RESUMO
Lung ultrasound (LUS) is a practical diagnostic tool for several lung pathologies. Pocket sized USG devices (PSUDs) are more affordable, accessible, practical, and learning to use them is easier than standard ultrasound devices (SUDs). Their capability in image quality have been found as comparable with standard USG machines. Studies have been showing that these devices can be useful as much as SUDs in the evaluation of heart, abdomen, vascular structures, diaphragm and optic nerve. The aim of this study is to compare PSUD with a standard ultrasound devices (SUD) in the evaluation of LUS patterns such as alveolar, interstitial syndromes and lung aeration score (LAS). Study performed in an University Hospital Pulmonary ICU. All patients older than 18 years old were included in this study. The sector probe of SUD (Vivid-Q) and PSUD (Vscan) were used for investigation of A lines, interstitial (B lines), alveolar syndromes (consolidation, hepatisation, air bronchograms) and pleural effusion. 33 patients were included in the study. When PSUD was compared with SUD in terms of total B2 count, and LAS in the right, left and both lung, there was an agreement without proportional bias according to Bland Altman test. There was also good inter class correlation coefficient value as greater than 0.8 and 0.7 between two physicians in terms of counting of total B1, B2, total B lines and calculating of total LAS for SUD and PSUD respectively. PSUDs is a reliable and valid method for evaluation of LUS patterns like SUDs.
Assuntos
Pneumopatias , Derrame Pleural , Adolescente , Humanos , Unidades de Terapia Intensiva , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , UltrassonografiaRESUMO
BACKGROUND: In patients requiring general anesthesia, lung-protective ventilation can prevent postoperative pulmonary complications, which are associated with higher morbidity, mortality, and prolonged hospital stay. Application of positive end-expiratory pressure (PEEP) is one component of lung-protective ventilation. The correct strategy for setting adequate PEEP, however, remains controversial. PEEP settings that lead to a lower pressure difference between end-inspiratory plateau pressure and end-expiratory pressure ("driving pressure," ΔP) may reduce the risk of postoperative pulmonary complications. Preliminary data suggests that the PEEP required to prevent both end-inspiratory overdistension and end-expiratory alveolar collapse, thereby reducing ΔP, correlates positively with the body mass index (BMI) of patients, with PEEP values corresponding to approximately 1/3 of patient's respective BMI. Thus, we hypothesize that adjusting PEEP according to patient BMI reduces ΔP and may result in less postoperative pulmonary complications. METHODS: Patients undergoing general anesthesia and endotracheal intubation with volume-controlled ventilation with a tidal volume of 7 ml per kg predicted body weight will be randomized and assigned to either an intervention group with PEEP adjusted according to BMI or a control group with a standardized PEEP of 5 mbar. Pre- and postoperatively, lung ultrasound will be performed to determine the lung aeration score, and hemodynamic and respiratory vital signs will be recorded for subsequent evaluation. The primary outcome is the difference in ΔP as a surrogate parameter for lung-protective ventilation. Secondary outcomes include change in lung aeration score, intraoperative occurrence of hemodynamic and respiratory events, oxygen requirements and postoperative pulmonary complications. DISCUSSION: The study results will show whether an intraoperative ventilation strategy with PEEP adjustment based on BMI has the potential of reducing the risk for postoperative pulmonary complications as an easy-to-implement intervention that does not require lengthy ventilator maneuvers nor additional equipment. TRIAL REGISTRATION: German Clinical Trials Register (DRKS), DRKS00031336. Registered 21st February 2023. TRIAL STATUS: The study protocol was approved by the ethics committee of the Christian-Albrechts-Universität Kiel, Germany, on 1st February 2023. Recruitment began in March 2023 and is expected to end in September 2023.
Assuntos
Anestesia Geral , Índice de Massa Corporal , Respiração com Pressão Positiva , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/efeitos adversos , Anestesia Geral/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Volume de Ventilação Pulmonar , Pulmão/fisiopatologia , Resultado do TratamentoRESUMO
OBJECTIVE: This was a pilot study to determine the utility of daily lung ultrasound (LUS) in patients requiring veno-venous extracorporeal membrane oxygenation (VV-ECMO) for acute respiratory distress syndrome (ARDS). DESIGN: This was a prospective, observational study. SETTING: The study took place in the intensive care unit at Royal Papworth Hospital in Cambridge, UK. PARTICIPANTS: We recruited adult patients receiving VV-ECMO for ARDS. INTERVENTIONS: All patients received a lung computed tomography (CT) scan and LUS on admission. Bedside chest radiography (CXR) and LUS were done on a daily basis until patients were decannulated. MEASUREMENTS AND MAIN RESULTS: Daily LUS aeration scores were calculated according to the appearance of four defined patterns. An independent radiologist calculated corresponding scores for CT and CXR, retrospectively. These were checked for correlation with LUS aeration scores. There were statistically significant correlations between LUS versus CT (r = 0.868, p = 0.002) and LUS versus CXR (r = 0.498, p = 0.018) with good agreement and no evidence of proportional bias. LUS was able to detect 13.5% of pleural effusions and 54.2% of pneumothorax that were not picked up on CXR.In most of the patients who were weaned off VV-ECMO, a progressive reduction of LUS aeration scores corresponding to lung re-aeration was observed. CONCLUSIONS: LUS correlated with findings on CT and CXR for quantifying lung aeration and the clinical presentation of patients. LUS also picked up more pleural effusions and pneumothorax than CXR. Together with traditional imaging techniques, the routine use of LUS should be considered for this patient group.