RESUMO
GRN mutations cause frontotemporal dementia (GRN-FTD) due to deficiency in progranulin (PGRN), a lysosomal and secreted protein with unclear function. Here, we found that Grn-/- mice exhibit a global deficiency in bis(monoacylglycero)phosphate (BMP), an endolysosomal phospholipid we identified as a pH-dependent PGRN interactor as well as a redox-sensitive enhancer of lysosomal proteolysis and lipolysis. Grn-/- brains also showed an age-dependent, secondary storage of glucocerebrosidase substrate glucosylsphingosine. We investigated a protein replacement strategy by engineering protein transport vehicle (PTV):PGRN-a recombinant protein linking PGRN to a modified Fc domain that binds human transferrin receptor for enhanced CNS biodistribution. PTV:PGRN rescued various Grn-/- phenotypes in primary murine macrophages and human iPSC-derived microglia, including oxidative stress, lysosomal dysfunction, and endomembrane damage. Peripherally delivered PTV:PGRN corrected levels of BMP, glucosylsphingosine, and disease pathology in Grn-/- CNS, including microgliosis, lipofuscinosis, and neuronal damage. PTV:PGRN thus represents a potential biotherapeutic for GRN-FTD.
Assuntos
Produtos Biológicos/uso terapêutico , Encéfalo/metabolismo , Doenças por Armazenamento dos Lisossomos/terapia , Progranulinas/uso terapêutico , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Endossomos/metabolismo , Feminino , Demência Frontotemporal/sangue , Demência Frontotemporal/líquido cefalorraquidiano , Gliose/complicações , Gliose/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos , Lipofuscina/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Degeneração Neural/patologia , Fenótipo , Progranulinas/deficiência , Progranulinas/metabolismo , Receptores Imunológicos/metabolismo , Receptores da Transferrina/metabolismo , Distribuição TecidualRESUMO
Phagocytosis is a fundamental immunobiological process responsible for the removal of harmful particulates. While the number of phagocytic events achieved by a single phagocyte can be remarkable, exceeding hundreds per day, the same phagocytic cells are relatively long-lived. It should therefore be obvious that phagocytic meals must be resolved in order to maintain the responsiveness of the phagocyte and to avoid storage defects. In this article, we discuss the mechanisms involved in the resolution process, including solute transport pathways and membrane traffic. We describe how products liberated in phagolysosomes support phagocyte metabolism and the immune response. We also speculate on mechanisms involved in the redistribution of phagosomal metabolites back to circulation. Finally, we highlight the pathologies owed to impaired phagosome resolution, which range from storage disorders to neurodegenerative diseases.
Assuntos
Fagocitose , Fagossomos , Humanos , Fagossomos/metabolismo , FagócitosRESUMO
Age-related macular degeneration, Stargardt disease, and their Abca4-/- mouse model are characterized by accelerated accumulation of the pigment lipofuscin, derived from photoreceptor disc turnover in the retinal pigment epithelium (RPE); lipofuscin accumulation and retinal degeneration both occur earlier in albino mice. Intravitreal injection of superoxide (O2â¢-) generators reverses lipofuscin accumulation and rescues retinal pathology, but neither the target nor mechanism is known. Here we show that RPE contains thin multi-lamellar membranes (TLMs) resembling photoreceptor discs, which associate with melanolipofuscin granules in pigmented mice but in albinos are 10-fold more abundant and reside in vacuoles. Genetically over-expressing tyrosinase in albinos generates melanosomes and decreases TLM-related lipofuscin. Intravitreal injection of generators of O2â¢- or nitric oxide (â¢NO) decreases TLM-related lipofuscin in melanolipofuscin granules of pigmented mice by ~50% in 2 d, but not in albinos. Prompted by evidence that O2â¢- plus â¢NO creates a dioxetane on melanin that excites its electrons to a high-energy state (termed "chemiexcitation"), we show that exciting electrons directly using a synthetic dioxetane reverses TLM-related lipofuscin even in albinos; quenching the excited-electron energy blocks this reversal. Melanin chemiexcitation assists in safe photoreceptor disc turnover.
Assuntos
Degeneração Macular , Melaninas , Camundongos , Animais , Melaninas/metabolismo , Lipofuscina/metabolismo , Degeneração Macular/prevenção & controle , Degeneração Macular/patologia , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transportadores de Cassetes de Ligação de ATPRESUMO
Dry age-related macular degeneration (AMD) is a prevalent clinical condition that leads to permanent damage to central vision and poses a significant threat to patients' visual health. Although the pathogenesis of dry AMD remains unclear, there is consensus on the role of retinal pigment epithelium (RPE) damage. Oxidative stress and chronic inflammation are major contributors to RPE cell damage, and the NOD-like receptor thermoprotein structural domain-associated protein 3 (NLRP3) inflammasome mediates the inflammatory response leading to apoptosis in RPE cells. Furthermore, lipofuscin accumulation results in oxidative stress, NLRP3 activation, and the development of vitelliform lesions, a hallmark of dry AMD, all of which may contribute to RPE dysfunction. The process of autophagy, involving the encapsulation, recognition, and transport of accumulated proteins and dead cells to the lysosome for degradation, is recognized as a significant pathway for cellular self-protection and homeostasis maintenance. Recently, RPE cell autophagy has been discovered to be closely linked to the development of macular degeneration, positioning autophagy as a cutting-edge research area in the realm of dry AMD. In this review, we present an overview of how lipofuscin, oxidative stress, and the NLRP3 inflammasome damage the RPE through their respective causal mechanisms. We summarized the connection between autophagy, oxidative stress, and NLRP3 inflammatory cytokines. Our findings suggest that targeting autophagy improves RPE function and sustains visual health, offering new perspectives for understanding the pathogenesis and clinical management of dry AMD.
Assuntos
Autofagia , Estresse Oxidativo , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Autofagia/fisiologia , Estresse Oxidativo/fisiologia , Inflamassomos/metabolismo , Lipofuscina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologiaRESUMO
Progressive Rod-Cone Degeneration (PRCD) is an integral membrane protein found in photoreceptor outer segment (OS) disc membranes and its function remains unknown. Mutations in Prcd are implicated in Retinitis pigmentosa (RP) in humans and multiple dog breeds. PRCD-deficient models exhibit decreased levels of cholesterol in the plasma. However, potential changes in the retinal cholesterol remain unexplored. In addition, impaired phagocytosis observed in these animal models points to potential deficits in the retinal pigment epithelium (RPE). Here, using a Prcd-/- murine model we investigated the alterations in the retinal cholesterol levels and impairments in the structural and functional integrity of the RPE. Lipidomic and immunohistochemical analyses show a 5-fold increase in the levels of cholesteryl esters (C.Es) and lipid deposits in the PRCD-deficient retina, respectively, indicating alterations in total retinal cholesterol. Furthermore, the RPE of Prcd-/- mice exhibit a 1.7-fold increase in the expression of lipid transporter gene ATP-binding cassette transporter A1 (Abca1). Longitudinal fundus and spectral domain optical coherence tomography (SD-OCT) examinations showed focal lesions and RPE hyperreflectivity. Strikingly, the RPE of Prcd-/- mice exhibited age-related pathological features such as lipofuscin accumulation, Bruch's membrane (BrM) deposits and drusenoid focal deposits, mirroring an Age-related Macular Degeneration (AMD)-like phenotype. We propose that the extensive lipofuscin accumulation likely impairs lysosomal function, leading to the defective phagocytosis observed in Prcd-/- mice. Our findings support the dysregulation of retinal cholesterol homeostasis in the absence of PRCD. Further, we demonstrate that progressive photoreceptor degeneration in Prcd-/- mice is accompanied by progressive structural and functional deficits in the RPE, which likely exacerbates vision loss over time.
Assuntos
Modelos Animais de Doenças , Epitélio Pigmentado da Retina , Tomografia de Coerência Óptica , Animais , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Camundongos , Metabolismo dos Lipídeos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Distrofias de Cones e Bastonetes/metabolismo , Distrofias de Cones e Bastonetes/genética , Eletrorretinografia , Lâmina Basilar da Corioide/metabolismo , Lâmina Basilar da Corioide/patologia , Imuno-Histoquímica , Degeneração Macular/congênitoRESUMO
Parkinson's disease (PD) is a common neurodegenerative disease in the older adults. The main pathological change in PD is the degenerative death of dopamine (DA) neurons in the midbrain substantia nigra, which causes a significant decrease in the DA content of the striatum. However, the exact etiology of this pathological change remains unclear. Genetic factors, environmental factors, aging, and oxidative stress may be involved in the degenerative death of dopaminergic neurons in PD. Pharmacological treatment using levodopa (L-DOPA) remains the main treatment for PD. Most patients with PD consuming L-DOPA for a long time usually develop levodopa-induced dyskinesia (LID) after 6.5 years of use, and LID seriously affects the quality of life and increases the risk of disability. Recently, studies have revealed that cerebral iron deposition may be involved in LID development and that iron deposition has neurotoxic effects and accelerates disease onset. However, the relationship between cerebral iron deposition and LID remains unclear. Herein, we reviewed the mechanisms by which iron deposition may be associated with LID development, which are mainly related to oxidative stress, neuroinflammation, and mitochondrial and lysosomal dysfunction. Using iron as an important target, the search and development of safe and effective brain iron scavengers, and thus the alleviation and treatment of LID, has a very important scientific and clinical value, as well as a good application prospect.
RESUMO
INTRODUCTION: The aims of the study were to describe baseline quantitative (short-wavelength) autofluorescence (qAF) findings in a large pseudophakic cohort at age-related macular degeneration (AMD)'s beginnings and to assess qAF8 as an outcome measure and evaluate Age-Related Eye Disease Study (AREDS) and Beckman grading systems. METHODS: In the ALSTAR2 baseline cohort (NCT04112667), 346 pseudophakic eyes of 188 persons (74.0 ± 5.5 years) were classified as normal (N = 160 by AREDS, 158 by Beckman), early AMD (eAMD) (N = 104, 66), and intermediate AMD (iAMD) (N = 82, 122). Groups were compared via mean qAF intensities in a 6°-8° annulus (qAF8) and maps of differences between observations and the overall mean, divided by standard deviation (Z-score). RESULTS: qAF8 did not differ significantly among diagnostic groups by either stratification (p = 0.0869 AREDS; p = 0.0569 by Beckman). Notably, 45 eyes considered eAMD by AREDS became iAMD by Beckman. For AREDS-stratified eyes, Z-score maps showed higher centrally located qAF for normal, near the mean in eAMD, and lower values for iAMD. Maps deviated from this pattern for Beckman-stratified eyes. CONCLUSIONS: In a large sample of pseudophakic eyes, qAF8 does not differ overall from normal aging to iAMD but also does not capture the earliest AMD activity in the macula lutea. AREDS classification gives results more consistent with a slow decline in histologic autofluorescence than Beckman classification.
RESUMO
Lipofuscin granules enclose mixtures of cross-linked proteins and lipids in proportions that depend on the tissue analyzed. Retinal lipofuscin is unique in that it contains mostly lipids with very little proteins. However, retinal lipofuscin also presents biological and physicochemical characteristics indistinguishable from conventional granules, including indigestibility, tendency to cause lysosome swelling that results in rupture or defective functions, and ability to trigger NLRP3 inflammation, a symptom of low-level disruption of lysosomes. In addition, like conventional lipofuscins, it appears as an autofluorescent pigment, considered toxic waste, and a biomarker of aging. Ocular lipofuscin accumulates in the retinal pigment epithelium (RPE), whereby it interferes with the support of the neuroretina. RPE cell death is the primary cause of blindness in the most prevalent incurable genetic and age-related human disorders, Stargardt disease and age-related macular degeneration (AMD), respectively. Although retinal lipofuscin is directly linked to the cell death of the RPE in Stargardt, the extent to which it contributes to AMD is a matter of debate. Nonetheless, the number of AMD clinical trials that target lipofuscin formation speaks for the potential relevance for AMD as well. Here, we show that retinal lipofuscin triggers an atypical necroptotic cascade, amenable to pharmacological intervention. This pathway is distinct from canonic necroptosis and is instead dependent on the destabilization of lysosomes. We also provide evidence that necroptosis is activated in aged human retinas with AMD. Overall, this cytotoxicity mechanism may offer therapeutic targets and markers for genetic and age-related diseases associated with lipofuscin buildups.
Assuntos
Membranas Intracelulares/metabolismo , Lipofuscina/farmacologia , Lisossomos/metabolismo , Necroptose/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Envelhecimento , Oxirredutases do Álcool , Animais , Morte Celular , Humanos , Lipofuscina/metabolismo , Degeneração Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismoRESUMO
PURPOSE: This study focused on the selected markers of oxidative stress, impact of elevated lead levels on long-term hearing quality. We investigated whether the presence of certain essential minerals might provide protection to the auditory system against the effects of lead (and cadmium) compounds. METHODS: The research group included 280 male employees of the zinc and lead smelter, which was divided into: L-Pb-low blood lead concentration (PbB) subgroup, H-Pb-high PbB subgroup. Hearing tests were performed using the click evoked otoacoustic emission (CEOAE). RESULTS: Zinc protoporphyrin level was significantly higher in the H-Pb subgroup by 68%. Cd concentration was significantly higher in H-Pb by 33%. The Ca concentration was significantly lower in the H-Pb by - 2%. Selected oxidative stress markers concentration were significantly higher in the H-Pb group: malondialdehyde (MDA) by 4%, and lipofuscin (LPS) by 9%. In the CEOAE results showed statistically significant differences between the L-Pb and H-Pb subgroups. Larger negative changes in otoemission amplitude were observed in H-Pb subgroup. All otoemission results showed a statistically significant negative correlation with age, time of work, MDA concentration, and with PbB. Selected CEOAE parameters showed a significant negative correlation with cadmium blood concentration (CdB), and a positive correlation with Ca and Zn. CONCLUSION: Elevated blood lead content in occupational exposure is associated with an increase in MDA and LPS concentration, which negatively correlates with CEOAE parameters. This suggests an important role of oxidative stress in the long-term deterioration of hearing.
Assuntos
Biomarcadores , Cádmio , Chumbo , Exposição Ocupacional , Emissões Otoacústicas Espontâneas , Estresse Oxidativo , Protoporfirinas , Humanos , Estresse Oxidativo/fisiologia , Masculino , Exposição Ocupacional/efeitos adversos , Chumbo/sangue , Adulto , Emissões Otoacústicas Espontâneas/fisiologia , Biomarcadores/sangue , Protoporfirinas/sangue , Cádmio/sangue , Pessoa de Meia-Idade , Malondialdeído/sangue , Doenças Profissionais/sangue , Doenças Profissionais/fisiopatologia , Cálcio/sangue , Zinco/sangue , MetalurgiaRESUMO
The retinal pigment epithelium (RPE), which ensures the normal functioning of the neural retina, is a pigmented single-cell layer that separates the retina from the Bruch's membrane and the choroid. There are three main types of pigment granules in the RPE cells of the human eye: lipofuscin granules (LG) containing the fluorescent "age pigment" lipofuscin, melanoprotein granules (melanosomes, melanolysosomes) containing the screening pigment melanin and complex melanolipofuscin granules (MLG) containing both types of pigments simultaneously-melanin and lipofuscin. This review examines the functional role of pigment granules in the aging process and in the development of oxidative stress and associated pathologies in RPE cells. The focus is on the process of light-induced oxidative degradation of pigment granules caused by reactive oxygen species. The reasons leading to increased oxidative stress in RPE cells as a result of the oxidative degradation of pigment granules are considered. A mechanism is proposed to explain the phenomenon of age-related decline in melanin content in RPE cells. The essence of the mechanism is that when the lipofuscin part of the melanolipofuscin granule is exposed to light, reactive oxygen species are formed, which destroy the melanin part. As more melanolipofuscin granules are formed with age and the development of degenerative diseases, the melanin in pigmented epithelial cells ultimately disappears.
Assuntos
Melaninas , Epitélio Pigmentado da Retina , Humanos , Lipofuscina , Espécies Reativas de Oxigênio , RetinaRESUMO
The aging ovary in mammals leads to the reduced production of sex hormones and a deterioration in follicle quality. The interstitial gland originates from the hypertrophy of the theca cells of atretic follicles and represents an accumulative structure of the ovary that may contribute to its aging. Here, reproductive and mature rabbit ovaries are used to determine whether the interstitial gland plays a crucial role in ovarian aging. We demonstrate that, in the mature ovary, interstitial gland cells accumulate lipid droplets and show ultrastructural characteristics of lipophagy. Furthermore, they undergo modifications and present a foamy appearance, do not express the pan-leukocyte CD-45 marker, and express CYP11A1. These cells are the first to present an increase in lipofuscin accumulation. In foamy cells, the expression of p21 remains low, PCNA expression is maintained at mature ages, and their nuclei do not show positivity for H2AX. The interstitial gland shows a significant increase in lipofuscin accumulation compared with the ovaries of younger rabbits, but lipofuscin accumulation remains constant at mature ages. Surprisingly, no accumulation of cells with DNA damage is evident, and an increase in proliferative cells is observed at the age of 36 months. We suggest that the interstitial gland initially uses lipophagy to maintain steroidogenic homeostasis and prevent cellular senescence.
Assuntos
Envelhecimento , Senescência Celular , Lipofuscina , Ovário , Animais , Feminino , Coelhos , Envelhecimento/metabolismo , Ovário/metabolismo , Ovário/citologia , Lipofuscina/metabolismo , Chinchila , Células Tecais/metabolismo , Folículo Ovariano/metabolismo , Folículo Ovariano/citologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Dano ao DNARESUMO
Efficient delivery of vitamin A to the retinal pigment epithelium is vital to the production of the light-sensitive visual chromophore 11-cis-retinal. Nevertheless, retinol binding protein 4 (RBP4) is the only known carrier of vitamin A in plasma. Here, we present new findings that further characterize the visual cycle in the presence of Rbp4 deficiency. In the face of impaired delivery of retinol in Rbp4-/- mice, we determined that 11-cis-retinaldehyde reached levels that were â¼60% of WT at 4 months of age and all-trans-retinyl ester was 18% of normal yet photoreceptor cell loss was apparent by 8 months of age. The lack of Rbp4 appeared to have a greater impact on scotopic rod-mediated responses than on cone function at early ages. Also, despite severely impaired delivery of retinol, bisretinoid lipofuscin that forms as a byproduct of the visual cycle was measurable by HPLC and by quantitative fundus autofluorescence. In mice carrying an Rpe65 amino acid variant that slows visual cycle kinetics, Rbp4 deficiency had a less pronounced effect on 11-cis-retinal levels. Finally, we found that ocular retinoids were not altered in mice expressing elevated adipose-derived total Rbp4 protein (hRBP4+/+AdiCre+/-). In conclusion, our findings are consistent with a model in which vitamin A can be delivered to the retina by Rbp4-independent pathways.
Assuntos
Retinaldeído , Vitamina A , Animais , Camundongos , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/metabolismo , Retinoides/metabolismo , Vitamina A/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismoRESUMO
Bisphenol A (BPA) is one of the primary chemicals produced by volume worldwide. Extensive literature has raised many concerns about its possible involvement in the pathogenesis of kidney diseases, but its contribution has not been extensively studied. During cellular senescence, the interference of lipofuscin with cellular functions promotes further senescence, causing cellular malfunction. Insulin-like growth factor-1 (IGF-1) plays an important protective role in the setting of kidney injury. The goal of the present work was to evaluate the effects of short-term treatment with low doses of BPA on cellular senescence in adult rat kidneys. Male Wistar rats were injected with vehicle (CONTROL group) or 50 or 500 µg/kg/day of BPA for 1 week (BPA50 and BPA500 groups, respectively). The kidneys were fixed in 4% buffered formaldehyde and embedded in paraffin. Immunohistochemical analyses were performed, and an immunoreactive score (IRS) was calculated. Lipofuscin autofluorescence was used for the study of cellular senescence. The renal cortex showed diffuse autofluorescent lipofuscin signal in the proximal convoluted tubules (PCTs) of males in the BPA50-treated (weak intensity) and BPA500-treated (strong intensity) groups, but not in CONTROL males. Labeling of cortical PCTs with anti-IGF-1 antibodies showed an IRS of 0 in the CONTROL group, but IRSs of 4 and 6 in the BPA50- and BPA500-treated groups, respectively. The present results suggest that low, "safe" doses of BPA induce renal injury, as measured by histological signs of renal changes, increased cellular senescence, and activation of cellular repair systems in PCTs.
Assuntos
Senescência Celular , Lipofuscina , Ratos , Animais , Masculino , Ratos Wistar , RimRESUMO
BACKGROUND: The pristane-induced lupus (PIL) model is a useful tool for studying environmental-related systemic lupus erythematosus (SLE). However, neuropsychiatric manifestations in this model have not been investigated in detail. Because neuropsychiatric lupus (NPSLE) is an important complication of SLE, we investigated the neuropsychiatric symptoms in the PIL mouse model to evaluate its suitability for NPSLE studies. RESULTS: PIL mice showed olfactory dysfunction accompanied by an anxiety- and depression-like phenotype at month 2 or 4 after pristane injection. The levels of cytokines (IL-1ß, IFN-α, IFN-ß, IL-10, IFN-γ, IL-6, TNF-α and IL-17A) and chemokines (CCL2 and CXCL10) in the brain and blood-brain barrier (BBB) permeability increased significantly from week 2 or month 1, and persisted throughout the observed course of the disease. Notably, IgG deposition in the choroid plexus and lateral ventricle wall were observed at month 1 and both astrocytes and microglia were activated. Persistent activation of astrocytes was detected throughout the observed course of the disease, while microglial activation diminished dramatically at month 4. Lipofuscin deposition, a sign of neuronal damage, was detected in cortical and hippocampal neurons from month 4 to 8. CONCLUSION: PIL mice exhibit a series of characteristic behavioral deficits and pathological changes in the brain, and therefore might be suitable for investigating disease pathogenesis and for evaluating potential therapeutic targets for environmental-related NPSLE.
Assuntos
Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Animais , Camundongos , Vasculite Associada ao Lúpus do Sistema Nervoso Central/induzido quimicamente , Vasculite Associada ao Lúpus do Sistema Nervoso Central/diagnóstico , Vasculite Associada ao Lúpus do Sistema Nervoso Central/tratamento farmacológico , Citocinas , Quimiocinas/uso terapêuticoRESUMO
Accumulation of autofluorescent waste products, amyloids, and products of lipid peroxidation (LPO) are important hallmarks of aging. Until now, these processes have not been documented in Daphnia, a convenient model organism for longevity and senescence studies. We conducted a longitudinal cohort study of autofluorescence and Congo Red (CR) fluorescent staining for amyloids in four clones of D. magna. Additionally, we used a single time point cross-sectional common garden experiment within a single clone in which autofluorescence and BODIPY C11 fluorescence were measured. We observed a robust increase in autofluorescent spots that show diagnostic co-staining by Sudan Black indicating lipofuscin aggregates, particularly in the upper body region. There was also a significant clone-by-age interaction indicating that some genotypes accumulated lipofuscins faster than others. Contrary to predictions, CR fluorescence and lipid peroxidation did not consistently increase with age. CR fluorescence demonstrated a slight non-monotonous relationship with age, achieving the highest values at intermediate ages, possibly due to elimination of physiological heterogeneity in our genetically uniform cohorts. LPO demonstrated a significant ovary status-by-age interaction, decreasing with age when measured in Daphnia with full ovaries (late phase ovarian cycle) and showing no significant trend or slight increase with age when measured during the early phase in the ovarian cycle.
Assuntos
Daphnia , Lipofuscina , Animais , Feminino , Lipofuscina/metabolismo , Peroxidação de Lipídeos/fisiologia , Daphnia/metabolismo , Estudos Longitudinais , Estudos Transversais , Envelhecimento/fisiologiaRESUMO
Melanomacrophagic centers (MMCs) were studied in the hepatocytes of zebrafish using transmission electron microscope (TEM). The MMCs with irregular or amoeboid nucleus were located in the hepatocytes adjacent to the bile canaliculi. Several engulfed structures were present in the cytoplasm of MMCs. The most frequent observation was the presence of mitochondria, ranging in size from small to giant, with distorted shape and inconspicuous cristae. Occasionally the fragments of erythrocytes were found. The rough endoplasmic reticulum (rER) showed whirling around the mitochondria and lipid droplets, forming membrane-like structures. The damaged mitochondria were invaded by the lysosomes, and this was covered by a membrane led to the formation of lipofuscin. Four different types of lipofuscins were observed; namely, (1) granular with/without vacuoles of high electron-density, (2) homogenous surrounded by indistinct limiting membrane, (3) lamellated structures similar to inner matrix and cristae of mitochondria, and, (4) compound structure made by the combinations of first 3 types, (granular and homogenous, granular and lamellated, homogenous and lamellated). The present evidence suggests that MMCs in the hepatocytes of zebrafish perform continuous functions of removal of the damaged cellular organelles. The lipofuscin formation work in coordination with the cellular players of immune system and remove pathogens and maintain the internal homeostasis of cells.
Assuntos
Lipofuscina , Peixe-Zebra , Animais , Hepatócitos/ultraestrutura , Lisossomos , Retículo Endoplasmático/ultraestruturaRESUMO
Lutein (L), zeaxanthin (Z), and meso-zeaxanthin (MZ) are the three macular pigments (MP) carotenoids that uniquely accumulate in the macula lutea region of the human retina. L and Z are obtained by humans through dietary intake. The third MP, MZ, is rarely present in diet, and its abundance in the human fovea is due to the metabolic conversion of dietary L by the retinal pigment epithelium's RPE65 enzyme. The major functions of MP in ocular health are to filter high-intensity, phototoxic blue light and to act as effective antioxidants for scavenging free radicals. The pyridinium bisretinoid, N-retinylidene-N-retinylethanolamine (A2E), contributes to drusen formation in dry age-related macular degeneration (AMD) and to the autofluorescent flecks in autosomal recessive Stargardt disease (STGD1). Retinal carotenoids attenuate A2E formation and can directly and indirectly alleviate A2E-mediated oxidative damage. In this chapter, we review these more recently recognized interconnections between MP carotenoids and A2E bisretinoids.
Assuntos
Macula Lutea , Degeneração Macular , Pigmento Macular , Humanos , Luteína , Degeneração Macular/genética , Degeneração Macular/metabolismo , Pigmento Macular/metabolismo , Retina/metabolismo , Retinoides/farmacologiaRESUMO
OBJECTIVE: Skin brightness and spot have a significant impact on youthful and beautiful appearance. One important factor influencing skin brightness is the amount of internal reflected light from the skin. Observers recognize the total surface-reflected light and internal reflected light as skin brightness. The more internal reflected light from the skin, the more attractive and brighter the skin appears. This study aims to identify a new natural cosmetic ingredient that increases the skin's internal reflected light, decreases spot and provides a youthful and beautiful skin appearance. METHODS: Lipofuscin in epidermal keratinocytes, the aggregating complex of denatured proteins and peroxidized lipids, is one factor that decreases skin brightness and causes of spot. Aggregates block light transmission, and peroxidized lipids lead to skin yellowness, dullness and age spot. Lipofuscin is known to accumulate intracellularly with ageing. Rapid removal of intracellular denatured proteins prevents lipofuscin formation and accumulation in cells. We focused a proteasome system that efficiently removes intracellular denatured proteins. To identify natural ingredients that increase proteasome activity, we screened 380 extracts derived from natural products. The extract with the desired activity was fractionated and purified to identify active compounds that lead to proteasome activation. Finally, the efficacy of the proteasome-activating extract was evaluated in a human clinical study. RESULTS: We discovered that Juniperus communis fruits (Juniper berry) extract (JBE) increases proteasome activity and suppresses lipofuscin accumulation in human epidermal keratinocytes. We found Anthricin and Yatein, which belong to the lignan family, to be major active compounds responsible for the proteasome-activating effect of JBE. In a human clinical study, an emulsion containing 1% JBE was applied to half of the face twice daily for 4 weeks, resulting in increased internal reflected light, brightness improvement (L-value) and reduction in yellowness (b-value) and spot in the cheek area. CONCLUSION: This is the first report demonstrating that JBE containing Anthricin and Yatein decreases lipofuscin accumulation in human epidermal keratinocytes through proteasome activation, increases brightness and decreases surface spots in human skin. JBE would be an ideal natural cosmetic ingredient for creating a more youthful and beautiful skin appearance with greater brightness and less spot.
OBJECTIF: La luminosité et les taches de peau ont un impact significatif sur la jeunesse et la beauté de l'apparence. L'un des facteurs importants influençant la luminosité de la peau est la quantité de lumière interne réfléchie par la peau. Pour les observateurs, la luminosité de la peau correspond à la somme de la lumière réfléchie par la surface et de la lumière réfléchie par l'intérieur de la peau. Plus la quantité de lumière interne réfléchie par la peau est importante, plus la peau semble attrayante et lumineuse. Cette étude vise à identifier un nouvel ingrédient cosmétique naturel qui augmente la lumière interne réfléchie par la peau, diminue les taches et donne à la peau une apparence jeune et belle. MÉTHODES: La lipofuscine dans les kératinocytes de l'épiderme, le complexe agrégé de protéines dénaturées et de lipides peroxydés, est un facteur qui diminue l'éclat de la peau et qui est à l'origine des taches. Les agrégats bloquent la transmission de la lumière et les lipides peroxydés entraînent une coloration jaune de la peau, un aspect terne et des taches de vieillesse. On sait que la lipofuscine s'accumule au niveau intracellulaire avec le vieillissement. L'élimination rapide des protéines dénaturées intracellulaires empêche la formation et l'accumulation de lipofuscine dans les cellules. Nous avons mis l'accent sur un système de protéasome qui élimine efficacement les protéines dénaturées intracellulaires. Pour identifier les ingrédients naturels qui augmentent l'activité du protéasome, nous avons passé au crible 380 extraits dérivés de produits naturels. L'extrait présentant l'activité souhaitée a été fractionné et purifié afin d'identifier les composés actifs qui conduisent à l'activation du protéasome. Enfin, l'efficacité de l'extrait activant le protéasome a été évaluée dans une étude clinique humaine. RÉSULTATS: Nous avons découvert que l'extrait de Juniperus communis fruits (baie de genièvre) augmente l'activité du protéasome et supprime l'accumulation de lipofuscine dans les kératinocytes épidermiques humains. Nous avons découvert que l'anthricine et la yateine, qui appartiennent à la famille des lignanes, sont les principaux composés actifs responsables de l'effet activateur du protéasome de l'extrait de baies de genévrier. Dans une étude clinique humaine, une émulsion contenant 1 % de JBE a été appliquée sur la moitié du visage deux fois par jour pendant 4 semaines, ce qui a entraîné une augmentation de la lumière interne réfléchie, une amélioration de la luminosité (valeur L) et une réduction de la jaunisse (valeur b) et des taches dans la zone des joues. CONCLUSION: Il s'agit du premier rapport démontrant que l'EBJ contenant de l'anthricine et de la yateine diminue l'accumulation de lipofuscine dans les kératinocytes épidermiques humains par l'activation du protéasome, augmente la luminosité et diminue les taches superficielles de la peau humaine. Le JBE serait un ingrédient cosmétique naturel idéal pour créer une peau plus jeune et plus belle, plus lumineuse et moins tachetée.
Assuntos
Juniperus , Complexo de Endopeptidases do Proteassoma , Humanos , Lipofuscina/metabolismo , Juniperus/metabolismo , Frutas/metabolismo , Queratinócitos/metabolismo , ProteínasRESUMO
In this study, we evaluated the change in the level of lipofuscin, an autofluorescent aging pigment, in brain and peripheral tissues in a transgenic mouse model of Alzheimer's disease (AD) - 5xFAD. A comparative analysis of the content of lipofuscin in homogenates of the liver, kidneys, heart, and various parts of the brain of 5xFAD mice, as well as control mice from the same litters of different ages, was carried out. The data obtained correlate well with the concept of lipofuscin as an aging pigment - its amount increases with age in both control and 5xFAD mice. We noted accumulation of lipofuscin progressive with age in 5xFAD mice, which is detected both in different parts of the brain and in peripheral organs. At the same time, the level of lipofuscin was increased even in newborn day-old mice 5xFAD. Thus, an increase in the level of lipofuscin in 5xFAD mice is one of the earliest disorders that manifests itself not only in the brain, but also in other organs.
Assuntos
Doença de Alzheimer , Animais , Camundongos , Lipofuscina , Encéfalo , Envelhecimento , Modelos Animais de Doenças , Camundongos TransgênicosRESUMO
The ability of iron to transfer electrons enables the contribution of this metal to a variety of cellular activities even as the redox properties of iron are also responsible for the generation of hydroxyl radicals (â¢OH), the most destructive of the reactive oxygen species. We previously showed that iron can promote the oxidation of bisretinoid by generating highly reactive hydroxyl radical (â¢OH). Now we report that preservation of iron regulation in the retina is not sufficient to prevent iron-induced bisretinoid oxidative degradation when blood iron levels are elevated in liver-specific hepcidin knockout mice. We obtained evidence for the perpetuation of Fenton reactions in the presence of the bisretinoid A2E and visible light. On the other hand, iron chelation by deferiprone was not associated with changes in postbleaching recovery of 11-cis-retinal or dark-adapted ERG b-wave amplitudes indicating that the activity of Rpe65, a rate-determining visual cycle protein that carries an iron-binding domain, is not affected. Notably, iron levels were elevated in the neural retina and retinal pigment epithelial (RPE) cells of Abca4-/- mice. Consistent with higher iron content, ferritin-L immunostaining was elevated in RPE of a patient diagnosed with ABCA4-associated disease and in RPE and photoreceptor cells of Abca4-/- mice. In neural retina of the mutant mice, reduced Tfrc mRNA was also an indicator of retinal iron overload. Thus iron chelation may defend retina when bisretinoid toxicity is implicated in disease processes.