Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133476, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232546

RESUMO

In this work, novel multifunctional cationic template copolymers with flocculation and sterilization capabilities were synthesized using a low-pressure ultraviolet (LP-UV) template polymerization method for the removal of kaolin and Escherichia coli (E. coli) from water. The influence of template agents on the structural performance of the copolymers was evaluated through characterization, which showed that template copolymer TPADM possesses a higher cationic charge density and a more complex rough surface, contributing to better flocculation performance than that of the non-template copolymer CPADM. Under optimal experimental conditions, TPADM-1 exhibited removal rates of 98.45% for kaolin and 99% for E. coli (OD600 =0.04), marginally outperforming the non-template copolymer. Simultaneously, TPADM-1 produced good adaptability to kaolin and E. coli wastewater in terms of wide pH, speculating that charge neutralization, adsorption bridging, patching, and sweeping simultaneously dominate the flocculation mechanism. Interestingly, SEM and 3D-EEM analysis confirm that the sterilization of E. coli occurs through two distinct functions: initially adsorption followed by subsequent cell membrane rupture and leakage of cellular contents, ultimately leading to cell death. This research further confirms the feasibility of the designed novel multifunctional copolymers for achieving simultaneous disinfection and turbidity removal, demonstrating practical applicability in real water treatment processes.


Assuntos
Compostos de Amônio Quaternário , Purificação da Água , Floculação , Caulim/química , Escherichia coli , Antibacterianos , Polímeros/química , Purificação da Água/métodos , Cátions , Desinfecção
2.
Carbohydr Polym ; 273: 118379, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560931

RESUMO

A kind of starch-based flocculant (starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride], denoted St-g-PDMC-LPUV) has been synthesized by low-pressure ultraviolet initiation and was employed to remove humic acid (HA) for water purification. The physicochemical characteristics of starch and St-g-PDMC-LPUV were characterized by FT-IR, 1H NMR, XRD, TGA, SEM and BET to confirmed the successful grafting DMC onto starch. Effects of flocculant dosage, pH, the adding amount of Fe3O4, initial HA concentration and stirring speed were investigated systematically. The prepared St-g-PDMC-LPUV flocculant with non-toxic, biodegradability and environmental friendliness exhibited effective performance for removing HA from water in a wide pH range (5-10). The flocculation mechanism was attributed to the effective collision between function groups of the St-g-PDMC-LPUV flocculant and HA by charge neutralization, adsorption, bridging and patching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA