RESUMO
microRNAs (miRNAs) regulate target gene expression by pairing to target mRNAs, leading to mRNA degradation or translation inhibition. Out of several miRNAs in Arabidopsis, miR397b and miR857 regulate secondary growth by modulating lignin polymerization and deposition in secondary xylem cells by targeting laccases. Interestingly, the phytohormone ethylene is also suggested to have a role in lignin biosynthesis in tension wood formation. Despite this information, it is not known whether ethylene has any role in controlling secondary growth via miRNAs-mediated pathways. In this study, we elucidate that ethylene acts upstream to the miR397b/miR857-laccases module and negatively regulates lignin biosynthesis by directly activating the expression of both the miRNAs. The binding of EIN3 to the promoter of miR397b is further validated by yeast one-hybrid assay. In addition to its role in lignification, ethylene also regulates leaf serration by directly regulating the expression of NAC transcription factors, like CUP-SHAPED COTYLEDON2 (CUC2) and CUC3. Together, our study suggests a novel mechanism involving ethylene and miRNAs in lignin biosynthesis and leaf serration in Arabidopsis thaliana.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Folhas de Planta/metabolismoRESUMO
The presence of small tooth-like indentations, or serrations, characterizes leaf margins of Arabidopsis thaliana plants. The NAC family member CUP-SHAPED COTYLEDON 2 (CUC2), which undergoes post-transcriptional gene silencing by three micro-RNA genes (MIR164A, B and C), controls the extension of leaf serration. Here, we analyzed the role of AtHB1, a transcription factor (TF) belonging to the homeodomain-leucine zipper subfamily I, in shaping leaf margins. Using mutants with an impaired silencing pathway as background, we obtained transgenic plants expressing AtHB1 over 100 times compared to controls. These plants presented an atypical developmental phenotype characterized by leaves with deep serration. Transcript measurements revealed that CUC2 expression was induced in plants overexpressing AtHB1 and repressed in athb1 mutants, indicating a positive regulation exerted by this TF. Moreover, molecular analyses of AtHB1 overexpressing and mutant plants revealed that AtHB1 represses MIR164 transcription. We found that overexpression of MIR164B was able to reverse the serration phenotype of plants overexpressing AtHB1. Finally, chromatin immunoprecipitation assays revealed that AtHB1 was able to bind in vivo the promoter regions of all three MIR164 encoding loci. Altogether, our results indicate that AtHB1 directly represses MIR164 expression to enhance leaf serration by increasing CUC2 levels.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroRNAs/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Fenótipo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , TranscriptomaRESUMO
Leaf margin serration is a morphological characteristic in plants. The CUC2 (CUP-SHAPED COTYLEDON 2) gene plays an important role in the outgrowth of leaf teeth and enhances leaf serration via suppression of growth in the sinus. In this study, we isolated the BcCUC2 gene from Pak-choi (Brassica rapa ssp. chinensis), which contains a 1104 bp coding sequence, encoding 367 amino acid residues. Multiple sequence alignment exhibited that the BcCUC2 gene has a typical conserved NAC domain, and phylogenetic relationship analysis showed that the BcCUC2 protein has high identity with Cruciferae plants (Brassica oleracea, Arabidopsis thaliana, and Cardamine hirsuta). The tissue-specific expression analysis displayed that the BcCUC2 gene has relatively high transcript abundance in floral organs. Meanwhile, the expression profile of BcCUC2 was relatively higher in the '082' lines with serrate leaf margins than the '001' lines with smooth leaf margins in young leaves, roots, and hypocotyls. In addition, the transcript level of BcCUC2 was up-regulated by IAA and GA3 treatment, especially at 1-3 h. The subcellular localization assay demonstrated that BcCUC2 was a nuclear-target protein. Furthermore, leaf serration occurred, and the number of the inflorescence stem was increased in the transgenic Arabidopsis thaliana plants' overexpressed BcCUC2 gene. These data illustrated that BcCUC2 is involved in the development of leaf margin serration, lateral branches, and floral organs, contributing to further uncovering and perfecting the regulation mechanism of leaf serration in Pak-choi.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Expressão Ectópica do Gene , Filogenia , Folhas de Planta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismoRESUMO
MicroRNAs (miRNAs) are short non-coding RNAs (21-24 nt) that play important roles in plant growth and development. The miR164 family is highly conserved in plants and the miR164-NAM/ATAF/CUC (NAC) module is validated to regulate leaf and flower development, lateral root initiation and stress response. However, our knowledge of its role in Populus remains limited. In this study, two mature miRNA species, miR164e-5p and miR164e-3p, were identified in Populus deltoides. Their nucleotide sequences were identical to those of miR164a/b/c/d/e-5p and miR164b/e-3p in P. tremula × P. alba clone 717-1B4 (hereinafter poplar 717), respectively. Transgenic plants of poplar 717, including overexpression lines (35S::pri-miR164e) and Short Tandem Target Mimic lines (STTM-miR164a-d,e-5p and STTM-miR164b/e-3p), were generated to study the roles of miR164e-5p and miR164e-3p in poplar. Compared with poplar 717, the leaf margins of 35S::pri-miR164e lines were smoother, the leaves of STTM-miR164b/e-3p line were more serrated, while the leaf morphology of STTM-miR164a-d,e-5p lines had no obvious change. In addition, both 35S::pri-miR164e and STTM-miR164b/e-3p plants had a dwarf phenotype. Expressions of miR164a-d,e-5p target genes, including PtaCUC2a, PtaCUC2b and PtaORE1, was significantly reduced in the apex of 35S::pri-miR164e lines. Green fluorescent protein (GFP) reporter assay showed that PtaCUC2a/2b and PtaORE1 were cleaved by miR164a-d,e-5p, and the cleavage was inhibited by STTM-miR164b/e-3p. Therefore, miR164b/e-3p may cooperate with miR164a-d,e-5p to regulate certain NAC members, such as PtaCUC2a/2b and PtaORE1, thereby regulating leaf development and plant growth in poplar. Our findings add new insights into the mechanisms by which the miR164-NAC module regulates plant development.
Assuntos
Arabidopsis , MicroRNAs , Populus , Arabidopsis/genética , Populus/genética , Populus/metabolismo , Folhas de Planta/metabolismo , Sequência de Bases , Fenótipo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Phospholipase C (PLC) has been suggested to play important roles in plant stress and development. To increase our understanding of PLC signaling in plants, we have started to analyze knock-out (KO), knock-down (KD) and overexpression mutants of Arabidopsis thaliana, which contains nine PLCs. Earlier, we characterized PLC2, PLC3 and PLC5. Here, the role of PLC7 is functionally addressed. Promoter-GUS analyses revealed that PLC7 is specifically expressed in the phloem of roots, leaves and flowers, and is also present in trichomes and hydathodes. Two T-DNA insertion mutants were obtained, i.e., plc7-3 being a KO- and plc7-4 a KD line. In contrast to earlier characterized phloem-expressed PLC mutants, i.e., plc3 and plc5, no defects in primary- or lateral root development were found for plc7 mutants. Like plc3 mutants, they were less sensitive to ABA during stomatal closure. Double-knockout plc3 plc7 lines were lethal, but plc5 plc7 (plc5/7) double mutants were viable, and revealed several new phenotypes, not observed earlier in the single mutants. These include a defect in seed mucilage, enhanced leaf serration, and an increased tolerance to drought. Overexpression of PLC7 enhanced drought tolerance too, similar to what was earlier found for PLC3-and PLC5 overexpression. In vivo 32Pi-labeling of seedlings and treatment with sorbitol to mimic drought stress, revealed stronger PIP2 responses in both drought-tolerant plc5/7 and PLC7-OE mutants. Together, these results show novel functions for PLC in plant stress and development. Potential molecular mechanisms are discussed.