Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Nephrol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916781

RESUMO

A 6-month-old girl, previously diagnosed with cystic fibrosis (CF), was admitted to hospital for nephrolithiasis. Her parents were first-degree cousins. The patient underwent endoscopic stone management. Despite no family history of stones and medical treatment with potassium citrate, the patient developed recurrent renal stones and atypical urinary tract infections during follow-up. Basic investigations were all normal. Due to consanguinity and early presentation of nephrolithiasis, metabolic causes such as cystinuria and hyperoxaluria were considered. Cystinuria was excluded due to normal cystine levels. High urinary oxalate excretion was found as expected due to absorptive (secondary) hyperoxaluria in CF patients. An early stone burden in the patient with a history of medical treatment and consanguinity led us to perform a genetic testing. Genetic testing revealed a missense homozygous variant in exon 1 of the AGXT gene. The patient was diagnosed with primary hyperoxaluria type 1. Two rare life-threatening genetic diseases were found together in the same child.

2.
Pediatr Nephrol ; 39(7): 2079-2082, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38261066

RESUMO

BACKGROUND: Lumasiran is the first RNA interference (RNAi) therapy of primary hyperoxaluria type 1 (PH1). Here, we report on the rapid improvement and even disappearance of nephrocalcinosis after early lumasiran therapy. CASE-DIAGNOSIS/TREATMENT: In patient 1, PH1 was suspected due to incidental discovery of nephrocalcinosis stage 3 in a 4-month-old boy. Bilateral nephrocalcinosis stage 3 was diagnosed in patient 2 at 22 months concomitantly to acute pyelonephritis. Urinary oxalate (UOx) and glycolate (UGly) were increased in both patients allowing to start lumasiran therapy before genetic confirmation. Nephrocalcinosis started to improve and disappeared after 27 months and 1 year of treatment in patients 1 and 2, respectively. CONCLUSION: These cases illustrate the efficacy of early lumasiran therapy in infants to improve and even normalize nephrocalcinosis. As proposed in the 2023 European guidelines, the interest of starting treatment quickly without waiting for genetic confirmation may have an impact on long-term outcomes.


Assuntos
Hiperoxalúria Primária , Nefrocalcinose , Humanos , Nefrocalcinose/genética , Nefrocalcinose/diagnóstico , Nefrocalcinose/terapia , Masculino , Lactente , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/diagnóstico , Hiperoxalúria Primária/terapia , Hiperoxalúria Primária/urina , Hiperoxalúria Primária/complicações , Terapêutica com RNAi/métodos , Resultado do Tratamento , Glicolatos/uso terapêutico , Glicolatos/urina
3.
Am J Kidney Dis ; 82(1): 113-116, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693470

RESUMO

Primary hyperoxaluria type 1 is a rare cause of kidney failure. Stiripentol, an inhibitor of lactate dehydrogenase A, and lumasiran, a small interfering RNA targeting glycolate oxidase, have been proposed as therapeutic options, but clinical data are scarce, especially in adults and transplanted patients. We describe the case of a 51-year-old patient with a biopsy-proven recurrence of oxalate nephropathy after a kidney-only transplantation. He received stiripentol and lumasiran without adverse events. Fourteen months after transplantation, graft function, serum, and urinary oxalate levels have remained stable, and kidney biopsy showed a complete regression of oxalate crystals. Further studies are needed to assess whether this strategy is effective and could replace liver-kidney transplantation.


Assuntos
Hiperoxalúria Primária , Hiperoxalúria , Transplante de Rim , Insuficiência Renal , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Transplante de Rim/efeitos adversos , Hiperoxalúria Primária/complicações , Hiperoxalúria Primária/cirurgia , Hiperoxalúria/etiologia , RNA Interferente Pequeno , Insuficiência Renal/etiologia , Oxalatos
4.
Am J Kidney Dis ; 81(2): 145-155.e1, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35843439

RESUMO

RATIONALE & OBJECTIVE: Lumasiran reduces urinary and plasma oxalate (POx) in patients with primary hyperoxaluria type 1 (PH1) and relatively preserved kidney function. ILLUMINATE-C evaluates the efficacy, safety, pharmacokinetics, and pharmacodynamics of lumasiran in patients with PH1 and advanced kidney disease. STUDY DESIGN: Phase 3, open-label, single-arm trial. SETTING & PARTICIPANTS: Multinational study; enrolled patients with PH1 of all ages, estimated glomerular filtration rate ≤45 mL/min/1.73 m2 (if age ≥12 months) or increased serum creatinine level (if age <12 months), and POx ≥20 µmol/L at screening, including patients with or without systemic oxalosis. INTERVENTION: Lumasiran administered subcutaneously; 3 monthly doses followed by monthly or quarterly weight-based dosing. OUTCOME: Primary end point: percent change in POx from baseline to month 6 (cohort A; not receiving hemodialysis at enrollment) and percent change in predialysis POx from baseline to month 6 (cohort B; receiving hemodialysis at enrollment). Pharmacodynamic secondary end points: percent change in POx area under the curve between dialysis sessions (cohort B only); absolute change in POx; percent and absolute change in spot urinary oxalate-creatinine ratio; and 24-hour urinary oxalate adjusted for body surface area. RESULTS: All patients (N = 21; 43% female; 76% White) completed the 6-month primary analysis period. Median age at consent was 8 (range, 0-59) years. For the primary end point, least-squares mean reductions in POx were 33.3% (95% CI, -15.2% to 81.8%) in cohort A (n = 6) and 42.4% (95% CI, 34.2%-50.7%) in cohort B (n = 15). Improvements were also observed in all pharmacodynamic secondary end points. Most adverse events were mild or moderate. No patient discontinued treatment or withdrew from the study. The most commonly reported lumasiran-related adverse events were injection-site reactions, all of which were mild and transient. LIMITATIONS: Single-arm study without placebo control. CONCLUSIONS: Lumasiran resulted in substantial reductions in POx with acceptable safety in patients with PH1 who have advanced kidney disease, supporting its efficacy and safety in this patient population. FUNDING: Alnylam Pharmaceuticals. TRIAL REGISTRATION: Registered at ClinicalTrials.gov with study number NCT04152200 and at EudraCT with study number 2019-001346-17. PLAIN-LANGUAGE SUMMARY: Primary hyperoxaluria type 1 (PH1) is a rare genetic disease characterized by excessive hepatic oxalate production that frequently causes kidney failure. Lumasiran is an RNA interference therapeutic that is administered subcutaneously for the treatment of PH1. Lumasiran has been shown to reduce oxalate levels in the urine and plasma of patients with PH1 who have relatively preserved kidney function. In the ILLUMINATE-C study, the efficacy and safety of lumasiran were evaluated in patients with PH1 and advanced kidney disease, including a cohort of patients undergoing hemodialysis. During the 6-month primary analysis period, lumasiran resulted in substantial reductions in plasma oxalate with acceptable safety in patients with PH1 complicated by advanced kidney disease.


Assuntos
Hiperoxalúria Primária , Hiperoxalúria , Nefropatias , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Hiperoxalúria Primária/complicações , Nefropatias/complicações , Oxalatos
5.
Pediatr Nephrol ; 38(4): 1075-1086, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35913563

RESUMO

BACKGROUND: Primary hyperoxaluria type 1 (PH1) is a rare genetic disease that causes progressive kidney damage and systemic oxalosis due to hepatic overproduction of oxalate. Lumasiran demonstrated efficacy and safety in the 6-month primary analysis period of the phase 3, multinational, open-label, single-arm ILLUMINATE-B study of infants and children < 6 years old with PH1 (ClinicalTrials.gov: NCT03905694 (4/1/2019); EudraCT: 2018-004,014-17 (10/12/2018)). Outcomes in the ILLUMINATE-B extension period (EP) for patients who completed ≥ 12 months on study are reported here. METHODS: Of the 18 patients enrolled in the 6-month primary analysis period, all entered the EP and completed ≥ 6 additional months of lumasiran treatment (median (range) duration of total exposure, 17.8 (12.7-20.5) months). RESULTS: Lumasiran treatment was previously reported to reduce spot urinary oxalate:creatinine ratio by 72% at month 6, which was maintained at 72% at month 12; mean month 12 reductions in prespecified weight subgroups were 89%, 68%, and 71% for patients weighing < 10 kg, 10 to < 20 kg, and ≥ 20 kg, respectively. The mean reduction from baseline in plasma oxalate level was reported to be 32% at month 6, and this improved to 47% at month 12. Additional improvements were also seen in nephrocalcinosis grade, and kidney stone event rates remained low. The most common lumasiran-related adverse events were mild, transient injection-site reactions (3 patients (17%)). CONCLUSIONS: Lumasiran treatment provided sustained reductions in urinary and plasma oxalate through month 12 across all weight subgroups, with an acceptable safety profile, in infants and young children with PH1. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Hiperoxalúria Primária , Cálculos Renais , Criança , Pré-Escolar , Humanos , Lactente , Hiperoxalúria Primária/complicações , Hiperoxalúria Primária/tratamento farmacológico , Cálculos Renais/etiologia , Oxalatos/efeitos adversos
6.
Genet Med ; 24(3): 654-662, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34906487

RESUMO

PURPOSE: Primary hyperoxaluria type 1 (PH1) is a rare, progressive, genetic disease with limited treatment options. We report the efficacy and safety of lumasiran, an RNA interference therapeutic, in infants and young children with PH1. METHODS: This single-arm, open-label, phase 3 study evaluated lumasiran in patients aged <6 years with PH1 and an estimated glomerular filtration rate >45 mL/min/1.73 m2, if aged ≥12 months, or normal serum creatinine, if aged <12 months. The primary end point was percent change in spot urinary oxalate to creatinine ratio (UOx:Cr) from baseline to month 6. Secondary end points included proportion of patients with urinary oxalate ≤1.5× upper limit of normal and change in plasma oxalate. RESULTS: All patients (N = 18) completed the 6-month primary analysis period. Median age at consent was 50.1 months. Least-squares mean percent reduction in spot UOx:Cr was 72.0%. At month 6, 50% of patients (9/18) achieved spot UOx:Cr ≤1.5× upper limit of normal. Least-squares mean percent reduction in plasma oxalate was 31.7%. The most common treatment-related adverse events were transient, mild, injection-site reactions. CONCLUSION: Lumasiran showed rapid, sustained reduction in spot UOx:Cr and plasma oxalate and acceptable safety in patients aged <6 years with PH1, establishing RNA interference therapies as safe, effective treatment options for infants and young children.


Assuntos
Hiperoxalúria Primária , Terapêutica com RNAi , Pré-Escolar , Humanos , Hiperoxalúria Primária/complicações , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia , Lactente , Interferência de RNA , RNA Interferente Pequeno
7.
Am J Kidney Dis ; 79(5): 717-727, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34508834

RESUMO

Hyperoxaluria results from either inherited disorders of glyoxylate metabolism leading to hepatic oxalate overproduction (primary hyperoxaluria), or increased intestinal oxalate absorption (secondary hyperoxaluria). Hyperoxaluria may lead to urinary supersaturation of calcium oxalate and crystal formation, causing urolithiasis and deposition of calcium oxalate crystals in the kidney parenchyma, a condition termed oxalate nephropathy. Considerable progress has been made in the understanding of pathophysiological mechanisms leading to hyperoxaluria and oxalate nephropathy, whose diagnosis is frequently delayed and prognosis too often poor. Fortunately, novel promising targeted therapeutic approaches are on the horizon in patients with primary hyperoxaluria. Patients with secondary hyperoxaluria frequently have long-standing hyperoxaluria-enabling conditions, a fact suggesting the role of triggers of acute kidney injury such as dehydration. Current standard of care in these patients includes management of the underlying cause, high fluid intake, and use of calcium supplements. Overall, prompt recognition of hyperoxaluria and associated oxalate nephropathy is crucial because optimal management may improve outcomes.


Assuntos
Injúria Renal Aguda , Hiperoxalúria Primária , Hiperoxalúria , Injúria Renal Aguda/complicações , Oxalato de Cálcio , Feminino , Humanos , Hiperoxalúria/complicações , Hiperoxalúria/terapia , Hiperoxalúria Primária/complicações , Hiperoxalúria Primária/diagnóstico , Hiperoxalúria Primária/terapia , Masculino , Oxalatos
8.
Rev Med Liege ; 77(7-8): 416-420, 2022 Jul.
Artigo em Francês | MEDLINE | ID: mdl-35924494

RESUMO

Primary hyperoxaluria type 1 is a rare autosomal recessive disorder leading to oxalate overproduction by deficiency in the liver-specific enzyme alanine-glyoxylate transaminase (AGT). Oxalate is a poorly soluble molecule that binds calcium and deposits in the entire organism leading to oxalosis. Its elimination is mainly carried out by kidneys. Hence the first manifestations are frequently of urinary concern and whitout any early care, progression of the disease to end-stage renal failure cannot be avoided. The only etiological treatment has long been combined liver-kidney transplantation because it restaures enzymatic function and replaces pathological kidneys. However, for a few years now, numerous studies are carried out on this subject and promising results have already been published with a new drug, lumasiran. From a clinical case, we describe the different options for the therapeutic management of primary hyperoxaluria type 1.


L'hyperoxalurie primitive de type 1 (HP1) est une maladie autosomale récessive rare entraînant une hyperproduction d'oxalate par déficit d'une enzyme hépatique : l'alanine-glyoxylate aminotransférase. L'oxalate est une petite molécule peu soluble qui se lie au calcium et forme des dépôts d'oxalate calcique dans l'ensemble de l'organisme : c'est l'oxalose. Son élimination est principalement rénale. Dès lors, les premières manifestations sont souvent d'ordre urinaire et, en l'absence de traitement précoce, la maladie évolue inévitablement vers l'insuffisance rénale terminale. Le seul traitement étiologique a longtemps été la transplantation combinée hépatique et rénale qui restaure une activité enzymatique et remplace les reins défaillants. Cependant, depuis quelques années, de nombreuses recherches sont réalisées à ce sujet et des résultats prometteurs ont déjà vu le jour avec le lumasiran. à partir d'un cas clinique, nous décrivons les différentes options de la prise en charge thérapeutique de l'HP1.


Assuntos
Hiperoxalúria Primária , Nefrocalcinose , Humanos , Hiperoxalúria Primária/complicações , Hiperoxalúria Primária/diagnóstico , Hiperoxalúria Primária/terapia , Nefrocalcinose/etiologia , Oxalatos/metabolismo , RNA Interferente Pequeno
10.
Clin Kidney J ; 17(5): sfae090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742209

RESUMO

Background: Primary hyperoxaluria (PH) is a rare, severe genetic disorder, characterized by increased urinary excretion of calcium oxalate, which is responsible for kidney damage and systemic clinical manifestations. Since the year 2020, a new molecule, lumasiran, based on RNA interference (RNAi) technology, has been added to the traditional therapeutic approach. The aim of this analysis was to define the baseline characteristics of a PH1 pediatric population treated with lumasiran in a compassionate-use program setting, and to evaluate the medium-term efficacy of this drug in the routine clinical setting. Methods: A retrospective observational analysis was conducted in nine pediatric patients (male:female 5:4; median age at lumasiran start 1.9 years, range 0-14.1). Data concerning oxalate concentration in plasma and urine, kidney stones events, ultrasound and kidney function were collected during the study period (follow-up, mean ± standard deviation: 15.3 ± 5 months). Results: In this analysis, a reduction in the urinary oxalate to creatinine ratio (reduction range within the sixth month of treatment from 25.8% to 69.6%, median 51.2%) as well as plasma oxalate concentration under the limit of supersaturation of oxalate in all the patients. Only one patient presented new stone events; kidney ultrasonographic findings related to nephrocalcinosis remained stable in eight out of nine patients. Glomerular filtration rate remained stable during treatment. No adverse events related to lumasiran were noted. Conclusion: Data from this analysis support the efficacy and safety of lumasiran in a pediatric clinical setting, especially if administrated in early life.

11.
Pharmacy (Basel) ; 12(2)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38668084

RESUMO

Small interfering RNA (siRNA)-based medications offer the ability to target previously undruggable targets and have now received FDA approval in five instances for orphan or uncommon diseases. The current siRNA "-sirans" are directed towards hepatic molecular targets. Because they are not conventional drug formulae, their ultimate clinical success will require overcoming multiple barriers beyond their pharmacology. The minimal patient numbers leave fewer patients to bear the costs of R&D and manufacture; therefore, the cost of these drugs, questionable third-party reimbursement, and competition from other drug classes for the same low number of patients are impediments to patient access. The parenteral route of administration, as well as emerging safety restrictions, are also drawbacks to siRNA. With this review, we document currently approved siRNA drugs by condition, approval date, administration route and frequencies. We have estimated the available patient populations for siran therapies using the U.S. Medicaid and Medicare populations and sought to identify the frequency with which large Medicaid formularies list siRNA drugs. Current comparative costs between the siRNA drugs and alternatives have been presented, and the review summarizes current adverse events as reported to the FDA's Adverse Event Reporting System. Our review and data indicate that sirans are extremely expensive and seldom recognized in posted Medicaid formularies. However, alternative treatments for these conditions are no less costly, usually do not have significantly different adverse events, and are often less convenient for the patient.

12.
Kidney Int Rep ; 9(7): 2037-2046, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39081738

RESUMO

Introduction: Patients with primary hyperoxaluria type 1 (PH1), a genetic disorder associated with hepatic oxalate overproduction, frequently experience recurrent kidney stones and worsening kidney function. Lumasiran is indicated for the treatment of PH1 to lower urinary and plasma oxalate (POx). Methods: ILLUMINATE-A (NCT03681184) is a phase III trial in patients aged ≥6 years with PH1 and estimated glomerular filtration rate (eGFR) ≥30 ml/min per 1.73 m2. A 6-month double-blind placebo-controlled period is followed by an extension period (≤54 months; all patients receive lumasiran). We report interim data through month 36. Results: Of 39 patients enrolled, 24 of 26 (lumasiran/lumasiran group) and 13 of 13 (placebo/lumasiran group) entered and continue in the extension period. At month 36, in the lumasiran/lumasiran group (36 months of lumasiran treatment) and placebo/lumasiran group (30 months of lumasiran treatment), mean 24-hour urinary oxalate (UOx) reductions from baseline were 63% and 58%, respectively; 76% and 92% of patients reached a 24-hour UOx excretion ≤1.5× the upper limit of normal (ULN). eGFR remained stable. Kidney stone event rates decreased from 2.31 (95% confidence interval: 1.88-2.84) per person-year (PY) during the 12 months before consent to 0.60 (0.46-0.77) per PY during lumasiran treatment. Medullary nephrocalcinosis generally remained stable or improved; approximately one-third of patients (both groups) improved to complete resolution. The most common lumasiran-related adverse events (AEs) were mild, transient injection-site reactions. Conclusion: In patients with PH1, longer-term lumasiran treatment led to sustained reduction in UOx excretion, with an acceptable safety profile and encouraging clinical outcomes.See for Video Abstract.

13.
J Clin Pharmacol ; 64(1): 45-57, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37589246

RESUMO

Small interfering RNAs (siRNAs) represent a new class of drugs with tremendous potential for battling previously "undruggable" diseases. After nearly 2 decades of efforts in addressing the problems of the poor drug profile of naked unmodified siRNAs, this new modality has finally come to fruition, with 5 agents (patisiran, givosiran, lumasiran, inclisiran, and vutrisiran) being approved since 2018, and with many others in the different phases of clinical development. Unlike small-molecule drugs and protein therapeutics, siRNAs have different sizes, distinct mechanisms of action, differing physicochemical and pharmacological properties, and, accordingly, a unique pharmacokinetic/pharmacodynamic (PK/PD) relationship. To support the continuous development of siRNAs, it is important to have a thorough and deep understanding of the PK/PD and clinical pharmacology related features of siRNAs. As most of the current siRNA products are conjugated by N-acetylgalactosamine (GalNAc), this review focuses on the PK/PD relationships and clinical pharmacology of GalNAc-conjugated siRNAs, including their absorption, distribution, metabolism, excretion (ADME) properties, PK/PD models, drug-drug interactions, clinical pharmacology in special populations, and safety evaluation. In addition, necessary background information related to the development of siRNAs as a therapeutic modality, including the mechanisms of action, the advantages of siRNAs, the problems of naked siRNAs, as well as the strategies used to enhance the clinical utility of siRNAs, have also been covered. The goal of this review is to serve as a "primer" on siRNA PK/PD, and I hope the readers, especially those who have a limited background on siRNA therapeutics, will have a fundamental understanding of siRNA PK/PD and clinical pharmacology after reading this review.


Assuntos
Farmacologia Clínica , Humanos , RNA Interferente Pequeno , Interações Medicamentosas , Farmacocinética
14.
Front Pediatr ; 11: 1294319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143536

RESUMO

Incidence and prevalence of urolithiasis is apparently increasing worldwide, also among children and adolescents. Nevertheless, robust data have only been obtained in a few countries. In Spain, a voluntary Registry for Pediatric Renal Lithiasis has been active since 2015. Irregular participation limits its applicability, as well as its limitation to patients with a stone available for morphocompositional study, to obtain data about incidence and prevalence. On the other hand, findings about typology of stones and clinical and analytical characteristics of these subjects have been communicated in several meetings. Other valuable efforts in this field are the elaboration of guidelines for the collection and processing of urine samples for the study of urolithiasis in pediatric patients with the consensus of the Spanish Society for Pediatric Nephrology (AENP) as well as the Spanish Society for Laboratory Medicine (SEQC), the collaborative network RenalTube for the diagnosis of primary tubulopathies and the registry of patients with Primary Hyperoxaluria (OxalSpain). In many hospitals from the public healthcare system, pediatric nephrologists are the specialists in charge of the management of children with kidney stones, but there is no formal regulation on this competence. Other specialists, such as urologists, pediatric surgeons or pediatric urologists, in many cases do not offer a complete insight into the etiopathogenic mechanisms and the consequent medical treatment. Access to medication according to standards of treatment is warranted, provided a correct diagnosis is achieved, but criteria for the reimbursement of certain therapies, such as RNAi drugs for primary hyperoxaluria, are arguable.

15.
Case Rep Nephrol Dial ; 13(1): 63-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497389

RESUMO

The primary hyperoxalurias (PHs) are a group of diseases characterized by kidney stones, nephrocalcinosis, and chronic kidney disease. At stages of advanced kidney disease, glomerular filtration of oxalate becomes insufficient, plasma levels increase, and tissue deposition may occur. Hemodialysis is often unable to overcome the excess hepatic oxalate production. The current surgical management of primary hyperoxaluria type 1 (PH1) is combined liver kidney transplantation. In a subset of PH1 patients who respond to pyridoxine, kidney-only transplantation has been successfully performed. Recently, kidney-only transplantation has also been performed in PH1 patients receiving a small interfering RNA therapy called lumasiran. This drug targets the hepatic overproduction of oxalate, making kidney-only transplantation a potentially practical novel approach for managing PH1 patients with advanced kidney disease. It is unknown if similar effects could be seen with a different small interfering RNA agent called nedosiran. This article will briefly review PH1, describe the small interfering RNA therapies being used to treat PH, summarize the reported cases of kidney-only transplantation performed with lumasiran, and detail a case of kidney-only transplantation performed in a PH1 patient receiving nedosiran.

16.
Front Pediatr ; 11: 1338909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293660

RESUMO

Background: Primary hyperoxaluria type 1 (PH1) is a rare disease with autosomal recessive transmission, characterized by increased urinary excretion of oxalate, resulting in chronic kidney disease secondary to recurrent urolithiasis, nephrocalcinosis, and accumulation of oxalate in various organs and tissues (systemic oxalosis). Since 2020, an innovative pharmacological approach, namely, lumasiran, has been added to the therapeutic armamentarium (dialysis and liver-kidney transplantation). The purpose of this paper is to describe the effect of lumasiran initiated at 10 days of life in a newborn with prenatally diagnosed PH1. A female fetus was prenatally diagnosed with hyperoxaluria type 1, based on family history and genetic testing. Her brother had the onset of the disease at 2 months of age and underwent liver and kidney transplantation at 13 months and 8 years of age, respectively. The baby was born late preterm at 36 weeks + 4 days of gestation via spontaneous labor, and lumasiran for compassionate use was started on the tenth day of life. At 20 months of age, the baby showed normal urinary oxalate values and kidney function, while the plasma oxalate level was under the threshold of oversaturation. There were no signs of systemic oxalosis. Conclusions: Early use of lumasiran in young infants, who do not yet show signs of the disease, represents a therapeutic challenge for the pediatric nephrologist. The ability of the drug to act on the hepatocyte of the newborn and the most appropriate dosage to be used in these very young babies have yet to be clarified.

17.
Bioanalysis ; 15(9): 481-491, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37195004

RESUMO

Background: Measurement of plasma oxalate (POx) is challenging, but critical, for management of patients with primary hyperoxaluria type 1. A novel LC-MS/MS assay was developed, validated and used to quantify POx in patients with primary hyperoxaluria type 1. Methods: Samples (100 µl of plasma in K2EDTA) were spiked with internal standard (13C2-labeled oxalic acid), acidified and cleaned by protein precipitation before analysis using anion HPLC-ESI-MS/MS. The assay was validated with a quantitation range of 0.500-50.0 µg/ml (5.55-555 µmol/l). All parameters successfully met acceptance criteria, including 15% (20% at lower limit of quantification) for accuracy and precision. Conclusion: This assay has advantages over previously published POx quantitation methods, was validated in accordance with regulatory guidelines and accurately determined POx levels in humans.


A novel assay to measure plasma oxalate was developed and validated successfully in accordance with regulatory guidelines. The required sample volume was only 100 µl of plasma, which is especially favorable in the pediatric population, and there is no need to acidify blood at the collection site before processing. The assay accurately determines plasma oxalate levels, which were used as a measure of efficacy in the lumasiran clinical trials.


Assuntos
Ácido Oxálico , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Ensaios Clínicos como Assunto
18.
Int J Nephrol Renovasc Dis ; 15: 197-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747094

RESUMO

Primary hyperoxaluria (PH) is a rare genetic disease caused by excessive hepatic production and elevated urinary excretion of oxalate that leads to recurrent nephrolithiasis, nephrocalcinosis and, eventually, kidney failure. As glomerular filtration rate declines, oxalate accumulates leading to systemic oxalosis, a debilitating condition with high morbidity and mortality. Although PH is usually diagnosed during infancy, it can present at any age with different phenotypes, ranging from mild symptoms to extremely debilitating manifestations. PH is an autosomal recessive disorder and, to date, three types have been identified: PH1, PH2 and PH3. PH1 is the most common and most aggressive type, accounting for almost 80% of primary hyperoxaluria diagnoses. Until 2020, general treatment for PH1 consisted mainly in high fluid intake, urine alkalization, surgical management of recurrent nephrolithiasis and eventually, if and when kidney failure occurred, intensive dialysis regimens and transplantation strategies (simultaneous or sequential liver-kidney transplant or isolated liver/kidney transplant in carefully selected patients). Specific treatment did and still consists in administration of pyridoxine hydrochloride, although it is only effective in a subset of PH1 patients. Lumasiran, a novel biological drug based on mRNA interference that has been recently approved in the US and European Union, showed promising results and is set to be a turning point in the management of PH1. This literature review aims to summarize the available evidence on PH1 treatment with lumasiran, in order to provide both pediatric and adult nephrologists and clinicians with the knowledge for the identification and management of PH1 patients suitable for treatment.

19.
Cureus ; 14(1): e21673, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35237473

RESUMO

Primary hyperoxaluria type 1 (PH1) is a rare genetic disease that results in oxalate overproduction leading to nephrolithiasis (NL), nephrocalcinosis (NC), kidney failure, and systemic oxalosis. Infantile PH1 is its most severe form, and it may require intensive hemodialysis followed by a liver-kidney transplant. Lumasiran is an RNA interference (RNAi) therapeutic agent that reduces hepatic oxalate production, which has been recently approved for the treatment of PH1. In this report, we present a case of twin males with infantile PH1 and bilateral NL and NC who were treated with lumasiran at 12 months of age. Their symptoms abated after therapy was started without disease progression. To the best of our knowledge, this is the first report of PH1 occurring in twins and the first report on using lumasiran to treat infantile PH1 outside of a clinical trial. Lumasiran appears to be a successful therapeutic option for infantile PH1.

20.
Expert Rev Clin Pharmacol ; 15(11): 1327-1341, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36251525

RESUMO

INTRODUCTION: Small interfering RNA (siRNA) has emerged as a powerful tool for post-transcriptional downregulation of multiple genes for various therapies. Naked siRNA molecules are surrounded by several barriers that tackle their optimum delivery to target tissues such as limited cellular uptake, short circulation time, degradation by endonucleases, glomerular filtration, and capturing by the reticuloendothelial system (RES). AREAS COVERED: This review provides insights into studies that investigate various siRNA-based therapies, focusing on the mechanism, delivery strategies, bioavailability, pharmacokinetic, and pharmacodynamics of naked and modified siRNA molecules. The clinical pharmacology of currently approved siRNA products is also discussed. EXPERT OPINION: Few siRNA-based products have been approved recently by the Food and Drug Administration (FDA) and other regulatory agencies after approximately 20 years following its discovery due to the associated limitations. The absorption, distribution, metabolism, and excretion of siRNA therapeutics are highly restricted by several obstacles, resulting in rapid clearance of siRNA-based therapeutic products from systemic circulation before reaching the cytosol of targeted cells. The siRNA therapeutics however are very promising in many diseases, including gene therapy and SARS-COV-2 viral infection. The design of suitable delivery vehicles and developing strategies toward better pharmacokinetic parameters may solve the challenges of siRNA therapies.


Assuntos
COVID-19 , Humanos , RNA Interferente Pequeno/farmacologia , COVID-19/terapia , SARS-CoV-2 , Terapia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA