compounds. However, the application of these analytical approaches to environmental samples related to Raw or Processed Solid Waste (RPSW) has been largely neglected so far. This perspective review examines the potential and policy relevance of NTS and SSA applied to waste-related samples (liquid, gaseous and solid). It addresses the hurdles associated with the chemical safety of solid waste accumulation, processing, and reuse, and the need for landfill traceability, as well as effectiveness of leachate treatments. We reviewed the current applications of NTS and SSA to environmental samples of RPSW, as well as the potential adaptation of NTS and SSA techniques from related fields, such as oilfield and metabolomics, to the solid waste domain. Despite the ongoing technical challenges, this review highlights the significant potential for the implementation of NTS and SSA approaches in solid waste management and related scientific fields and provides support and guidance to the regulatory authorities.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Poluentes Químicos da Água , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos
13.
Environ Res ; 251(Pt 2): 118669, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38499221

RESUMO

In India, majority of the generated municipal solid waste (MSW) was dumped in poorly managed landfills and dumpsites over the past decades and is an environmental and health hazard. Landfill mining is a promising solution to reclaim these sites along with the recovery of resources (materials and energy). During landfill mining operations, the combustible fraction is one of the major components recovered and needs proper management for maximizing resource recovery. For the identification of appropriate resource recovery options, knowledge of the physicochemical characteristics is required. The present study aims to assess the depth-wise change in the composition of legacy waste and the physicochemical characteristics of the combustible fraction. Furthermore, a material flow analysis considering the incineration of combustible fraction was performed to estimate the energy generation potential and the associated greenhouse gas (GHG) emissions. The results of the compositional analysis of dry legacy waste revealed that the fine fraction (<4 mm soil-like material) was dominating with a share of 36%. The depth-wise analysis showed a decrease in the calorific value with increasing landfill depth, while no specific trend was observed for the other parameters analyzed, including proximate and ultimate analysis, and chlorine content. The material flow analysis performed for 100 tonnes of wet legacy waste indicated that 52 tonnes of waste is combustible fraction. The GHG emissions through incineration of one tonne of dry combustible fraction would be 1389 kg CO2-eq, with 1125 kWh of electrical energy generation potential.


Assuntos
Gases de Efeito Estufa , Incineração , Instalações de Eliminação de Resíduos , Gases de Efeito Estufa/análise , Índia , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos
14.
Antonie Van Leeuwenhoek ; 117(1): 91, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907751

RESUMO

A Gram-stain-negative, facultative anaerobe, rod-shaped strain JX-1T was isolated from UASB sludge treating landfill leachate in Wuhan, China. The isolate is capable of growing under conditions of pH 6.0-11.0 (optimum, pH 7.0-8.0), temperature 4-42 â„ƒ (optimum, 20-30 â„ƒ), 0-8.0% (w/v) NaCl (optimum, 5.0%), and ammonia nitrogen concentration of 200-5000 mg/L (optimum, 500 mg/L) on LB plates. The microorganism can utilize malic acid, D-galactose, L-rhamnose, inosine, and L-glutamic acid as carbon sources, but does not reduce nitrates and nitrites. The major fatty acids are C18:1ω7c/C18:1ω6c, iso-C15:0, and anteiso-C15:0. The respiratory quinones are Q9 (91.92%) and Q8 (8.08%). Polar lipids include aminolipid, aminophospholipid, diphosphatidylglycerol, glycolipid, phosphatidylethanolamine, phosphatidylglycerol, and phospholipid. Compared with other strains, strain JX-1T and Denitrificimonas caeni HY-14T have the highest values in terms of 16S rRNA gene sequence similarity (96.79%), average nucleotide identity (ANI; 76.06%), and average amino acid identity (AAI; 78.89%). Its digital DNA-DNA hybridization (dDDH) result is 20.3%. The genome of strain JX-1T, with a size of 2.78 Mb and 46.12 mol% G + C content, lacks genes for denitrification and dissimilatory nitrate reduction to ammonium (DNRA), but contains genes for ectoine synthesis as a secondary metabolite. The results of this polyphasic study allow genotypic and phenotypic differentiation of the analysed strain from the closest related species and confirm that the strain represents a novel species within the genus Denitrificimonas, for which the name Denitrificimonas halotolerans sp. nov. is proposed with JX-1T (= MCCC 1K08958T = KCTC 8395T) as the type strain.


Assuntos
Composição de Bases , Filogenia , RNA Ribossômico 16S , Esgotos , Esgotos/microbiologia , RNA Ribossômico 16S/genética , China , Ácidos Graxos/química , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Aeromonadaceae/genética , Aeromonadaceae/classificação , Aeromonadaceae/isolamento & purificação , Aeromonadaceae/metabolismo , Fosfolipídeos/análise
15.
Biodegradation ; 35(3): 225-247, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37688749

RESUMO

Landfill leachate raises a huge risk to human health and the environment as it contains a high concentration of organic and inorganic contaminants, heavy metals, ammonia, and refractory substances. Among leachate treatment techniques, the biological methods are more environmentally benign and less expensive than the physical-chemical treatment methods. Over the last few years, fungal-based treatment processes have become popular due to their ability to produce powerful oxidative enzymes like peroxidases and laccases. Fungi have shown better removal efficiency in terms of color, ammonia, and COD. However, their use in the treatment of leachate is relatively recent and still needs to be investigated. This review article assesses the potential of fungi and fungal-derived enzymes in treating landfill leachate. The review also compares different enzymes involved in the fungal catabolism of organic pollutants and the enzyme degradation mechanisms. The effect of parameters like pH, temperature, contact time, dosage variation, heavy metals and ammonia are discussed. The paper also explores the reactor configuration used in the fungal treatment and the techniques used to improve leachate treatment efficacy, like pretreatment and fungi immobilisation. Finally, the review summarises the limitations and the future direction of work required to adapt the fungal application for leachate treatment on a large scale.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Amônia , Fungos/metabolismo
16.
Biodegradation ; 35(5): 469-491, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38748305

RESUMO

Landfills are widely employed as the primary means of solid waste disposal. However, this practice generates landfill gas (LFG) which contains methane (CH4), a potent greenhouse gas, as well as various volatile organic compounds and volatile inorganic compounds. These emissions from landfills contribute to approximately 25% of the total atmospheric CH4, indicating the imperative need to valorize or treat LFG prior to its release into the atmosphere. This review first aims to outline landfills, waste disposal and valorization, conventional gas treatment techniques commonly employed for LFG treatment, such as flares and thermal oxidation. Furthermore, it explores biotechnological approaches as more technically and economically feasible alternatives for mitigating LFG emissions, especially in the case of small and aged landfills where CH4 concentrations are often below 3% v/v. Finally, this review highlights biofilters as the most suitable biotechnological solution for LFG treatment and discusses several advantages and challenges associated with their implementation in the landfill environment.


Assuntos
Poluentes Atmosféricos , Filtração , Eliminação de Resíduos , Instalações de Eliminação de Resíduos , Eliminação de Resíduos/métodos , Metano , Biodegradação Ambiental , Compostos Orgânicos Voláteis , Poluição do Ar/prevenção & controle , Gases
17.
Ecotoxicol Environ Saf ; 271: 115968, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218107

RESUMO

The physicochemical properties, chemical fractions of six metals (Cu, Zn, Pb, Cd, Cr, and Mn), and microbial communities of soil around a typical sanitary landfill were analyzed. The results indicate that soils around the landfill were from neutral to weak alkalinity. The contents of organic matter (OM), total nitrogen (TN), total phosphorous (TP), and activities of catalase, cellulase, and urease were significantly higher in landfill soils than those in background soils. Negative correlations were found between pH and metals. Cr was the dominant metal. Cu, Pb, Cr, and Mn were accumulated in the nearby farmland soils. Cd had the highest percentage of exchangeable fraction (33.7%-51.8%) in landfill and farmland soils, suggesting a high bioavailability to the soil environment affected by the landfill. Pb, Cr, and Mn existed mostly in oxidable fraction, and Cu and Zn were dominant in residual fraction. There was a low risk of soil metals around the landfill based on the RI values, while according to RAC classification, Cd had high to very high environmental risk. The MisSeq sequencing results showed that Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria were the dominant phyla of bacteria, and the most abundant phylum of fungi was Ascomycota. The NMDS analysis revealed that the landfill could influence soil fungal communities more intensely than bacterial communities. TN, cellulase, and bioavailable metals (Pb-Bio and Cr-Bio) were identified to have main influences on microbial communities. Pb-Bio was the most dominant driving factor for bacterial community structures. For fungi, Pb-Bio was significantly negatively related to Olpidiomycota and Cr-Bio had a significantly negative correlation with Ascomycota. It manifests that bioavailable metals play important roles in assessing environmental risks and microbial community structures of soil around landfill.


Assuntos
Celulases , Metais Pesados , Microbiota , Poluentes do Solo , Solo/química , Metais Pesados/toxicidade , Metais Pesados/análise , Cádmio/análise , Chumbo/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Bactérias/genética , Fungos , Instalações de Eliminação de Resíduos , Medição de Risco , China , Monitoramento Ambiental
18.
Ecotoxicol Environ Saf ; 285: 117103, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326354

RESUMO

Aging petrochemical landfills serve as reservoirs of inorganic and organic contaminants, posing potential risks of contamination to the surrounding environment. Identifying the pollution characteristics and elucidating the translocation/ transformation processes of typical contaminants in aging petrochemical landfills are crucial yet challenging endeavors. In this study, we employed a combination of chemical analysis and microbial metagenomic technologies to investigate the pollution characteristics of benzene, toluene, ethylbenzene, and xylene (BTEX) as well as metal(loid)s in a representative aging landfill, surrounding soils, and underlying groundwater. Furthermore, we aimed to explore their transformations driven by microbial activity. Our findings revealed widespread distribution of metal(loid)s, including Cd, Ni, Cu, As, Mn, Pb, and Zn, in these environmental media, surpassing soil background values and posing potential ecological risks. Additionally, microbial processes were observed to contribute significantly to the degradation of BTEX compounds and the transformation of metal(loid)s in landfills and surrounding soils, with identified microbial communities and functions playing key roles. Notably, co-occurrence network analysis unveiled the coexistence of functional genes associated with BTEX degradation and metal(loid) transformation, driven primarily by As, Ni, and Cd. These results shed light on the co-selection of resistance traits against BTEX and metal(loid) contaminants in soil microbial consortia under co-contamination scenarios, supporting microbial adaptive evolution in aging petrochemical landfills. The insights gained from this study enhance our understanding of characteristic pollutants and microbial transformation processes in aging landfills, thereby facilitating improved landfill management and contamination remediation strategies.

19.
Ecotoxicol Environ Saf ; 280: 116476, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820822

RESUMO

Rural waste accumulation leads to heavy metal soil pollution, impacting microbial communities. However, knowledge gaps exist regarding the distribution and occurrence patterns of bacterial communities in multi-metal contaminated soil profiles. In this study, high-throughput 16 S rRNA gene sequencing technology was used to explore the response of soil bacterial communities to various heavy metal pollution in rural simple waste dumps in karst areas of Southwest China. The study selected three habitats in the center, edge, and uncontaminated areas of the waste dump to evaluate the main factors driving the change in bacterial community composition. Pollution indices reveal severe contamination across all elements, except for moderately polluted lead (Pb); contamination severity ranks as follows: Mn > Cd > Zn > Cr > Sb > V > Cu > As > Pb. Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota predominate, collectively constituting over 60% of the relative abundance. Analysis of Chao and Shannon indices demonstrated that the waste dump center boasted the greatest bacterial richness and diversity. Correlation data indicated a predominant synergistic interaction among the landfill's bacterial community, with a higher number of positive associations (76.4%) compared to negative ones (26.3%). Network complexity was minimal at the dump's edge. RDA analysis showed that Pb(explained:46%) and Mn(explained:21%) were the key factors causing the difference in bacterial community composition in the edge area of the waste dump, and AK(explained:42.1%) and Cd(explained:35.2%) were the key factors in the center of the waste dump. This study provides important information for understanding the distribution patterns, co-occurrence networks, and environmental response mechanisms of bacterial communities in landfill soils under heavy metal stress, which helps guide the formulation of rural waste treatment and soil remediation strategies.


Assuntos
Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Solo , Metais Pesados/análise , Metais Pesados/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , China , Solo/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , RNA Ribossômico 16S , Instalações de Eliminação de Resíduos , Monitoramento Ambiental , Proteobactérias , Actinobacteria/genética , Microbiota/efeitos dos fármacos , Chloroflexi/efeitos dos fármacos , Chloroflexi/genética
20.
Ecotoxicol Environ Saf ; 273: 116151, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412633

RESUMO

This research aimed to develop a new method for clean utilization and treatment of landfill leachate and solid waste weathered coal. Landfill leachate and weathered coal were adopted for combined anaerobic fermentation for methane production. The characteristics of microbial community, mechanism of biological methane production, and utilization characteristics of fermentation broth and solid residue for co-fermentation were analyzed through metagenomics, soluble organic matter detection and thermogravimetric (TG) analysis. The obtained results revealed that combined anaerobic fermentation increased methane production by 80.1%. Syntrophomonas, Salipiger, Methanosaeta and Methanothrix were highly correlated. Gene abundances of 2-oxoacid ferredoxin oxidoreductase and enolase were increased in methane conversion pathway mainly by acetic acid. Pyruvate-ferroredoxin oxidoreductase, 2-oxoglutarate synthase and succinate dehydrogenase acetate synthase intensified electron transfer pathways among microorganisms. Fulvic acid, tyrosine and tryptophan contents were high in fermentation broth. Volatile decomposition temperature, ignition point and residual char combustion temperature of residual coal were decreased and combustion was more stable. The obtained results showed that the co-fermentation of landfill leachate and weathered coal improved biological methane gas production, degraded weathered coal and improved combustion performance, which provided a new idea for weathered coal clean utilization.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fermentação , Anaerobiose , Metano/metabolismo , Oxirredutases/metabolismo , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA